
Using O(n) ProxmapSort and O(1) ProxmapSearch
to Motivate CS2 Students, Part II
Thomas A. Standish Norman Jacobson
Donald Bren School of Information and Computer Sciences

University of California, Irvine
Irvine, California 92697-3425

{standish, jacobson}@ics.uci.edu
Abstract
Presenting “cool” algorithms to CS2 students helps
convince them that the study of data structures and
algorithms is worthwhile. An algorithm is perceived as
cool if it is easy to understand, very fast on large data sets,
uses memory judiciously and has a straightforward, short
proof — or at least a convincing proof sketch — using
accessible mathematics. To illustrate, we discuss two
related and relatively unknown algorithms: ProxmapSort,
previously discussed in Part I of this paper, and
ProxmapSearch, discussed here.
Keywords
CS2, ProxmapSearch, ProxmapSort, searching, sorting
Introduction
 In Part I of this paper, we presented the ProxmapSort
sorting algorithm (also described in [1], [2], and [3]) and
we showed that, if keys are “well distributed,” this
algorithm sorts in time O(n) — faster than key-comparison
sorting techniques, which can do no better than O(n log n).
 In our CS2 classes, we have also been discussing the
ProxmapSearch searching algorithm, which was discovered
when preparing the instructor’s manual for [1]. It can be
presented quickly once ProxmapSort has been covered.
Students already know that binary search in ordered arrays
is considered fast at O(log n) time and that searching based
on open addressing hashing algorithms is O(1) if the array
is relatively empty but tends to O(n) as the array becomes
saturated. So they are astonished to learn that
ProxmapSearch finds a key in an average of 1.5 key
comparisons, using information generated during a
ProxmapSort of the original array, and that the result holds
even when the array is full.

ProxmapSort Prepares for ProxmapSearch
In Part I of this paper we gave an example to introduce
students to the main ideas in ProxmapSort. We include
part of that example here (Fig. 1) to illustrate how
ProxmapSearch uses the proxmap generated by
ProxmapSort.
 Example. Consider a full array A[0..n –1] of n keys,
with the keys drawn randomly and uniformly from the
possible key values K in the range (0.0 ≤ K < 13.0), and let
i in [0..n –1] be an index of that array. Assume that we
have already applied ProxmapSort to sort A’s keys, using
the hit count array H, the proxmap array P, and the
insertion location array L as intermediaries. It is the

proxmap array P[0..n–1] that must be retained after
ProxmapSort is completed in order for ProxmapSearch to
work properly.

Keys to sort and their corresponding indices – array A
6.7 5.9 8.4 1.2 7.3 3.7 11.5 1.1 4.8 0.4 10.5 6.1 1.8
 0 1 2 3 4 5 6 7 8 9 10 11 12

Hit Counts – array H
 1 3 0 1 1 1 2 1 1 0 1 1 0

Proxmap – array P
 0 1 -1 4 5 6 7 9 10 -1 11 12 -1

[0] [1 2 3] [4] [5] [6] [7 8] [9] [10] [11] [12]

Insertion Locations – array L
 7 6 10 1 9 4 12 1 5 0 11 7 1

After moving keys into subarrays of the sorted array A
 [0] [1 2 3] [4] [5] [6] [7 8] [9] [10] [11] [12]
 0.4 1.1 1.2 1.8 3.7 4.8 5.9 6.1 6.7 7.3 8.4 10.5 11.5

Figure 1. Part of ProxmapSort example from Part I
containing data used by ProxmapSearch
 Choosing a MapKey function. Recall (from Part I) that
we chose a map key function MapKey(K) = i such that
(1) i is an array index (0 ≤ i < n), (2) K1 < K2 whenever
MapKey(K1) < MapKey(K2), (3) for all i, the number of
keys that map to i is nearly identical, and (4) MapKey is
fast to compute. In Fig. 1, we used MapKey(K) = floor(K),
where (0.0 ≤ K < 13.0), and showed students how that
choice met the above criteria.

In general, the domain of the MapKey function is the
space of all possible keys K and the range is the set of
indices { i | 0 ≤ i < n } of the array A[0..n – 1]. Thus,
MapKey: K → [0..n – 1]. In practice, it is convenient to
separate the preparation of the MapKey function into two
stages. The first stage involves choosing a function,
UnitIntervalMap: K → [0, 1), that maps keys K ∈ K
uniformly and evenly into floating point numbers in the
half-open unit interval. Thus, for all K ∈ K,
UnitIntervalMap(K) = r, where (0.0 ≤ r < 1.0). Then,
in the second stage, given an array A[0..n – 1] containing n
keys (and using Java notation), we set

MapKey(K) = (int) Math.floor(n*UnitIntervalMap(K)).
Thus, a suitable UnitIntervalMap can be chosen in advance
of knowing the size n of the array A to be sorted, and, once

n is known, its unit interval range can be scaled by n to
yield a suitable MapKey function.
 Critical proxmap properties. Recall from Part I that
each hit count H[i] gives the size of the reserved subarray S
that contains all keys K that map to location i and that the
proxmap values stored in P[i] were computed during
ProxmapSort according to the formula

P[i] = –1 if H[i] = 0, otherwise P[i] = ∑ (0 ≤ j < i) H[j].
This implies: (i) that each nonempty reserved subarray S
starts at a location p = proxmap[MapKey(K)] that is the
sum of the sizes of the reserved subarrays to its left (all of
which contain keys smaller than those in S by MapKey
property (2) above), and (ii) that the proxmap value
P[i] is –1 for any empty subarray S (i.e., one for which S’s
size, H[i], was 0). These two facts are crucial to
understanding how ProxmapSearch works.
ProxmapSearch
 Overview. Consider the array A just sorted with
ProxmapSort. For any search key K, we know that
MapKey(K) = i is an index of A[0..n – 1], so 0 ≤ i < n. We
now assume that the array A is extended by one item A[n]
and that we store K in A[n] before starting to search for K.
 To search for key K, p = proxmap[MapKey(K)] either has
the value p = –1, in which case K is not in A because its
corresponding reserved subarray is empty, or else, if p ≥ 0,
then p gives the start of the subarray in which the key K
must reside, if K is in A. So we search upwards in A,
moving past all locations A[p], A[p+1], … containing keys
smaller than K, and we stop at the first location A[q] such
that A[q] ≥ K. If A[q] > K or if q = n, K was not in A, so
we return –1. Otherwise, by elimination, K = A[q], so we
return the position q where we found it.

Running through a few searches, using the ProxmapSort
example data in Fig. 1 and using search keys K chosen
from the interval (0.0 ≤ K < 13.0), quickly convinces
students that ProxmapSearch works. ProxmapSearch’s
code is given in Fig. 2.

int proxmapSearch(KeyType K, KeyType[] A, int numberOfKeys)
{
 // get first location to search using the proxmap
 int currentPosition = proxmap[MapKey(K)];

 if (currentPosition == -1) // subarray empty
 return -1; // key not in A

 A[numberOfKeys] = K; // save K in extension of A[0..n-1] at A[n]

 // the subarray is nonempty; begin search at its proxmap location.
 // see footnote 1 below for another version of this search loop.
 int comparisonResult;
 while (true) {
 comparisonResult = A[currentPosition].compareTo(K);
 if (comparisonResult >= 0) // exit search loop

break; // if A[currentPosition] >= K
 currentPosition++; // keep looking if A[currentPosition] < K
 }

 if ((comparisonResult > 0) || (currentPosition == numberOfKeys))
 return -1; // key K not contained in A
 else
 return currentPosition; // K found in A; return its position
 }

/* footnote 1: Many experts consider the use of a “break” statement
 * to exit from the middle of a “while loop” to be poor programming
 * practice. We employed a break because we were optimizing
 * ProxmapSearch’s speed. The break can be avoided at the
 * expense of evaluating the expression “(comparisonResult < 0)”
 * twice. One approach is:
 *
 * int comparisonResult;
 * do {
 * comparisonResult = A[currentPosition].compareTo(K);
 * if (comparisonResult < 0)
 * currentPosition++; // keep looking if A[currentPosition] < K
 * } while (comparisonResult < 0); // leave if A[currentPosition] >= K
 */

Figure 2. The ProxmapSearch Algorithm
 Distribution of reserved subarray sizes. Our claim in
Part I that the proxmap sends each key K to an insertion
location that is usually in close proximity to its final
position in sorted order, and the reason why
ProxmapSearch starts searching for a key K at a location
that is usually close to the place where K can be found in
A, are based on the fact that most reserved subarrays are
small. We can understand just how small they are on
average by studying the distribution of their sizes. Our
assumption of randomly and uniformly drawn keys
produces subarrays whose sizes form a binomial
distribution. The Poisson approximation to the binomial
distribution (see [4], p. 143) closely estimates the fraction
of the reserved subarrays of size k as 1/(k! e). Table 1
shows the percentages of reserved subarrays of various
sizes according to this approximation.

Subarrays of Size k
as a Percentage of all Subarrays

 subarray fraction percentage
 size k of total of total
 0 0.36788 36.788%
 1 0.36788 36.788%
 2 0.18394 18.394%
 3 0.06131 6.131%
 4 0.01533 1.533%
 5 0.00307 0.307%
 6 0.00051 0.051%
 7 0.00007 0.007%
 ≥ 8 0.00001 0.001%
 total = 1.00000 100.000%

Table 1. Percent of Subarrays of Given Size k
Thus, Table I implies that, in a ProxmapSorted array,

fewer than 0.4% of the subarrays will contain more than
four keys.
 Analysis of Running Time. As discussed above, if the
keys in A were uniformly and randomly chosen, and
MapKey(K) maps all possible search keys K uniformly and
evenly onto the array indices of A, most of the subarrays
will be small. ProxmapSearch will check at most the keys

in one subarray S and the first key past the end of S, so it
ought to be fast. In the case of successful search, the proof
of ProxmapSearch’s performance is easy for CS2 students
to follow, but the proof for unsuccessful search uses, in a
simple way, probabilities resulting from Bernoulli trials, an
approach that is not always familiar to CS2 students. Still,
both proofs can be sketched quickly and convincingly.
 Successful ProxmapSearch. Successful search for a key
K in an array of length n is breathtakingly fast, taking on
average C = 1.5 – 1/(2n) key comparisons.
 Proof: The start of the search is at location
p = proxmap[MapKey(K)], where p gives the start of a
subarray S containing j keys that contains K.
 Thus, after uniform and random insertion of i keys into
A, the average size of j is 1 + (i – 1)/n, and after inserting
all n keys into A the average size of j is j = 1 + (n – 1)/n.
When we search for K in S, it could be in any of these j
possible positions with equal probability, so the average
number of key comparisons needed to find it successfully,
C, is just

(1 + 2 + ... + j)/j = j * (j + 1)/2 * (1/j) = (j + 1)/2.
Substituting j = 1 + (n – 1)/n in this expression gives
 C = (1 + (n – 1)/ n + 1)/2 = 1.5 – 1/(2n).
 Unsuccessful ProxmapSearch. The average number of
key comparisons C´ for an unsuccessful search is
C´ = 1.5 – (1 – 1/n)n, and for large n, C´ ≅ 1.5 – 1/e — even
faster than successful search!
 Proof: When searching for a key K that is not in A,
p = proxmap[MapKey(K)] could lead to an empty subarray
(indicated by p = –1). If so, no key comparisons are
required to determine that K is not in A. The proxmap
could instead lead to a non-empty subarray S. If so, we
must search in S, and possibly one key position past the
end of S, to determine that K is not in A. We need to know
the expected size j of S to determine the average number of
key comparisons needed to know that K is not in A.
 The probability that a subarray of A will be empty is the
probability that none of the n keys in A maps to a given
location in A under MapKey(K). This is given by having
k = 0 successes in n Bernoulli trials b(k, n, p) with
probability p = 1/n for success and q = (n – 1)/n for failure
(see [4], p. 137). Thus,

b(k, n, p) = pk qn–k = (1/n)k ((n –1)/n)n–k . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
n

By setting k = 0 (for 0 successes) and recalling that 0! = 1,

this simplifies to
n

n
⎟
⎠

⎞
⎜
⎝

⎛ −
11 , a quantity that eventually

approaches the limit 1/e = 0.36788 as n gets larger (cf. [4],
p. 142). Recall that roughly 36.8% of the subarrays in a
proxmap-sorted array are empty. Now, let f =1– (1 – 1/n)n
be the fraction of subarrays in A that are non-empty. If all
n keys in A are stored in the n*f non-empty subarrays of A,
then the average size j of a non-empty subarray is j = 1/f.

 In general, we compute proxmap[MapKey(K)] = p, and if
p ≥ 0, we start comparing K to the keys A[p], A[p+1], ... ,
A[p+j]. As soon as we find the first key in A that is greater
than K or we find K in A[n], we can conclude that K is not
in A[0..n – 1]. Because there is an equal chance of finding
that K is not in the subarray after looking at any key in it or
at the key right after its last key, the average number of key
comparisons needed to find that K is not in the subarray is
(1 + 2 + ... + (j+1)) /(j+1) = (j+2)/2 = 1+j/2. But since this
search applies only to the fraction f = 1 – (1 – 1/n)n of
subarrays in A that are non-empty, the average number of
key comparisons needed to determine that K is not in A is

f * (1+j/2) = f * (1 + (1/f)/2) = f + 1/2
= 1 – (1 – 1/n)n + 0.5 = 1.5 – (1 – 1/n)n.

 Because (1 – 1/n)n tends to 1/e as n increases, for large n
we can say that C´ is about 1.5 – 1/e.
 Comparing Actual and Predicted Results. As with
ProxmapSort, we show students data to demonstrate how
well the algorithm performs in practice and how well
theory agrees with observed results.
 Table 2 shows predicted results for successful and
unsuccessful ProxmapSearch for various array sizes. The
last row shows the limits that are approached for infinitely
large n. Even for small n, the results are reasonably close
to the theoretical limits.

ProxmapSearch’s
Predicted Average Number of Keys Inspected

in Successful and Unsuccessful Searches
array
size n

av. keys in
successful

search

av. keys in
unsuccessful

search

av. zero length
subarray hits

sum of
last two
columns

 64 1.49219 1.13501 0.36499 1.50000
 128 1.49609 1.13356 0.36644 1.50000
 256 1.49805 1.13284 0.36716 1.50000
 512 1.49902 1.13248 0.36752 1.50000
 1024 1.49951 1.13230 0.36770 1.50000
 ∞ 1.50000 1.13212 0.36788 1.50000

Table 2. Predicted Data for ProxmapSearch

 Table 3 shows the observed average number of key
comparisons used in successful and unsuccessful proxmap
searches for arrays of various sizes, using single-precision
floating point numbers as keys. It’s apparent how well
theoretical and observed results agree.

ProxmapSearch
Average Number of Keys Inspected in

Successful and Unsuccessful Searches: 10000 Trials
array
size

av. keys in
successful

search

av. keys in
unsuccessful

search

av. zero length
subarray hits

sum of last
two columns

 64 1.49177 1.13538 0.36491 1.50029
 128 1.49640 1.13506 0.36633 1.50139
 256 1.49868 1.13075 0.36741 1.49816
 512 1.49870 1.13211 0.36734 1.49945
 1024 1.49919 1.13209 0.36814 1.50023

Table 3. Experimental Data for ProxmapSearch

Learning about algorithms that scale up
The ProxmapSearch algorithm “scales up”— it continues
to work well as the search array gets really big. Students
readily understand this concept, as we just showed them
that ProxmapSearch takes 1.5 comparisons on average to
find keys, regardless of the array’s size.
 An impressive illustration is a “reverse phone book” of
1,000,000 phone numbers. First, choose a good hash
function h(n) (see [5]) that spreads out clusters of phone
numbers n with the same area codes and prefixes so that
the h(n) are distributed uniformly — which is needed for
ProxmapSort and ProxmapSearch to work well. Second,
proxmap-sort the hash codes h(n) of all phone numbers in
the reverse phone book. To find the owner N of the phone
number n, we proxmap-search for the key h(n) to find the
record (h(n), n, N) containing N.

Conclusions
Our experience presenting many algorithms to CS2
students has shown us that students quickly develop a real
appreciation for theoretical computer science when they
see how its practice produces algorithms such as
ProxmapSort and ProxmapSearch. Cool algorithms really
do show that theory is cool.

References
[1] Standish, T. A., Data Structures, Algorithms, and

Software Principles, Addison-Wesley, Reading, MA,
1994.

[2] Standish, T.A., Data Structures, Algorithms, and
Software Principles in C, Addison-Wesley, Reading,
MA, 1995.

[3] Standish, T.A., Data Structures in Java, Addison-
Wesley, Reading, MA, 1998.

[4] Feller, W., An Introduction to Probability Theory and
Its Applications, Vol. I, Wiley, New York, 1957.

[5] Knott, G.D., Hashing Functions, Computer Journal,
18:3, pp. 265-278, Aug. 1975.

