Projection Algebra Analysis of Error Correcting Codes

Jonathan S. Yedidia Erik B. Sudderth Jean-Philippe Bouchaud
MERL LIDS SPEC CEA-Saclay
201 Broadway, 8th Floor Dept. of EECS, MIT Orme des Merisiers
Cambridge, MA 02139 Cambridge, MA 02139 91191 Gif sur Yvette, France
yedidia@merl.com esuddert@mit.edu bouchaud@spec.saclay.cea.fr
Abstract

We explain the projection algebra technique, which makes possible an exact
computation of the performance of an arbitrary parity-check error-correcting code
as decoded by the belief propagation algorithm for the binary erasure channel. This
technique improves on density evolution by exactly accounting for the statistical
dependencies that exist between belief propagation messages. Although the exact
projection algebra technique is computationally intractable for codes of large block-
length, it can be efficiently approximated to give rigorous upper and lower bounds
on the bit error rates of arbitrary parity-check codes.

1 Introduction

We consider the problem of efficiently computing the bit error rate of an arbitrary block
parity-check code, as decoded by a belief propagation (BP) decoder and used over the
binary erasure channel (BEC). Our motivation is that the results of such a computation
can serve as an objective function in a search for good codes. The pioneering paper
by Luby, et. al. [1], which analyzed and optimized irregular low-density parity-check
(LDPC) codes decoded by a BP decoder and used over the BEC, demonstrated that one
could design capacity-approaching codes by optimizing the codes for their performance
as measured using the density evolution technique. The name “density evolution” was
in fact introduced in the important paper by Richardson and Urbanke [2], who extended
the technique to handle more general decoders and channels.

Our own “projection algebra” technique builds on the density evolution technique,
and ameliorates its major flaw. Namely, density evolution only becomes exact when
the Tanner graph representing the code is cycle-free, while practical codes never have
cycle-free graphs. Of course, density evolution is still useful, because for some classes of
codes, one can demonstrate that as the block-length N approaches infinity, the effects
of cycles can be neglected. However, that has meant that analyses using the density
evolution technique have been effectively limited to appropriate classes of codes in the
infinite block-length limit.

In contrast, our technique applies to any block parity-check code of arbitrary block-
length. Recently, Di, et. al. [3] have shown how to perform a finite length analysis of
regular LDPC codes used over the BEC. They were able to analyze both BP decoding and
maximum likelihood decoding, but their analyses was limited to averages over ensembles

of regular LDPC codes. Our analysis as presented here also only applies to the BEC,
and we are further limited to BP decoding, but the advantage of our technique is that
we are able to analyze the performance of any given arbitrary parity-check code.

Two of the present authors recently wrote a paper on a “renormalization group”
(RG) technique with similar motivations [4]. That paper also contains some additional
background material which may be helpful to some readers. The relative advantages of
the projection algebra technique are that it is exact for codes of small block-length, and
that for larger codes, we can efficiently obtain rigorous and rather tight bounds on the bit
error rate. In the RG approach, on the other hand, the approximations are comparatively
poorly controlled.

2 Projection Algebra

We begin by developing the rather straightforward mathematics of projection algebra,
as motivated by the context of our problem of analyzing BP decoding of a parity-check
code used over the BEC.

2.1 Definitions

Because parity-check codes are linear and the BEC is symmetric, we can assume, for the
purpose of analysis, that the all-zeros block is always transmitted. That means that after
passing through the channel, the block is received as a series of N bits that are all 0 or
7, where we use the symbol ? to denote an erasure. We will assume throughout that the
channel is memoryless, so that the N bits will be erased independently.

We index the N bits with the letter 7 and take the erasure probability for the sth bit
to be x;. Normally, of course, the erasure probability of every bit should be equal, but it
will prove very useful to consider them separately. As an example, if N = 3, then 23 = 8
possible blocks could be received, and the block 070 will be received with probability
(1 — x1)z2(1 — x3). More generally, we will focus on the probabilistic model such that
the sample space is the set of 2V possible received blocks, and a given received block R
is received with probability

p(R)= [= [[(Q—2) (1)

1€R? jERo

where R; is the set of bits erased by the channel and Ry is the set of correctly received
bits.

We will be interested in computing quantities that are averages over all possible
received blocks, as weighted by the probabilities of the received blocks. Thus, we will be
interested in “events” FE that are formally defined as sets of possible received blocks. The
probability of an event is the sum of the probabilities of the received blocks in the set.
For example, if N = 3, the event E that the first and second bit are erased consists of the
set of received blocks {770, 777} and has probability p(E) = z129(1 —23) + 212223 = T125.

We introduce the notion of a “projected polynomial,” as a function of the variables
z;. Projected polynomials are defined to be the subspace of ordinary polynomials such
that no term in a projected polynomial has a non-linear dependence on any of the z;.
For example, 1179 — 273 is a projected polynomial, but z;z, — 2z2 is not a projected
polynomial because of the quadratic dependence on z3. Notice from equation (1) that
the probability of any possible received block is a projected polynomial as a function of

the x;. Since the sum of any two projected polynomials is also a projected polynomial,
the probability of any event in our probabilistic model must also be given by a projected
polynomial. Of course, the probability of an event must also satisfy some more conditions:
namely, it must evaluate to a real number between zero and one when all the z; are set
to real numbers between zero and one.

The ordinary product of two projected polynomials might not be a projected poly-
nomial. We define the operation of “projective multiplication” p; ® po of two projected
polynomials p; and py to be the same as ordinary multiplication, except that any ex-
ponents greater than one in the ordinary product are simply reduced to one. For ex-
ample, if py = z129 + 3, and py = 1 + wex3, then the ordinary product would be
PP = T2x9 + 1223 + 1123 + 523, while the projective product would be p; ® p, =
T1To + T1X2x3 + X123 + Tox3. Projective multiplication is “projective” in the sense that
it “projects” an ordinary polynomial into the subspace of projected polynomials.

It is easy to verify that projective polynomials are a mathematical field over the
operations of ordinary addition and projective multiplication. That means that the
standard commutative, associative, and distributive laws may be used. We refer to this
field as “projection algebra.”

2.2 Projection Algebra as a Calculus of Probabilities

We note, using equation (1) and the definition of projective multiplication, that for any
possible received block R, p(R) @ p(R) = p(R), while for any two distinct received blocks
R; and Ry, p(R;) ® p(Rs) = 0. From this, we obtain the following important result: for
any two events F; and FEs, the probability of the intersection of E; and Es is given by

p(E1 N Ey) = p(E)) @ p(Ey). (2)

We can prove this by expanding p(E;) and p(F») into the sums of the probabilities of
their constituent received blocks. The only surviving cross-terms in p(E;) ® p(Es) will
correspond to those received blocks that are in E; N E.

Note that one normally has p(E; N Ey) = p(E1)p(F,) only if the events E; and E,
are statistically independent. The result of equation (2) holds for any two events, even
if they are statistically dependent.

We also obtain a result for the union of £; and Fs:

p(E1U Es) = p(E1) + p(Es) — p(E1) ® p(Es) (3)

using equation (2) and the general laws of probability. More generally, we find that for

n distinct events E;,
n n

p(() Bi) = @ p(E:) (4)

and
n

p(Q E)=1-Q(1 - p(E)) (5)

i=1
where @ is used to represent a projective product.

3 Application to BP Decoding for the BEC

We presume that the reader is familiar with the parity-check matrix and corresponding
Tanner graph representations of parity-check codes [4]. The “variable nodes” in a Tanner

graph correspond to the N bits transmitted over the channel, while the “check nodes”
correspond to the M parity checks given by the M rows of an M by N parity check
matrix. We label the variable nodes with indices beginning with the letter ¢, and label
the check nodes with indices beginning with the letter a.

We review the operation of the BP decoding algorithm for the BEC. The BP decoding
algorithm works in discrete time iterations, which we label with the integer ¢. There are
messages from variable nodes to connected check nodes m;,[t] and messages from check
nodes to connected variable nodes my;[t]. All the messages can be in one of three states:
0, 1 or an erasure ?. We initialize the messages my;[t = 0] to be erasures, and then
update the my,[t] and m;[t] messages in turn at each iteration, as follows.

At each iteration ¢ > 1, a message m;,[t] will be an erasure if all incoming messages
myi[t — 1] from other check nodes and from the channel are also erasures. Otherwise it
will take on the value of any incoming non-erasure messages, as such messages will always
be reliable. All check nodes will in turn send a message my;[t] to each connected variable
node. Such a message will be an erasure if an erasure is received from any other variable
node involved in the constraint. Otherwise, it will be the binary sum of the incoming
messages m;,[t]. A variable node is successfully decoded at the end of an iteration if any
check node or the channel sends it a non-erasure message.

Recall that without loss of generality, we can assume that the all-zeros block is trans-
mitted, so we can safely ignore the possibility that any 1 messages are ever sent in the
decoding algorithm. Thus we can completely characterize the functioning of the BP de-
coding algorithm by focusing on the following events: Fj,[t], which represents the event
that variable node ¢ sends check node a an erasure at iteration ¢; Gy;[t], which is the
event that check node a sends variable node ¢ an erasure at iteration ¢; X;, which is the
event that variable node i is erased by the channel; and B;[t], which is the event that
variable node i fails to be successfully decoded at iteration . These events are related
by the following equations, which transcribe the functioning of the algorithm:

Ful=X,0 () Gult—1], (6)
bEN(i)\a

Galtl= U Fialt] (7)
JEN(a)\i

Bl]=X;n () Gall] (8)
a€N (1)

where N(a)\i denotes the set of nodes that are connected to node a excluding node 3.
We are interested in computing probabilities of these events averaged over all pos-
sible received blocks. We can do this by using a projected polynomial to represent the
probability of each event of interest, and then using the above equations, combined with
equations (4) and (5), to relate the probabilities. We find the iterative equations:

PR =58 @ p(Gult—1))
PCult) =1= @ (1=p(Fl) (10)
pBl) =20 & pGull). (1)

a€N(i)

p(Guit = 0]) =1 is the initialization condition. p(B;[t — o0]) is a quantity of particular
interest, as it represents the bit error rate at node ¢ after the decoding has completed.

Notice that these equations are identical to the density evolution equations that would
be derived by assuming all incoming messages to a node are statistically independent,
except that probabilities are now represented as projected polynomials instead of real
numbers, and projective products are used instead of ordinary products. We emphasize
that these changes result in the above equations being ezact, even when the probabilities
are statistically dependent.

4 The Critical Representation

We can exploit some properties of the events we are interested in, and the BEC, to
represent them more compactly. In particular, the events Fj,[t], Gu;[t], X;, and B;[t] all
have the property that they can be expressed as unions of critical events: for any such
event E, we can write E = |J, Ck, where the C} are its critical events.

A critical event is an event consisting of the subset of all possible received blocks for
which a certain set of nodes (the critical set) are erased by the channel. For example,
an event defined by the fact that nodes 1, 2, and 4 are erased is a critical event, and
the nodes 1,2,4 would be the corresponding critical set. We denote a critical event by
simply listing the nodes in its critical set in angled brackets. The probability of a critical
event is simply the product of the z; corresponding to the nodes in the critical set; for
our example, p((1,2,4)) = z12924.

The reason that the events we are interested in can be expressed as unions of critical
events is that additional erasures by the channel always strictly impair the decoding
process. Thus, it cannot be that erasing a critical set of nodes would cause an erasure,
but erasing some additional node or nodes would somehow fix the problem. This means
that we can always break down a “problem” event, such as an erasure occuring at a
particular message, into the minimal sets of erasures that can cause that problem.

The probability of an event represented by its critical sets can be computed straight-
forwardly using equation (5). For example, if £ = (1,2) U (2,3) U (4), then

p(F) = 1—(1—2122) @ (1 — 2973) @ (1 — x4) (12)
= X1ZT9 + ToT3 + T4 — T1X2X3 — T1X2T4 — T2X3T4 + L1X2X3T4- (13)

We notice that the critical representation of an event is more compact than the corre-
sponding projected polynomial for its probability. We can avoid unnecessary conversions
into projected polynomials by noting that the union and intersection of critical events
are also critical events, and defining intersection and union operations directly. The in-
tersection of two critical events is just the critical event with a critical set given by the
union of the nodes in the two critical sets; e.g. (1,2) N(2,3) = (1,2, 3). If we have two
events that are expressed in terms of their critical events as By = U;C; and Ey = U; Dy,
then

(i.5)
where (i,7) represents all pairs of indices ¢ and j. The result can be simplified by
removing any redundant critical events (events whose critical set is a superset of some
other included critical set.) For example, if E; = (1,2)U(2,3), and Fy = (1,2, 3)U(3,4),

then

E\NE, = (1,2,3)U(1,2,3,4)U(1,2,3)U(2,3,4)
= (1,2,3)U(2,3,4) (15)

We also obtain
{ J

which can again be simplified by removing any redundant critical events. For example,
with F; and E, as given above, we find E; U Ey = (1,2) U(2,3) U(3,4), where we remove
the critical event (1,2,3) because it is contained in other critical events.

We can track the evolution of the BP algorithm, as given by equations (6, 7, 8), by
representing each event in its critical representation and performing the necessary unions
and intersections as described above. The conversion into projected polynomials and the
final numerical evaluation of probabilities can be postponed until it is actually needed.
Besides the advantage of compactness, the critical representation gives us important
direct information about the patterns of erasures that will cause decoding failures.

5 A Small Example

O_

Figure 1: Tanner graph for a parity-check code with three variable nodes, labeled 1, 2,
and 3, and two check nodes, labeled a and b.

Consider the tiny code represented by the Tanner graph in Figure 1. We track the
events Fla[t], FQa[t], FQb[t], Fga[t], ng[t], Gal[t], GaQ[t], Gag[t], sz[t], Gbg[t], Bl[t], BQ[t],
and Bs[t]. By definition, the events X; are fixed at X; = (1), Xy = (2), and X3 = (3).
The events G,1[0], Gu2[0], Gu3[0], Gp2[0], and Gy3[0] are all initialized to be certain events,
which means that they are represented by the empty critical set ().

We iterate equations (6), (7), and (8), starting with equation (6). We find

Fig[1] = (1); Faa[1] = (2); Fas[1] = (2); F3a[1] = (3); Fs[1] = (3). (17)
Then, using equation (7), we find
Ga[l] = (2) U (3); Gao[1] = (1) U (3); Gas[1] = (1) U (2); Gio[1] = (3); Gia[1] = (2). (18)
Using equation (8), we find
Bl[l] = <17 2) U <17 3>; 32[1] = <27 3>; B3[1] = <27 3) (19)

Let us examine just one of these computations—the one for Bs[1]-in more detail. We
have
Bg[l] == X2 N Ga2[1] N Gbg[]_], (20)

which can be interpreted as “variable node 2 will not be decoded on the first iteration if
it is erased by the channel and both check nodes send it an erasure message.” Using our
previous results, we find

By[1] =(2) n ((1) U (3)) N (3), (21)

which can be interpreted as “variable node 2 will not be decoded on the first iteration
if the channel erases node 2, and the channel erases node 1 or node 3, and the channel
erases node 3.” Using our rules for manipulating critical representations, which are really
just rules of logic, we find

BQ[l] = (<1a 2> U <25 3>) N <3>
= (1,2,3)U(2,3)
= (2,3). (22)
which can be interpreted as “variable node 2 will not be decoded on the first iteration if

the channel erases nodes 2 and 3.”
Continuing to solve the iterative equations, we find

Fla[t 2 2] = <1>a F2a[t 2 2] = <273>7 F2b[t 2 2] = <112> U <213>a
Falt>2] = (2,3); Fylt>2] = (1,3) U (2,3); (23)
Galt>2]=(2,3); Gult >2] = (1)U(2,3); Gult > 2= (1)U (2,3);
Gult>2] = (1,3)U(2,3): Gult > 2] =(1,2)U(2,3); (24)
and
Bilt > 2] = (1,2,3); B[t > 2] = (2,3): By[t > 2] = (2,3). (25)

We can easily evaluate the probabilities of any of these events. As one example, we
find, using equation (3),

p(GbQ[t 2 2]) = p(<17 3)) +p(<2’ 3)) - p(<1a 3>) ®p(<2’3>)

T1T3 + Tol3 — XT1T3 ® Tol3

= I1T3 + ToX3z — T1T2X3. (26)

A few comments are in order. First, we may of course set 1 = 9 = 23 = = and
read off results for the ordinary case when all the erasure probabilities are equal. We
note from equations (25) that the bit error rates differ from bit to bit, and that the
average bit error rate is (222 4+ 2°*)/3. However, our technique gives considerably more
information than just the average bit error rates—we actually find probabilities for every
possible erasure message at every iteration, including the explicit error patterns that will
cause erasures. All of the results in this example can be verified by explicitly considering
the eight possible received blocks and summing over them, tracking how BP decoding
would proceed for each one of them.

6 Lower and Upper Bounds

As the blocklength N increases, the number of possible received blocks grows as 2%,
so exact calculations performed by summing over all possible received blocks become
intractable. Unfortunately, the exact projection algebra method also becomes intractable,
even when using the critical representation, because the number of critical sets needed
to represent an event will also ultimately grow exponentially in N. Nevertheless, the
projection algebra method is of interest even for large IV, as it provides a basis for simple
and tractable approximations that will give rigorous lower and upper bounds on the
probabilities of all events of interest.

6.1 Lower Bounds

Recall that we can represent all the events of interest to us as unions of critical events:
E =, Ckx. We introduce the approximation of taking any of the events of interest, and
simply removing one or more of the critical events Cj from its union. We first prove
that this approximation gives rigorous lower bounds on the probabilities of all events of
interest.

Proof: If we take one such event E, and eliminate one or more of the critical events
from the union, we obtain another event E_ that is a strictly smaller set of possible
received blocks. Thus, the event E. is a subset of event E, and p(E.) < p(F). If we
further consider such subsets of two or more events FE;, then the intersection and union
of the subsets must be subsets of the intersection and union of the original events FE;.
Since equations (6), (7), and (8) for the analysis of BP decoding in the BEC all contain
just unions and intersections on their right-hand sides, the approximated events on the
left hand side must also be subsets of their corresponding events, and their probabilities
will consistently be lower bounds on the true probabilities of the events on the left hand
sides. Q.E.D.

There are many ways to implement such lower bounds. In practice, we store the
critical representation of an event as a list of critical sets. Omne can keep thousands
of critical sets for each event without exceeding the memory limitations of modern-day
computers. If one must remove critical sets, or simply desires to do so to obtain results
in less time, it is appropriate to remove the largest critical sets, as these will make the
smallest contribution in the x — 0 limit which is of greatest interest to us. (The size L of
a critical set is defined as the number of nodes in the critical set.) We have found that a
good heuristic is to systematically eliminate, for each event E of interest, all critical sets
that have a size L > Ly, (F) + 0, where L,,;,,(E) is the size of the smallest critical set
for event E, and 6 is a positive parameter that defines the approximation. Larger values
for 6 will give tighter lower bounds but require more memory and computation time.

6.2 Upper Bounds

To obtain an upper bound on an event £ = |J,, C in its critical representation, we take
any two of its critical events, say C' and D, and replace them with the critical event V'
that has a critical set which is the intersection of the two critical sets; e.g. if C' = (1, 2)
and D = (2,3), then V = (2). It is easy to convince oneself that V' must be a superset
of C' U D. For the example given, if N = 3, then C' = {770,777}, D = {077,777}, and
V = {070,077,770, 7?7}, which is a superset of C U D = {077,770,777}. Thus, making
this replacement will give an upper bound on p(F). By an argument identical to that

given above for the lower bounds, we can prove that if we only make such replacements,
we will consistently obtain supersets for all events of interest as we analyze BP decoding
for the BEC, and upper bounds on all their probabilities.

Again there are many possible ways to implement such upper bounds. We have found
that the following is a good procedure for obtaining upper bounds. One begins by sorting
the list of critical sets representing a given event E by their length. Then, beginning with
the longest critical sets, one tries to find pairs of critical sets such that their intersection
is larger than Ly, (E) + ¢, where again Ly, (E) is the smallest critical set for event E,
and ¢ is a parameter defining the approximation. If such a pair is found, the critical
sets are replaced by their intersection, and any newly redundant critical sets (which are
now supersets of the intersection) are also removed. The procedure continues until no
good candidate pairs are found. Unfortunately, computing upper bounds in this way is
considerably slower than computing lower bounds as described above, because searching
for discardable pairs of critical sets is much slower than simply checking the sizes of
critical sets. Again, ¢ is a parameter which lets one trade off the tightness of the bound
against the expense in memory and computation time.

6.3 Miscellaneous Implementation Issues

A couple of implementation issues should be mentioned. First, when a computation
requires numerous unions or intersections of events to be taken, and we are bounding
events as above, we always systematically bound the intermediate results, to keep the
size of all computations limited. This has the drawback that our bounds on probabilities
will ultimately depend slightly on the order in which we take unions or intersections of
events.

Second, the final phase of actually converting events into their probabilities may be
slow in practice because one needs to fully expand the critical representation into a
potentially huge projected polynomial. However, one can obtain a good approximation
to the probability of an event E = |, C, which strictly speaking is given by p(E) =
1 - ®y(1—=p(Cy)), by computing p(E) ~ 1 —[];(1 —p(Cy)). This approximation can be
computed very quickly because one can numerically evaluate all the p(C}) before taking
the products, and it captures the leading behavior in the x — 0 limit, assuming that
redundant critical events are always removed.

7 Results for a regular LDPC Code

We have verified, for many small (N < 20) randomly chosen parity check codes, that
the bounds described in the previous section will become tight for large enough 6 and ¢.
Usually, # > 2 and ¢ > 2 are sufficient to obtain excellent bounds.

For N large enough that exact bit error rates become impractical to compute, we
are still able to compute lower bounds that appear to be tight for small erasure or bit
error rates. In Figure 2, we show such lower bounds for a randomly chosen N = 50
regular (3,5) LDPC code. We computed lower bounds using # = 0, 1,2, and compare
with simulations. Of course, the lower bounds have the advantage over simulations that
they can be efficiently computed even at arbitrarily small erasure rates.

Lower Bounds for 50-bit regular (3,5) LDPC code
10 T T T T T T T T T T T T T T T O T

o) A
. o 1]
10 E / 3
—— Order 2 e
Order 1 1) !
102 L —- Order0 .
O Simulations A
/
_ 0) !
107 £ T
/
£ /
g 10—4 B @)) .
1< /
(TR /
o L le] J
om 10 /
()
g ° /
g10° / E
4 /
@)
7 /
107 , E
/ 4
10° ! 4
/]
10° b ! e
/
-10 !
10 -2 ‘ ‘ ‘ ‘ ‘ ‘ — ‘71 ‘ ‘ ‘ ‘ ‘ ‘ — 0
10 10 10

Erasure Rate

Figure 2: Lower bounds compared with simulations for a regular LDPC code. The error
bars on the simulations are smaller than the symbol sizes. Note that the § = 2 bound
appears to be tight in the limit of small erasure or bit error rates.

8 QOutlook

The techniques described here can be extended to analyze the performance of parity-
check codes decoded by message-passing decoding algorithms on the binary symmetric
channel. We are currently working on this problem, and we also hope to use our analysis
tools as a basis for optimizing finite blocklength codes under BP decoding.

References

[1] M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D.A. Spielman, “Improved Low-
Density Parity-Check Codes Using Irregular Graphs,” IEEE Trans. on Information
Theory, vol. 47, no. 2, pp. 585-598, February 2001.

[2] T.J. Richardson and R.L. Urbanke, “The Capacity of Low-Density Parity-Check
Codes Under Message-Passing Decoding,” IEEE Trans. on Information Theory,
vol. 47, no. 2, pp. 599-617, February 2001.

3] C. Di, D. Proietti, E. Telatar, T.J. Richaradson, and R.L. Urbanke, “Fi-
nite Length Analysis of Low-Density Parity-Check Codes,” available online at
http://lthcwww.epfl.ch /publications.html, 2001.

[4] J.S. Yedidia and J.-P. Bouchaud, “Renormalization-Group Approach to Error Cor-
recting Codes,” available online at http://www.merl.com/papers/TR2001-19/, 2001.

