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Abstract

We explore recently proposed Bayesian nonparametric

models of image partitions, based on spatially dependent

Pitman-Yor processes. These models are attractive be-

cause they adapt to images of varying complexity, success-

fully modeling uncertainty in the structure and scale of hu-

man segmentations of natural scenes. By developing sub-

stantially improved inference and learning algorithms, we

achieve performance comparable to state-of-the-art meth-

ods. For learning, we show how the Gaussian process (GP)

covariance functions underlying these models can be cal-

ibrated to accurately match the statistics of example hu-

man segmentations. For inference, we develop a stochastic

search-based algorithm which is substantially less suscep-

tible to local optima than conventional variational meth-

ods. Our approach utilizes the expectation propagation al-

gorithm to approximately marginalize latent GPs, and a low

rank covariance representation to improve computational

efficiency. Experiments with two benchmark datasets show

that our learning and inference innovations substantially

improve segmentation accuracy. By hypothesizing multiple

partitions for each image, we also take steps towards cap-

turing the variability of human scene interpretations.

1. Introduction

Image segmentation algorithms partition images into

spatially coherent, approximately homogeneous regions.

Segmentations provide an important mid-level representa-

tion which can be leveraged for various vision tasks includ-

ing object recognition [11], motion estimation [26], and im-

age retrieval [4]. Despite significant research [23, 5, 7, 15,

2], segmentation remains a largely unsolved problem. One

major challenge is to move beyond seeking a single “opti-

mal” image partition, and to recognize that while there are

commonalities among multiple human segmentations of the

same image, there is also substantial variability [12].

Most existing segmentation algorithms are endowed

with a host of tunable parameters; a particular configura-

tion may work well on some images, and poorly on others.

Often these parameters are tuned via manual experimenta-

tion, or expensive validation experiments. Noting this is-

sue, Russell et al. [21] produced a “soup of segments” by

varying the parameters of the normalized cuts algorithm,

and collecting the range of observed outputs. Others have

used agglomerative clustering methods to produce a nested

tree of segmentations [2]. A limitation of these approaches

is that they do not provide any image-specific estimate of

which particular segmentations are most accurate.

In this paper, we instead pursue a Bayesian nonpara-

metric statistical approach to modeling segmentation uncer-

tainty. We reason about prior and posterior distributions on

the space of image partitions, and thus consider segmenta-

tions of all possible resolutions. In contrast with parametric

segmentation models based on finite mixtures [4, 1, 22] or

Markov random fields [8], we do not need to pre-specify the

number of segments. Our inference algorithm automatically

provides calibrated estimates of the relative probabilities of

segmentations with varying numbers of regions.

Because we define a consistent probabilistic model and

not just a segmentation procedure, our approach is a natural

building block for more sophisticated models. We improve

earlier work on spatially dependent Pitman-Yor (PY) pro-

cesses [25], which was motivated by the problem of jointly

segmenting multiple related images. This PY model was

later extended to allow prediction of semantic segment la-

bels, given supervised annotations of objects in training im-

ages [24]. Here we focus on the problem of segmenting

single images containing unknown object categories.

The model we consider is a minor variation on the de-

pendent PY process of Sudderth and Jordan [25], which

captures the power law distribution of human image seg-

ments via a stick-breaking construction, and uses Gaussian

processes (GPs) to induce spatial dependence. Our first ma-

jor contribution is a new posterior inference algorithm that

is far less susceptible to local optima than previous mean

field variational methods [25]. Our algorithm combines a

discrete stochastic search, capable of making large moves in

the space of image partitions, with an accurate higher-order

variational approximation (based on expectation propaga-

tion [14]) to marginalize latent GPs. We improve compu-

tational efficiency via a low rank representation of the GP

covariance, an innovation that could be applicable to many



other models with high-dimensional Gaussian variables.

Our second major contribution is a procedure for learn-

ing the various model hyperparameters, including image-

dependent GP covariance functions, from example human

segmentations. Using training images from the Berkeley

segmentation dataset [12], we calibrate our model, and then

evaluate its accuracy in segmenting various images of nat-

ural scenes [12, 16]. Our results show significant improve-

ments over prior work with PY process models [25], and

demonstrate segmentations that are both qualitatively and

quantitatively competitive with state-of-the-art methods.

2. Nonparametric Bayesian Segmentation
We have two primary requirements of any segmentation

model – a) it should adapt to image complexity and auto-

matically select the appropriate number of segments and

b) it should encourage spatial neighbors to cluster together.

Furthermore, human segmentations of natural scenes con-

sist of segments of widely varying sizes. It has been ob-

served that histograms over segment areas [12] and contour

lengths [19] are well explained by power law distributions.

Thus a third requirement is to model this power-law behav-

ior. In this section, we first describe our image represen-

tation and then review increasingly sophisticated models

which satisfy these requirements. Finally, in Sec. 2.4, we

propose a novel low-rank model which improves computa-

tional efficiency while retaining the above desiderata .

2.1. Image Representation

Each image is dicided into roughly 1,000 superpix-

els [20] using the normalized cuts spectral clustering algo-

rithm [23]. The color of each superpixel is described using

a histogram of HSV color values with Wc = 120 bins. We

choose a non-regular quantization to more coarsely group

low saturation values. Similarly, the texture of each su-

perpixel is modeled via a local Wt = 128 bin texton his-

togram [13], using quantized band-pass filter responses. Su-

perpixel n is then represented by histograms xn = (xtn, x
c
n)

indicating its texture xtn and color xcn.

2.2. Pitman­Yor Mixture Models

Pitman-Yor mixture models extend traditional finite mix-

ture models by defining a Pitman-Yor (PY) process [17]

prior over the distribution of mixture components. The dis-

tributions sampled from a PY process are countably infi-

nite discrete distributions which place mass on infinitely

many mixture components. Furthermore, these discrete

distributions follow a power law distribution and previ-

ous work [25] has shown that they model the distribution

over human segment sizes well. There are various ways

of formally defining the PY process, here we consider the

stick breaking representation. Let π = (π1, π2, π3, . . .),
∑

∞

k=1 πk = 1, denote an infinite partition of a unit area

region (in our case, an image). The Pitman-Yor process de-

fines a prior distribution on this partition via the following

stick-breaking construction:

πk = wk

k−1
∏

ℓ=1

(1− wℓ) = wk

(

1−
k−1
∑

ℓ=1

πℓ

)

wk ∼ Beta(1− αa, αb + kαa)

(1)

This distribution, denoted by π ∼ GEM(αa, αb), is de-

fined by two hyperparameters (the discount and the con-

centration parameters) satisfying 0 ≤ αa < 1, αb > −αa.

It can be shown that E[πk] ∝ k−1/αa , thus exhibiting the

aforementioned power law distribution.

For image segmentation, each index k is associated with

a different segment or region with its own appearance mod-

els θk = (θtk, θ
c
k) parameterized by multinomial distribu-

tions on the Wt texture and Wc color bins, respectively.

Each superpixel n then independently selects a region zn ∼
Mult(π), and a set of quantized color and texture responses

according to

p
(

xt
n, x

c
n | zn,θ

)

= Mult
(

xt
n | θtzn ,Mn

)

Mult(xc
n | θczn ,Mn)

(2)

The multinomial distributions themselves are drawn from a

symmetric Dirichlet prior with hyper-paramter ρ. Note that

conditioned on the region assignment zn, the color and tex-

ture features for each of the Mn pixels within superpixel n

are sampled independently. The appearance feature chan-

nels provide weak cues for grouping superpixels into re-

gions. Since, the model doesn’t enforce any spatial neigh-

borhood cues, we refer to it as the “bag of features” (BOF)

model.

2.3. Spatially Dependent PY Mixtures

Next, we review the approach of Sudderth and Jor-

dan [25] which extends the BOF model with spatial group-

ing cues. The model combines the BOF model with ideas

from layered models of image sequences [28], and level set

representations for segment boundaries [6].

We begin by elucidating the analogy between PY

processes and layered image models. Consider the

PY stick-breaking representation of Eq. (1). If we

sample a random variable zn such that zn ∼ Mult(π)
where πk = wk

∏k−1
ℓ=1 (1− wℓ), it immediately follows that

wk = P[zn = k | zn 6= k − 1, . . . , 1]. The stick-breaking

proportion wk is thus the conditional probability of choos-

ing segment k, given that segments with indexes ℓ < k have

been rejected. If we further interpret the ordered PY seg-

ments {k = 1, . . .∞} as a sequence of layers, zn can be

sampled by proceeding through the layers in order, flipping

biased coins (with probabilities wk) until a layer is cho-

sen. Given this, the probability of assignment to subsequent

layers is zero; they are effectively occluded by the chosen

“foreground” layer.

The spatially dependent Pitman-Yor process of [25] pre-



Figure 1. Generative models of image partitions. Left. Spa-

tially dependent PY model, (right) low rank model. Shaded nodes

represent observed random variables. vk ∼ N (0, ID) is a low

dimensional Gaussian random variable and uk is the correspond-

ing N dimensional layer. wk ∼ Beta(1− αa, αb + kαa) con-

trols expected layer size and are governed by Pitman-Yor hyper-

parameters α = (αa, αb). The Dirichlet hyper-parameters ρ =
(ρt, ρc) parametrize appearance distributions. Finally, the color

and texture histograms describing super-pixel n are represented as

xn = (xt
n, x

c
n)

serves this PY construction, while adding spatial depen-

dence among super-pixels by associating a layer (real val-

ued function) drawn from a zero mean Gaussian process

(GP) uk ∼ GP (0,Σ) with each segment k. Σ captures the

spatial correlation amongst super-pixels, and without loss

of generality we assume that it has a unit diagonal. Each

super-pixel can now be associated with a layer following

the procedure described in the previous paragraph, n.e.,

zn = min
{

k | ukn < Φ−1(wk)
}

, ukn ∼ N (0,Σnn = 1) (3)

Here, ukn ⊥ uℓn for k 6= ℓ and Φ(u) is the standard normal

cumulative distribution function (CDF). Let δk = Φ−1(wk)
denote a threshold for layer k. Since Φ(ukn) is uniformly

distributed on [0, 1], we have

P[zn = 1] = P[u1n < δ1] = P[Φ(u1n) < w1] = w1 = π1

P[zn = 2] = P[u1n > δ1] P[u2n < δ2] = (1 −w1)w2 = π2

(4)

and so on. The extent of each layer is determined via the re-

gion on which a real-valued function lies below the thresh-

old δlayer, akin to level set methods. If Σ = I, we recover

the BOF model. More general covariances can be used to

encode the prior probability that each feature pair occupies

the same segment; developing methods for learning these

probabilities is a major contribution of this paper.

The power law prior on segment sizes is re-

tained by transforming priors on stick proportions

wk ∼ Beta(1− αa, αb + kαa) into corresponding ran-

domly distributed thresholds δk = Φ−1(wk):

p(δk | α) = N (δk | 0, 1) · Beta(Φ(δk) | 1− αa, αb + kαa) (5)

Figure 1 displays corresponding graphical model. Image

features are generated as in the BOF model.

2.4. Low­Rank Representation

In the preceding generative model, the layer support

functions uk ∼ N (0,Σ) are samples from a Gaussian dis-

tribution over N super-pixels. Inference involving GPs in-

volve inverting Σ which is in general a O(N3) operation

and thus scales poorly with increasing image sizes. To cope,

we employ a low-rank representation based on D ≤ N di-

mensions, analogous to factor analysis models. We pro-

ceed by defining a Gaussian distributed D dimensional la-

tent variable vk ∼ N (0, ID), we then set uk = Avk + ǫk,

where A is a N-by-D dimensional factor loading matrix

and ǫk ∼ N (0,Ψ), with Ψ being a diagonal matrix. Ob-

serve that marginalizing over vk results in a model equiv-

alent to the full rank model of the preceding section with

Σ = AAT + Ψ. The low rank model replaces the O(N3)
operation with an O(ND2) operation, thus scaling linearly

with N 1. Figure 1 displays the corresponding graphical

model.

3. Inference
This section describes a novel, robust to local optima, in-

ference algorithm which is an example of a Maximization

Expectation (ME) [29] technique. In contrast to the pop-

ular Expectation Maximization algorithms, ME algorithms

marginalize model parameters and directly maximize over

the latent variables. In our model, the latent variables cor-

respond to segment assignments of super-pixels (zn). Any

configuration of these variables defines a partition of the im-

age. Our strategy is to explore the space of these image par-

titions by climbing the posterior p (z | x, η) surface, where

η = {α, ρ,A,Ψ}. It is worth noting that since different par-

titions will have different numbers of segments, we are in

fact searching over models of varying complexities akin to

traditional model selection techniques.

The algorithm proceeds by first evaluating the posterior

for an initial image partition z. It then modifies the partition

in an interesting fashion to generate a new partition z′ which

is accepted if p(z′ | x, η) ≥ p(z | x, η). This process is

repeated until convergence. By caching the various mutated

partitions, we approximate the posterior distribution over

partitions (Figure 5). In what follows, we first describe the

innovations required for evaluating the posterior marginal

and then the procedure for mutating a partition.

3.1. Posterior Evaluation

In our model (Figure 1), the posterior p (z | x, η) factor-

izes as p (z | x, η) ∝ p (x | z, ρ)p (z | α,A,Ψ). The like-

lihood:

p (x | z, ρ) =

∫

Θ

p (x | z,Θ)p (Θ | ρ)dΘ (6)

1A complete time complexity analysis is available in the supplement.



is a standard Dirichlet-multinomial integral and can be eval-

uated in closed form2.

Unfortunately, the prior can’t similarly be evaluated in

closed form. Significant innovations are required for its

computation and the remainder of this section details a ma-

jor contribution of this paper, an algorithm for evaluating

p (z | η).

p (z | η) =

K(z)
∏

k=1

∫

uk

∫

δk

∫

vk

p (z | δk,uk)

p (uk,vk | A,Ψ) p (δk | α)dvkdukdδk

(7)

where K(z) represents the number of layers in partition z.

To simplify notation in the remainder of this paper we de-

note K(z) simply by K . Note that in the BOF model z

depends only on α and p(z|α) can be calculated in closed

form:

p(z | α) = αK
a

Γ (αb/αa +K) Γ(αb)

Γ(αb/αa)Γ(N + αa)

(

K
∏

k=1

Γ(Mk − αa)

Γ(1− αa)

)

(8)

where N is the number of super-pixels in the partition and

Mk is the number of super-pixels in layer k.

Spatial prior evaluation. The integrals in equa-

tion 7 can be evaluated independently for each layer. In

the following analysis, it is implied that we are deal-

ing with the kth layer and we drop the explicit depen-

dence on k in our notation. We approximate the joint

distribution p(u,v, δ, z | η) with a Gaussian distribution

q(u,v, δ, z | η) and the corresponding marginal p(z | η)
with q(z | η), which is easy to compute. We use expectation

propagation (EP) [14] to estimate the Gaussian “closest” to

the true joint distribution.

Recall that our model assigns super-pixel n to the first

layer k whose value is less than the layer’s threshold (δ),

thus setting zn = k. Equivalently, we can introduce a bi-

nary random variable tn for each layer k, whose value is

deterministically related to zn as follows:

tn =

{

+1 if zn = k =⇒ un < δ

−1 if zn > k =⇒ un > δ
(9)

Note that super-pixels with zn < k have already been as-

signed to preceding layers and can be marginalized out be-

fore inferring the latent Gaussian layer for the kth layer. We

can now express the joint distribution in terms of t :

p(u,v, δ, t | η) = p(v) p(δ | α)
N
∏

n=1

p(un | v)p(tn | un, δ) (10)

Furthermore, since for a given partition t is known, we

can condition on it to get

2The result follows from Dirichlet multinomial conjugacy. Please see

the supplement for relevant details

p(u,v, δ | t, η) =
1

Z
N (v | 0, I) p(δ|α)

N
∏

n=1

N (un | aTnv, ψn)I(tn(δ − un) > 0)
(11)

where Z is the appropriate normalization constant. Note

that the indicator functions I(tn(δ − un) > 0) and the

threshold prior p(δ | α) are the only non Gaussian terms.

We approximate these with un-normalized Gaussians, lead-

ing to the following approximate posterior

q(u,v, δ | t, η) =
1

ZEP
N ([vT

u
T δ]T | µ≈,Σ≈) (12)

where ZEP ensures appropriate normalization. We now it-

eratively refine the Gaussian approximation using EP 3. At

convergence we compute ZEP =
∫

u

∫

v

∫

δ
q(u,v, δ, t | η)

which is prior for the kth layer. Finally, we have

p(z|η) ≈
∏K

k=1 ZEPk
.

With the expression for prior in hand, we can now com-

pute the log posterior marginal

log p(z | x, η) = γ log p(x | z, ρ) +
K
∑

k=1

logZEPk
(13)

The parameter γ is used to weight the likelihood appropri-

ately. We set γ = 1
m̄ , where m̄ is the average number of

pixels per super-pixel. Recall that our likelihood treats pix-

els within a super-pixel as independent random variables,

necessitating the above down weighting.

3.2. Search over partitions

Armed with the ability to evaluate the posterior probabil-

ity mass for a given image partition, we explore the space

of partitions using discrete search. The search performs hill

climbing on the posterior surface and explores high proba-

bility regions of the partition space. This is similar in spirit

to MCMC techniques. Perhaps most similar to our approach

is the data driven MCMC approach of Tu et al. [27], which

uses a version of the Metropolis-Hastings algorithm along

with clever data driven proposals to explore the posterior

space. Here, we forgo the requirement of eventually con-

verging to the true posterior distribution in exchange for the

ease of incorporating flexible search moves and the ability

to quickly explore high probability regions of the posterior.

Given a partition we propose a new candidate partition by

stochastically choosing one of the following moves:

Merge. Two layers in the current partition are merged into

a single layer.

Split. A layer is split into two layers, which are adjacent in

layer order. We employ two types of shift moves. Given a

3Applying EP to our low dimensional model requires an interesting

combination of Gaussian belief propagation and expectation propagation.

Due to space limitations we haven’t included the details of EP here, but all

relevant details can be found in the supplement.



layer to be split, the first move works by randomly select-

ing two seed super-pixels and then assigning all remaining

super-pixels to the closest (in appearance space) seed. The

initial seeds are chosen such that with high probability they

are far in appearance space. The second move employs a

connected component operation. If the given layer has dis-

connected components then one such disconnected compo-

nent is sampled at random and deemed to be a new layer.

Swap. The swap move reorders the layers in the current

partition, by selecting two layers and exchanging their or-

der.

Shift. The shift move refines the partitions found by the

other moves. It iterates over all super-pixels in the image

assigning each to a segment which maximizes the poste-

rior probability 4. Observe that the merge and split moves

change the number of layers in a partition performing model

selection, while swap and shift attempt to find the optimal

partition given a model order.

4. Learning from Human Segmentations
In this section, we provide methods for quantitatively

calibrating the proposed models to appropriate human seg-

mentation biases. Recall that our model has four hyper-

parameters, the PY region size hyper-parameter (α), the

appearance hyper-parameter (ρ) and the GP covariance pa-

rameters (A and Ψ). We tune these to the human segmen-

tations from the 200 training images of the Berkeley Seg-

mentation Dataset (BSDS) [12]. We show that in spite of

the inherent uncertainty in the segmentations of an image,

we are able to learn important low level grouping cues.

Learning size and appearance hyper-parameters.

The optimal region size hyper-parameters are the ones that

best describe the statistics of the training data. We se-

lect α̂ = (α̂a, α̂b) by performing a grid search over 20
evenly spaced αa and αb candidates in the intervals [0, 1]
and [0.5, 20] respectively and choosing values which max-

imize the model’s likelihood of the training partitions ac-

cording to equation 8. The appearance hyper-parameters

ρ̂ = (ρ̂t, ρ̂c) are tuned through cross validation on a sub-

set of the training set. For BSDS, the estimated parameters

equal α̂a = 0.15, α̂b = 1 ρ̂t = 0.01 and ρ̂c = 0.01
Learning covariance kernel hyper-parameters. The

covariance kernel governs the type of layers that can be ex-

pressed by the model. Estimating it accurately is crucial for

accurately partitioning images. In [25, 24] the authors use

various heuristics to specify this kernel. Here, we take a

more data driven approach and learn the kernel from human

segmentations. While we cannot expect our training data

4A naive shift move would evaluate the posterior probability of the par-

tition after every super-pixel shift. This proves to be prohibitively expen-

sive, instead we develop an alternative which allows us to evaluate the

posterior after one complete sweep through the super-pixels while ensur-

ing that each individual shift by-and-large increases the posterior. Please

see the supplement for details.

to provide examples of all important region appearance pat-

terns, it does provide important cues. In particular like [9],

we learn to predict the probability that pairs of super-pixels

occupy the same segment via human segmentations.

For every pair of super-pixels, we consider several po-

tentially informative low-level cues: (i) pairwise Euclidean

distance between super-pixel centers; (ii) intervening con-

tours, quantified as the maximal response of the probability

of boundary (Pb) detector [13] on the straight line linking

super-pixel centers; (iii) local feature differences, estimated

via log empirical likelihood ratios of χ2 distances between

super-pixel color and texture histograms [20]. To model

non-linear relationships between these four raw features and

super-pixel groupings, each feature is represented via the

activation of 20 radial basis functions, with the appropriate

bandwidth chosen by cross-validation. Concatenating these

gives a feature vector φij for every super-pixel pair i, j. We

then train a L2 regularized logistic regression model to pre-

dict the probability of two super-pixels occupying the same

segment qij . Figure 2 illustrates the effect of these cues on

partitions preferred by the model.

When probabilities are chosen to depend only on the dis-

tance between super-pixels the distribution constructed de-

fines a generative model of image features. When these

probabilities also incorporate contour cues, the model be-

comes a conditionally specified distribution on image parti-

tions, analogous to a conditional random field [10].

From probabilities to correlations. Recall that our lay-

ers are functions sampled from multivariate Gaussian dis-

tributions, with covariance Σ with unit variance and a po-

tentially different correlation cij for each super-pixel pair

i, j. For each super-pixel pair, qij is independently deter-

mined by the corresponding correlation coefficient cij . As

detailed in the supplement there exists an one-to-one map-

ping between the pairwise probabilities and correlations, al-

lowing us to go from the logistic regression outputs (qij)

to correlation matrices. These correlation matrices (C),

learned from pairwise probabilities will in general not be

positive semi-definite (PSD). We cope by finding the clos-

est PSD unit diagonal matrix to the correlation matrix. We

use the recently proposed technique of Borsdorf et al. [3],

which solves for A and Ψ by minimizing the Frobenius

norm||C − (AAT +Ψ)||F . It should be noted that even

the heuristic approaches of Sudderth and Jordan [25] and

Shyr et al. [24] can yield non PSD correlation matrices.

There the authors ensure positive semi-definiteness by per-

forming an eigen-decomposition of C and retaining only

non-negative eigenvalues. This is a cruder approximation

and leads to poor results (Figure 2).

5. Spatially dependent PY model properties

In this section, we explore various properties of our

model which may not be immediately obvious.



Figure 2. Model Properties. TOP- Prior samples from mod-

els employing heuristic distance+pb [25], learned distance (PY-

dist) , learned distance+pb and all cues (PYall) based covariances.

CENTER- Layered segmentations produced by our method. BOT-

TOM - Three layer synthetic partitions illustrating preferred layer

orderings, Layer 1 is displayed in blue and Layer 2 in green. Left

to right: Partition 1 (blue = low; red = high), the inferred Gaus-

sian function for layers 1 and 2, partition 2 and the corresponding

Gaussian functions. Under our model, partition 1 has a log proba-

bility of −77 while partition 2 has a log probability of −90.

Prior samples. Our model defines a distribution over

image partitions, which can be partially assessed by visual-

izing partitions sampled from the prior. Figure 2 displays

such samples. Note that the samples from the conditionally

specified models better reflect the structure of the image.

Layers. Our model produces partitions made up of lay-

ers, not segments. These layers can have multiple connected

components, due to either occlusion by a foreground layer,

or a layer support function with multimodal shape. The in-

ferred partitions illustrated in the second row of figure 2

illustrate this point. The model groups all buffaloes (in the

first image), non-contiguous portions of sky, grass and trees

(in the second and third images) in the same layer. Tradi-

tional segmentation algorithms, having no notion of layers,

would assign each non contiguous region to a separate seg-

ment. Our layered representation provides a higher level

representation of the scene than is possible with a collection

of segments, which allows us to naturally deal with complex

visual phenomena such as occlusion.

Implicit prior on layer order. Recall that a partition is

an ordered sequence of layers, and the likelihood of a par-

tition is governed by the likelihood of its constituent lay-

ers. Note that reordering layers can change the set of sup-

port functions which produce those layers, which in turn

makes certain orderings preferable to others. In general,

our GP priors prefer simple shapes over complicated ones

and hence our model prefers explaining complicated shapes

via an occlusion process. Figure 2 illustrates these ideas us-

ing two synthetic partitions with the order of layers 1 and 2

flipped. The model 5 prefers the partition in the first column

5Here, we have used a squared exponential covariance kernel with

length scale set to half of the partition’s diagonal length.

over the one in fourth. As can be seen from the inferred

layers, partition 1 is explained by the model using simpler

Gaussian functions, while partition 2 has to be explained us-

ing more complicated and hence less likely Gaussian func-

tions.

6. Experimental Results

In this section we present quantitative evaluations of var-

ious aspects of the proposed model along with qualitative

results. In all experiments, our model (PYall) used a 200
dimensional low rank representation and ran 200 discrete

search iterations, with three random restarts.

Experimental Setup. We benchmark the algorithm on

the Berkeley Image Segmentation Dataset (BSDS300 [12])

and a subset of of Oliva and Torralba’s [16] eight natural

categories dataset. We sampled the first 30 images from

each of the eight categories to create a 240 image dataset.

The performance of the algorithms are quantified using

the probabilistic Rand Index (PRI) [18], and the segmen-

tation covering (SegCover) metric [2]. The partitions pro-

duced by our model are made up of layers, which may not

be spatially contiguous. However, the benchmarks we eval-

uate on, define segments to be spatially contiguous regions.

To produce these we run connected components on the lay-

ers splitting them into spatially contiguous segments.

Quantifying model enhancements. This paper im-

proves on both the model (PYheur) and the corresponding

inference algorithm presented in [25] . To quantify the per-

formance gains solely from model enhancements we devise

the following test. On BSDS300 test images, we compare

the log-posterior assigned to the ground truth human seg-

mentations p(zgt|x, η) under both models. Since, we al-

ready have access to zgt no inference is required and the

model which assigns higher probability mass to the ground

truth, models the data better. Figure 3 presents a scatter plot

comparing both models. It is easy to see that PYall models

human segmentations significantly better.

Evaluating inference enhancements. Next, we evalu-

ate the performance improvements resulting from the novel

inference algorithm6. Figure 3 displays the result of running

mean field and search based inference from 10 random ini-

tializations for a given test image. The log-likelihood plots

clearly demonstrate mean field being susceptible to local

minima. In contrast, EP based search exhibits robustness

and all chains converge to high probability partitions. The

bottom row displays the best and worst partitions found by

mean field and search. As one would expect, there is wide

variability in the quality of mean field partitions, while the

search partitions are consistently good. The rightmost top

row plot displays randomly chosen partitions from the 10

EP search runs. It demonstrates a high correlation between

6100 search iterations takes about 30 minutes on a standard quadcore

with 4GB of ram.
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Figure 3. Model and inference comparison. TOP (Left to right)

Log-likelihood (ll) trace plots of mean field runs, search runs, scat-

ter plot comparing PYall and PYheur, scatter plot of ll vs Rand

index. BOTTOM (Left to right) Test image, partitions with highest

and lowest ll found by mean field, best and worst search partitions.

BSDS300 LabelMe

Ncuts MS FH gPb PYheur PYdist PYall gPb PYall

PRI 0.73 0.77 0.77 0.80 0.60 0.69 0.76 0.74 0.73

segCover 0.40 0.48 0.53 0.58 0.45 0.50 0.54 0.54 0.55

Table 1. Quantitative performance of various algorithms on

BSDS300 and LabelMe.

log likelihoods and rand indexes, again verifying that the

partitions favored by our model are also favored by humans.

Comparison against competing methods. In this pa-

per, our goal is not to produce one “optimal” segmentation

but to provide a tractable handle on the posterior distribution

over image partitions. Nevertheless, here we demonstrate

that by summarizing the posterior with the MAP partition

we produce results which are competitive with the state-of-

the-art segmentation techniques. We compare against four

popular segmentation techniques: Mean Shift (MS) [5],

Felzenszwalb and Huttenocher’s graph based segmentation

(FH) [7], Normalized cuts [23] and gPb contour based seg-

mentation [2]7. In addition, we also compare against a ver-

sion of our model which uses only distance cues for learning

the covariance kernel (PYdist). Table 1 displays the quanti-

tative numbers achieved on the BSDS300 test set. Figure 4

demonstrates qualitative differences amongst the methods.

PYall is significantly better than both PYheur and PYdist.

According to a Wilcoxon’s signed rank test (at an 0.01 sig-

nificance level) it is also significantly better than Ncuts and

MS (on segCover metric, within noise on PRI), within noise

of FH and statistically worse than gPb on the BSDS300

dataset.

Next, in order to test generalizability, we compare PYall

against the top performing method on BSDS – gPb on the

LabelMe dataset. The parameters for either method were

tuned on BSDS and were not re-tuned to the LabelMe

dataset. Table 1 displays the results. PYall and gPb are

now statistically indistinguishable.

7All model parameters were tuned by performing a grid search on the

training set. See supplement for more details.

Figure 5. Diverse Segmentations. Each row depicts multiple par-

titions for a given image. Partitions in the second column are

the MAP estimates. Other partitions with significant probability

masses are shown in the third and fourth columns.

Posterior Summary. Perhaps, a more accurate assess-

ment of our model involves exploring the posterior distri-

bution over partitions. In Figure 5 we summarize the pos-

terior distributions, for a few randomly chosen test images,

by presenting a set of high probability partitions discovered

by our algorithm. It is worth noting that the set of multi-

ple partitions produced by our method is richer than those

produced by a single multi-resolution segmentation tree [2].

For instance, the partitions in the third and fourth columns

of the first two rows of Figure 5 are mutually inconsistent

with any one segmentation tree, but are nonetheless pro-

duced by our algorithm. More interesting ways of leverag-

ing the distribution over partitions is an important direction

of future work.

7. Discussion

Starting with a promising Bayesian nonparametric

model of images partitions, we have developed substan-

tially improved algorithms for learning from example hu-

man segmentations, and robustly inferring multiple plausi-

ble segmentations of novel images. By defining a consistent

distribution on segmentations of varying resolution, this de-

pendent PY process provides a promising building block for

other high-level vision tasks.
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