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ABSTRACT

We develop a hierarchical, nonparametric statistical model

for wavelet representations of natural images. Extending pre-

vious work on Gaussian scale mixtures, wavelet coefficients

are marginally distributed according to infinite, Dirichlet pro-

cess mixtures. A hidden Markov tree is then used to couple

the mixture assignments at neighboring nodes. Via a Monte

Carlo learning algorithm, the resulting hierarchical Dirichlet

process hidden Markov tree (HDP-HMT) model automati-

cally adapts to the complexity of different images and wavelet

bases. Image denoising results demonstrate the effectiveness

of this learning process.

Index Terms— hidden Markov trees, hierarchical Dirich-

let processes, nonparametric Bayesian methods, wavelet trans-

forms, image denoising.

1. INTRODUCTION

Wavelet decompositions of natural images exhibit significant,

highly non–Gaussian residual dependencies. Empirical re-

sults indicate that Gaussian scale mixtures often provide ex-

cellent models for the heavy–tailed distributions of individual

wavelet coefficients [1]. Several previous papers have used

hidden Markov trees to couple scale mixtures in a coherent

global model [1–3]. Such models are used in a range of tasks,

including image compression, denoising, and classification.

In this article, we adapt the hierarchical Dirichlet pro-

cess [4] to design a nonparametric Bayesian model for wavelet

coefficients. This model employs a potentially infinite set of

hidden states to capture dependencies among observed wavelet

coefficients. Through an appropriate prior distribution, how-

ever, only a finite, data–driven subset of these states is used

to make predictions. In the following sections, we develop a

collapsed Gibbs sampler which learns model parameters from

training data, and validate its accuracy via wavelet histograms

and image denoising performance.

2. WAVELET–BASED STATISTICAL MODELS

Natural images exhibit sharply localized intensity changes due

to occlusion boundaries, as well as more homogeneously tex-

tured regions. For these reasons, their statistics are most sim-

ply described by representations which are jointly localized in

spatial position and frequency. Wavelet decompositions pro-

vide a family of widely used image bases designed to achieve

these two competing goals [5].

Orthogonal wavelet transforms decompose images at mul-

tiple scales by recursively filtering with a scaled, band–pass

kernel function. This invertible linear operator produces a

set of low–pass scaling coefficients xt0, and a forest of mul-

tiscale trees containing higher frequency detail coefficients

xt = {xti}. As illustrated in Fig. 1, we let xti denote the

vector of detail coefficients (of different orientations) at loca-

tion i beneath scaling coefficient t.

Because orthogonal wavelet coefficients are nearly decor-

related, they lead to effective compressions algorithms. How-

ever, such critically sampled decompositions are not trans-

lationally invariant, and exhibit instability and aliasing arti-

facts in the presence of noise. Steerable pyramids address

these issues via an overcomplete basis, or frame, optimized

for increased orientation selectivity [6]. While the statistics

of such non–orthogonal transformations are more complex,

our results demonstrate their advantages in image analysis.

2.1. Mixture Models for Heavy–Tailed Marginals

The marginal distributions of wavelet coefficients are typi-

cally highly kurtotic, with “heavy tails” indicating that ex-

treme values occur frequently compared to Gaussian distribu-

tions. This behavior is captured by Gaussian scale mixtures,

which model xti as the product of two independent variables:

xti = vtiuti vti ≥ 0, uti ∼ N (0,Λ) (1)

Marginalizing the scalar multiplier vti mixes Gaussians of

varying scales. A variety of continuous mixing distributions

provide good models of wavelet statistics [1]. In many cases,

however, simple two–component mixtures are also effective:

xti ∼ πN (0,Λ0) + (1 − π)N (0,Λ1) (2)

Here, π is the probability that xti is drawn from an “outlier”

component with large variance Λ0, and Λ1 is smaller to cap-

ture the many near–zero coefficients. Such discrete mixtures

have important computational advantages, and have been suc-

cessfully used for image denoising [7].
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Fig. 1. Two levels of an HDP-HMT in which hidden discrete states

zti generate wavelet coefficients xti. Each of the infinitely many

states has an output covariance Λk and transition distribution πk,

which are coupled when learning via a global random measure, β.

2.2. Wavelet Cascades on Markov Trees

Although natural images often lead to uncorrelated wavelet

coefficients, they retain important non–Gaussian dependen-

cies. In particular, large magnitude coefficients tend to clus-

ter at nearby spatial locations, and persist across multiple

scales [1, 2]. One of the most effective image denoising algo-

rithms employs local Gaussian scale mixtures relating each

wavelet coefficient to its nearest neighbors in location and

scale [8]. In this paper, we instead develop a global graph-

ical model of multiscale image decompositions.

The scale–recursive operations underlying wavelet decom-

positions suggest models defined on Markov trees [5]. For

images, these graphical models associate detail coefficient xti

with a single coarser scale parent xPa(ti), and four finer scale

children {xtj | tj ∈ Ch(ti)} (see Fig. 1). Tree–structured

Gaussian random fields have been used to capture correlations

among wavelet coefficients [5], and to model the latent multi-

pliers underlying a global Gaussian scale mixture [1]. Alter-

natively, the discrete mixture of eq. (2) has been generalized

to define a binary hidden Markov tree (HMT) [2]. In HMTs,

the mixture component zti generating detail coefficient xti is

influenced by the corresponding parent coefficient:

zti | zPa(ti) ∼ πzPa(ti)
xti | zti ∼ N (0,Λzti

) (3)

As before, detail coefficient xti may be generated via states

zti of low or high variance. However, by associating each par-

ent state k with a different transition distribution πk, HMTs

also capture dependencies among nearby coefficients.

Although the HMT originally defined separate graphical

models for each orientation subband, states may alternatively

generate vectors of wavelet coefficients [3]. Dependencies

among orientations are then better captured by higher–order

discrete models. To do this, one must select an appropriate

number of hidden states K, as well as the pattern used to

share states among different coefficients. For example, the

hierarchical image probability (HIP) model [3] shares param-

eters within each scale, and optimizes K via a minimum de-

scription length (MDL) criterion. In the following section, we

propose an alternative nonparametric approach which learns

such model structures from training images.

3. NONPARAMETRIC HIDDEN MARKOV TREES

Many model selection criteria, including MDL, have asymp-

totic justifications which are poorly suited to small datasets.

When applied to hierarchical models, they may also lead to

combinatorial problems requiring greedy approximations [3].

Nonparametric Bayesian methods avoid these issues by defin-

ing priors on infinite models. Learning algorithms then pro-

duce robust predictions by averaging over model substruc-

tures whose complexity is justified by the observed data.

3.1. Dirichlet Process Mixtures

Let H denote a prior distribution on the space of zero–mean

Gaussian distributions, such as the inverse–Wishart [9]. A

Dirichlet process (DP) with concentration parameter γ > 0,

denoted by DP(γ,H), then defines a prior distribution over

infinite Gaussian mixtures:

βk = β′

k

k−1
∏

ℓ=1

(1 − β′

ℓ) β′

ℓ ∼ Beta(1, γ) (4)

p(xti | β,Λ1,Λ2, . . .) =

∞
∑

k=1

βkN (xti; 0,Λk) (5)

Component variances are independently sampled as Λk ∼ H .

The stick–breaking construction [4, 9] of eq. (4), which we

denote by β ∼ GEM(γ), defines mixture weights using beta

random variables. In contrast with finite mixtures, DPs favor

simple models given few observations, but also create low–

probability clusters to capture details revealed by large, com-

plex datasets. Practically, DP mixtures are motivated both by

their attractive asymptotic guarantees [9], and by the avail-

ability of efficient computational methods [4, 9].

3.2. Hierarchical Dirichlet Processes

The hierarchical Dirichlet process (HDP) provides a flexible

framework for sharing mixture components among groups of

related data [4]. It has been previously used to define an

HDP-HMM which learns the structure of a countably infi-

nite hidden Markov chain from training data. Extending this

work, we develop an HDP hidden Markov tree (HDP-HMT)

to model the global statistics of wavelet coefficients.

Consider a hidden Markov tree with a countably infinite

state space zti ∈ {1, 2, . . .}. Each value k of the current state

indexes a different transition distribution πk = (πk1, πk2, . . .)
over child states, which we couple via a shared DP prior

πk ∼ DP(α, β) β ∼ GEM(γ) (6)

By defining β to be a discrete probability measure, we en-

sure with high probability that a common set of child states

are reachable from each parent state [4]. This hierarchical



construction encourages reuse of states when learning. Given

these infinite transition distributions, wavelet coefficients are

generated as in the coarse–to–fine recursion of eq. (3).

By defining a prior on infinite models, the HDP-HMT

avoids the model selection issues considered by [3]. Impor-

tantly, we also do not need to specify a fixed pattern by which

states are shared among different coefficients. While the HDP-

HMT biases coefficients to share states, it learns detailed tran-

sition structures from training images.

4. MODELING IMAGES USING THE HDP-HMT

Extending the direct assignment Gibbs sampler of [4], we

now develop a Monte Carlo learning method for HDP-HMTs.

For simplicity, we first consider models for the wavelet coef-

ficients in a single noise–free image. Sec. 5 then extends this

sampler to develop an image denoising algorithm.

4.1. Collapsed Gibbs Sampling

Given a training image containing wavelet coefficients xti,

we would like to infer the posterior distribution of the HDP-

HMT’s parameters. We do this via a Gibbs sampler which

alternates between sampling assignments zti to hidden states

and global transition probabilities β. Given fixed values for

these variables, the state–specific transition distributions πk

and covariances Λk can be marginalized in closed form. Such

Rao–Blackwellization improves the efficiency and accuracy

of MCMC methods [9].

Given fixed assignments z = {zti} of coefficients to hid-

den states, β can be resampled as described in [4]. However,

in contrast with standard HDP models, the HDP-HMT dy-

namically regroups wavelet coefficients as parent states are

resampled. From Fig. 1, the posterior distribution of zti given

all other state assignments z\ti factors as

p(zti | z\ti, β,x) ∝ p(zti | z\ti, β) p(xti | x\ti, z) (7)

The second term is the predictive likelihood of xti, which

for inverse–Wishart priors is multivariate Student–t [9]. The

form of the first term depends on the position i of the sam-

pled coefficient, and the states of its neighbors. Let n\ti(k, ℓ)
denote the number of transitions from parent state k to child

state ℓ instantiated by z\ti, and n\ti(k, ·) the total number of

outgoing transitions from state k. For finest scale coefficients,

p
(

zti | zPa(ti) = k, z\ti, β
)

=

∫

πk(zti)p(πk | z\ti, β) dπk

=

(

n\ti(k, zti) + αβ(zti)

n\ti(k, ·) + α

)

(8)

The form of this ratio follows from the properties of Dirichlet

distributions [4]. When evaluating eq. (8), we consider can-

didate states zti corresponding to every state which is used

at least once elsewhere in the wavelet tree, as well as a po-

tential new state. This predictive rule allows HDP-HMTs to

determine state space cardinality in a data–driven fashion.

For non–leaf nodes, p(zti | z\ti, β) is also influenced by

its childrens’ states zCh(ti) , {ztj | tj ∈ Ch(ti)}. In can-

Orientation Scale Position (near) Position (far)

Fig. 2. Pairwise histograms of steerable pyramid detail coefficients

from the 256× 256 peppers image. Rows 1 & 3 are computed from

the observed image, while rows 2 & 4 summarize samples from an

HDP-HMT. As in [1], we visualize log-contours of joint distributions

(top) as well as normalized conditional distributions (bottom).

didate states where zti 6= zPa(ti), this conditional distribu-

tion factors into two terms: one as in eq. (8), and a sec-

ond corresponding to the likelihood p
(

zCh(ti) | zti, β
)

. When

zti = zPa(ti) a correction is needed to avoid double–counting

information.

4.2. Validation Through Wavelet Histograms

In Fig. 2, we illustrate wavelet coefficient histograms [1] com-

puted from the grayscale peppers image. We compare this

raw data to coefficients simulated from HDP-HMTs learned

using 1,000 Gibbs sampling iterations. We correctly model

the non–Gaussian “bow tie” shapes of wavelet histograms,

and also accurately capture the complex orientation and scale

relationships exhibited by steerable pyramids. Our under-

estimate of the dependence between spatially adjacent co-

efficients is probably caused by the Markov tree boundaries

which separate some pairs of fine scale coefficients [5].

5. IMAGE DENOISING

In this section, we use the HDP-HMT to restore images cor-

rupted by additive white Gaussian noise. Let xti denote an

observed (noisy) wavelet coefficient, and wti the true coef-

ficient value, so that xti ∼ N (wti,Σn). For simplicity, we

assume that the noise variance Σn is known.

5.1. An Empirical Bayesian Denoising Algorithm

Our denoising algorithm estimates HDP-HMM parameters in

an empirical Bayesian fashion from the observed noisy image.

We begin by running the collapsed Gibbs sampler of Sec. 4.1



Noisy Image Adaptive Wiener Binary HMT (daub-4) HDP-HMT (daub-4) HDP-HMT (spyr-5) Local GSM (sfpyr-5)

20.17 dB 26.86 dB 27.36 dB 28.02 dB 28.63 dB 29.42 dB

14.15 dB 23.40 dB 23.89 dB 24.47 dB 25.99 dB 26.21 dB

Fig. 3. Denoising results for a peppers image contaminated by additive white Gaussian noise of standard deviation σ = 25 (top) or σ = 50

(bottom) pixels. We report PSNR values for a baseline adaptive Wiener filter (Matlab’s wiener2), the binary HMT [2], HDP-HMT models

employing either orthogonal wavelet or steerable pyramid decompositions (this paper), and a GSM model of local wavelet neighborhoods [8].

on the noisy wavelet tree. Discarding the first 1,000 “burn–in”

iterations, we then collect 500 samples θ(s) = {π
(s)
k ,Λ

(s)
k }Ks

k=1

from the parameters’ posterior distribution. Note that each

sample s instantiates a different number of states Ks.

Given θ(s), the conditional mean of wti equals

E
[

wti | x, θ(s)
]

=

Ks
∑

k=1

p(zti = k | x, θ(s)) E
[

wti | xti,Λ
(s)
k

]

where the posterior state probabilities p(zti | x, θ) may be ef-

ficiently computed via the belief propagation algorithm [2, 5].

Given zti, denoising reduces to linear least squares:

E
[

wti | xti,Λ
(s)
k

]

= Σ
(s)
k (Σ

(s)
k + Σn)−1xti (9)

As in [2, 8], we estimate Σ
(s)
k by subtracting Σn from Λ

(s)
k ,

and setting any negative eigenvalues to zero. When the mean

of the variance prior H is sufficiently large, such truncations

are rarely necessary. The denoised image is then determined

via an inverse wavelet transform combining observed scaling

coefficients with the posterior mean of each detail coefficient.

5.2. Results: Denoising Peppers

In Fig. 3, we compare the HDP-HMT’s denoising performance

to three other methods. Using identical Daubechies-4 orthog-

onal wavelets, the larger state space of the HDP-HMT con-

sistently improves on the binary HMT [2] in sharpness, clar-

ity, and peak signal–to–noise ratio (PSNR). Alternatively, a

5th–order steerable pyramid decomposition leads to an HDP-

HMT providing clearer estimates with fewer aliasing artifacts.

Compared to a state–of–the–art local GSM model [8], the

HDP-HMT produces images with sharper details, but more

artifacts (and hence lower PSNR) in smooth regions.

6. DISCUSSION

We have developed a nonparametric, tree–based model of joint

wavelet statistics, and demonstrated its effectiveness in an

image denoising task. This HDP-HMT generalizes existing

finite–state models by allowing the number of hidden states,

and the structure of their transitions, to be learned from train-

ing images. Future work will explore the degree to which

these states generalize across natural image families.
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