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Abstract

Black-box variational inference algorithms use
stochastic sampling to analyze diverse statisti-
cal models, like those expressed in probabilistic
programming languages, without model-specific
derivations. While the popular score-function es-
timator computes unbiased gradient estimates, its
variance is often unacceptably large, especially in
models with discrete latent variables. We propose
a stochastic natural gradient estimator that is as
broadly applicable and unbiased, but improves
efficiency by exploiting the curvature of the vari-
ational bound, and provably reduces variance
by marginalizing discrete latent variables. Our
marginalized stochastic natural gradients have in-
triguing connections to classic coordinate ascent
variational inference, but allow parallel updates
of variational parameters, and provide superior
convergence guarantees relative to naive Monte
Carlo approximations. We integrate our method
with the probabilistic programming language Pyro
and evaluate real-world models of documents, im-
ages, networks, and crowd-sourcing. Compared
to score-function estimators, we require far fewer
Monte Carlo samples and consistently converge
orders of magnitude faster.

1. Introduction

Variational inference is widely used to estimate the poste-
rior distributions of hidden variables in probabilistic models
(Wainwright & Jordan, 2008). Many previous studies have
found that variational inference can have dramatic com-
putational advantages compared to MCMC methods like
Gibbs samplers (Gopalan & Blei, 2013; Gan et al., 2015;
Gopalan et al., 2016; Ji et al., 2019). Variational bounds are
usually optimized via coordinate ascent variational infer-
ence (CAVI, Jordan et al. (1999)) algorithms that iteratively
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update single (or small blocks of) variational parameters,
while holding all others fixed to their current values. Al-
though CAVI updates can be effective for simple models
composed from conjugate priors, for many models the ex-
pectations required for exact CAVI updates are intractable:
they may require complex integrals for continuous variables,
or computation scaling exponentially with the number of
dependent discrete variables.

Variational algorithms for models with non-conjugate con-
ditionals have been derived via hand-crafted auxiliary vari-
ables that induce looser, but more tractable, bounds on the
data log-likelihood (Jordan et al., 1999; Winn & Bishop,
2005). Such bounds typically require complex derivations
specialized to the parametric structure of specific distri-
butions (Albert & Chib, 1993; Jaakkola & Jordan, 1999;
Polson et al., 2013), and thus do not easily integrate with
general-purpose probabilistic inference systems.

To address these limitations, several authors have explored
stochastic gradient algorithms that directly optimize a repa-
rameterized bound involving the log-likelihood gradient
or score function (Paisley et al., 2012; Wingate & Weber,
2013; Ranganath et al., 2014), as in the classic REINFORCE
policy gradient algorithm (Williams, 1992). Unlike other
black-box variational methods such as automatic differenti-
ation variational inference (ADVI, Kucukelbir et al. (2017))
that require specific variable reparameterizations (Kingma
& Welling, 2014; Rezende et al., 2014), REINFORCE pro-
vides unbiased gradients for all models including the many
practically important ones with discrete latent variables.

Due to its simplicity and generality, REINFORCE has be-
come the “standard” variational inference algorithm for a
number of probabilistic programming languages (PPLs) in-
cluding Edward and TensorFlow Probability (Tran et al.,
2016; 2018), WebPPL (Goodman & Stuhlmiiller, 2014;
Ritchie et al., 2016), Pyro (Bingham et al., 2019), and
Gen (Cusumano-Towner et al., 2019). However, its gradient
estimates may have extremely high variance. An official
WebPPL tutorial' warns that REINFORCE will produce
poor results for the LDA topic model (Blei et al., 2003) due
to its discrete assignment variables: “Because WebPPL’s
implementation of variational inference works much bet-

"http://probmods.github.io/ppaml2016/chapters/
4-3-variational.html


http://probmods.github.io/ppaml2016/chapters/4-3-variational.html
http://probmods.github.io/ppaml2016/chapters/4-3-variational.html

Marginalized Stochastic Natural Gradients for Black-Box Variational Inference

ter with continuous random choices than discrete ones,”’
they produce an alternative model representation by “‘ex-
plicitly integrating out the latent choice of topic per word”
so that ADVI may be used. However, this requires model-
specific derivations that are not generally tractable; a better
black-box variational method for discrete and other non-
reparameterizable latent variable models is sorely needed.
Titsias & Lazaro-Gredilla (2015); Tucker et al. (2017);
Grathwohl et al. (2018); Liu et al. (2019); Yin & Zhou
(2019); Dong et al. (2020) have proposed variance reduction
methods for REINFORCE that partially address this issue.

In this paper, we analyze the poor convergence behavior of
REINFORCE variational gradients on discrete probabilis-
tic models, and contrast it with a natural gradient variant
that makes use of local curvature information. Unlike sev-
eral previous applications of natural gradients in variational
inference (Sato, 2001; Hoffman et al., 2013) where expecta-
tions are computed analytically, we propose a Monte Carlo
variant inspired by the successes of natural policy gradients
in reinforcement learning (Kakade, 2001; Schulman et al.,
2015). To avoid the large-variance estimators induced by
rare configurations of discrete variables, we marginalize
their values in the associated gradient dimensions, produc-
ing an estimator with provably lower variance.

Like REINFORCE, our marginalized stochastic natural
gradients (MSNG) do not require model-specific deriva-
tions, do not require gradients of the log-probability, and
are guaranteed to converge with appropriate learning rates.
As observed for more general stochastic optimization prob-
lems (Thomas et al., 2020), MSNG convergence is dramati-
cally accelerated via the interplay of variance reduction and
geometry adaptation. MSNG updates intuitively reduce to a
weighted combination of current variational parameters and
unbiased Monte Carlo estimates of ideal CAVI updates.

We integrate our MSNG method with the PPL Pyro (Bing-
ham et al., 2019). On real-world models of documents,
images, networks, and crowd-sourcing, it consistently con-
verges orders of magnitude faster than REINFORCE while
requiring far fewer samples to estimate expectations. Com-
pared to baselines variational methods using hand-crafted
auxiliary bounds, MSNG updates are equivalent or even
superior in terms of predictive accuracy and robustness to
initialization, while being easier to derive and implement.

2. Discrete Latent Variable Models

We begin by reviewing five probabilistic models that gen-
erate observed data x via discrete latent variables z, from
some joint distribution p(z, z) = p(z)p(z | z). We specify
these models in Pyro, a popular PPL that provides flexible
but precise semantics for defining probabilistic models and
performing inference queries (Bingham et al., 2019). The
grand promise of PPLs is that given a generative model

1 import torch, pyro
2 from pyro import distributions as dist

4 class BN:

5 def _ init_ (self, hyperparams):

6 self.b, self.Wl, self.cl, self.W2, self.c2 = hyperparams
7 self.D_H2, self.D_H1 = self.W2.shape

8

9 @abstractmethod

10 def squash_fun(self, x):

11 raise NotImplementedError

12

13 def model(self, data):

14 dat_axis = pyro.plate('dat_axis', data.shape[0], dim=0)

15 top_axis = pyro.plate('top_axis',
16 mid_axis = pyro.plate('mid axis',
17 bot_axis = pyro.plate('bot axis',

self.D_H2, dim=1)
self.D_H1, dim=1)
data.shape[1], dim=1)

18 with dat_axis, top_axis:

19 z_top = pyro.sample('z_top',

20 dist.Bernoulli(self.squash fun(self.b)))
21 wz_top = z_top @ self.W2 + self.c2

22 with dat_axis, mid_axis:

23 z_bot = pyro.sample('z_bot',

24 dist.Bernoulli(self.squash_fun(wz_top)))
25 wz_bot = z_bot @ self.Wl + self.cl

26 with dat_axis, bot_axis:

27 pyro.sample('x', dist.Bernoulli(self.squash fun(wz_bot)),

28 obs=data)

30 class NoisyOrBN(BN):

31 def squash_fun(self, x):

32 return torch.ones([]) - torch.exp(-x)
34 class SigmoidBN(BN):

35 def squash_ fun(self, x):
36 return torch.sigmoid(x)

Figure 1. Pyro specification of three-layer Bayesian networks. By
defining different squashing functions (lines 31 and 35), the noisy-
OR topic model and sigmoid belief network are easily created from
the base class. “Plate” variables are conditionally independent.

specification, appropriate inference code can be automati-
cally generated, enabling rapid model exploration even for
non-expert users. For variational inference with discrete
latent variables, the standard choice for most PPLs is REIN-
FORCE. But as we show in Sec. 5, REINFORCE converges
very slowly for all models reviewed in this section, motivat-
ing the novel algorithms developed in Sec. 4.

2.1. Deep Noisy-OR and Sigmoid Belief Networks

Noisy-OR and sigmoid belief networks both generate data
via layers of binary latent variables. See Fig. 1 for compact,
integrated Pyro code defining these models.

Like the logical OR operator, the noisy-OR conditional
distribution (Horvitz et al., 1988) assumes the activation of
a binary variable is independently influenced by the state of
each parent. As shown in Eq. (1), if a parent k € P(7) is
active (z = 1), it will activate its child ¢ with probability
1 — exp(—wy; ), regardless of the states of other parents:

p(zi =1 2zpu) =1—exp (—wm - Z w;ﬂ-zk).

ey
Inactive parents have no influence on z;, and a small “leak”
probability 1 — exp(—wq;) allows nodes to occasionally
activate even when all parents are off. The noisy-OR distri-
bution has been widely used in bipartite graphs for medical
diagnosis, like the QMR-DT system, where observed symp-
toms in the bottom layer may be caused by multiple latent
diseases (Shwe et al., 1991). More recently, Google (Mur-
phy, 2012, Sec. 26.5.4), Liu et al. (2016), and Ji et al. (2019)

keP(3)
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use deep noisy-OR Bayesian networks to model topic inter-
actions within documents, in which observed word tokens
are generated by their hierarchical latent topic ancestors.

Sigmoid belief networks (Neal, 1992) are layered binary
generative models where the activation probability of a node
is determined by the sigmoid function o(r) = 1+e+1>(—7")
The activation z;; of node j in layer + depends on the states
of nodes in the preceding layer z;41:

p(ZZ] =1 | Zi+1) = U(wiszZ-+1 + C]) (2)
The possibly sparse weight vector w;; determines which
parents directly influence the activation of z;;. Gan et al.

(2015) use two layers of binary latent variables to generate
binary digit images x observed at the finest scale.

2.2. Categorical and Binary Relational Models

Stochastic block models (SBM, Holland et al. (1983)) use
categorical latent variables to capture community member-
ships underlying network or relational data. Each entity ¢ is
assigned a community z; ~ Categorical (7). The probability
that a link x;; exists between entities ¢ and j is given by the
interaction probability p(z;; = 1|z; = k,z; = £) = we.
We assume relations are undirected, so the link matrix = and
connectivity probability matrix w are both symmetric.

In addition to stochastic block models, we also consider
a simplified version of the binary latent feature relational
model of Miller et al. (2009). Each entity ¢ is described by
a set of D hidden binary features z;4 ~ Bernoulli(p). The
probability that an undirected link z;; between entities ¢ and
7 is present depends on the set of shared features:

D
pleij=1]z)=20 <w0 + Zd:l wdzidzjd) . 3)

In Eq. (3), ® is the probit function (standard normal CDF).
Weight w, controls the change in link probability when enti-
ties share feature d. ®(wy) is the (small) probability of link
occurrence when no features are shared. See the supplement
for Pyro specifications of these relational models.

2.3. Annotation Models

Annotation models are used to measure the quality of crowd-
sourced data labeled by a large collection of unreliable
annotators, and correct label errors. We apply the anno-
tation model of Passonneau & Carpenter (2014) to word
sense annotation. Each item ¢ belongs to a true category
z; € {1,..., K}, where 7y, is the prior probability of cate-
gory k. Observation z;; € {1,..., K} represents the label
that annotator j assigns to item ¢. The probability that anno-
tator j assigns the label ¢ to an item whose true category is
k depends on the annotator’s reliability within that category:
p(xij = €|z, = k) = 6,5¢, where 03, ~ Dirichlet(5). The
observation matrix x is sparse because each annotator only
labels a small subset of all items.

3. Limitations of Existing VI Algorithms

Given any latent variable model p(z, x) = p(z)p(z | 2), our
goal is to infer the posterior distribution p(z | «). For com-
plex models, exact posterior inference is usually intractable
and approximations are thus needed. The popular mean field
variational inference method seeks an approximate poste-
rior ¢(z) from a tractable family with simpler dependencies
by maximizing the evidence lower bound (ELBO):

Maximizing the ELBO minimizes the Kullback-Leibler di-
vergence of ¢(z) from the true posterior p(z | ). In this
work, we make a “naive” mean-field approximation in which
q(z) =11, () is fully factorized.

We next review two classic families of VI algorithms for
optimizing the ELBO with respect to ¢(z). Their limitations
motivate the new algorithms we develop in Sec. 4.

3.1. Coordinate Ascent Variational Inference

The classic CAVI algorithm (Jordan et al., 1999; Winn &
Bishop, 2005) tightens variational bounds by updating sin-
gle factors ¢(z;) of the variational posterior via Eq. (5),
where p(z; | z—;, ©) is the complete conditional (Blei et al.,
2017) given all other variables z_; and observations z:

q(zi) o< exp {Eq(._,[logp(z | z—i, 2)]}. (5
The expectation is with respect to the variational distribu-
tions q(z—;) = [[,; q(z;) for all other variables at the
current iteration. For instance, suppose z; is binary and
q(z;) is Bernoulli with logit (natural) parameter 7;:
T k=Bl =aE =1 ©
Eq. (5) then simplifies to matching the variational logit to
the expected logit of the complete conditional:

7; 2 log

(z; =1 z_4,2)

Ty = Eq(z,i) logz (7N

(z; =0 z_i,x)
Note that CAVI updates only have strong guarantees when
run sequentially: all dependent variational parameters in
q(z—;) must be held fixed when ¢(z;) is updated. This con-
dition is generally required for CAVI updates to monotoni-
cally increase the ELBO and converge to a (local) maximum.
For large or complex models with many dependent latent
variables, CAVI iterations may thus be relatively slow.

Another limitation of CAVI is that while it provides a uni-
form way to optimize the ELBO, it is not computationally
tractable for many models with high-degree variable rela-
tionships. In particular, for non-conjugate conditionals like
those in Egs. (1,2,3), computing the expectations in Eq. (7)
requires enumerating the exponentially many joint configu-
rations of variables in the Markov blanket of z;.

Such expectations may sometimes be avoided by intro-
ducing auxiliary variables into the probabilistic model via
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data augmentation tricks (Albert & Chib, 1993; Polson
et al., 2013), or directly modifying the variational objec-
tive (Jaakkola & Jordan, 1999; §ingliar & Hauskrecht, 2006).
While these approaches lead to tractable CAVI updates, the
resulting bounds are looser than Eq. (4), and often require
complex derivations specialized to narrow model families.

Ye et al. (2020) recently applied a stochastic extension of
CAVI, which we refer to as SCAVI, to NMR spectroscopy.
The SCAVI method can be applied to more general mod-
els, and simply approximates the expectation in Eq. (5) via
Monte Carlo sampling from ¢(z_;). While simple and intu-
itive, the theory supporting SCAVI is weak: Ye et al. (2020)
show convergence only in the impractical limit where the
number of Monte Carlo samples per iteration approaches
infinity, and only when variables are updated sequentially.

3.2. Gradient-based Variational Inference

Variational bounds may also be optimized via stochastic gra-
dient ascent. REINFORCE optimizes Eq. (4) using unbiased
stochastic gradients computed via Monte Carlo sampling
from g(z). This method is derived by rewriting the ELBO’s
gradient as an expectation of ¢(z) that depends on the gra-
dient of log ¢(z), so REINFORCE is also known as the
score-function estimator (Zhang et al., 2018).

For simplicity, we describe how REINFORCE is applied
to binary variables z;. We parameterize ¢(z;) using natural
parameters 7; (6) to avoid optimization constraints. RE-
INFORCE computes an unbiased estimate of the ELBO’s

gradient with respect to 7; using M samples zi(m) ~q(z):

oL 1 i 0log q(z;)

8Ti NM aTi

®)

z,gm)

(logp(z™ | 277, 2) ~loga(#™)),
where p(z; | z—;,x) is the complete conditional, and the
score-function can be written as

810232(21) _ 0(_7_1_)25 . (—O’(Ti))lizi. )
An important advantage of Eq. (8), as well as REINFORCE
gradients with respect to all other distributions, is that it
only requires model log-densities log p(z,x) to be evalu-
ated at particular points. REINFORCE is thus a black box
variational inference (BBVI) method that may be applied
to different probabilistic models without specialized deriva-
tions (Ranganath et al., 2014). Unlike ADVI (Kucukelbir
et al., 2017) and some other VI algorithms, it does not re-
quire the model log-probability to be differentiable, and may
thus be applied to discrete variables which cannot be exactly
reparameterized for unbiased gradient estimation (Kingma
& Welling, 2014; Rezende et al., 2014). Note that the Stan
PPL (Carpenter et al., 2017), which integrates ADVI, inflex-
ibly prohibits discrete latent variables.

While broadly applicable, REINFORCE has notoriously
slow convergence because its gradient estimates have high
variance. The update of Eq. (8) already improves on the
most basic REINFORCE implementation by ignoring fac-
tors in the joint log-probability that do not depend on z;.
This modification is equivalent to exactly marginalizing,
or “Rao-Blackwellizing” (Ranganath et al., 2014), condi-
tionally independent variables that are outside the Markov
blanket of z;. Pyro model specifications allow this simple
form of “Rao-Blackwellization” to be exploited by all infer-
ence algorithms we compare, including REINFORCE. We
then develop more sophisticated marginalized estimators
that dramatically reduce gradient variance.

One can also introduce control variates, which preserve
target expectations but approximately cancel noise, into
REINFORCE gradient estimators to further reduce variance.
Wingate & Weber (2013), Ranganath et al. (2014), and
Ritchie et al. (2016) set the control variate to be the zero-
mean score function scaled by a carefully-chosen constant
called the baseline (Greensmith et al., 2004). More complex
control variates include (Paisley et al., 2012; Tucker et al.,
2017; Grathwohl et al., 2018).

Using the Gumbel-Max trick (Yellott Jr, 1977; Papandreou
& Yuille, 2011), Jang et al. (2017) and Maddison et al.
(2017) propose continuous relaxations of discrete (CON-
CRETE) variables. For a surrogate ELBO that replaces
discrete distributions with continuous CONCRETE relax-
ations, gradients may then be computed by automatic dif-
ferentiation. For models where fractional approximations
of discrete variables induce valid likelihoods, this approach
often leads to low-variance gradient estimates. However, the
gradients are biased with respect to the non-relaxed ELBO
of the true discrete model, and good performance requires
careful tuning of temperature hyperparameters.

4. Marginalized Stochastic Natural Gradients

We now develop a widely-applicable variational method that
overcomes weaknesses of prior work summarized in Sec. 3.
We first adapt natural gradients to develop a REINFORCE-
like estimator that leverages the local curvature of the ELBO.
We then provably reduce estimator variance, and acceler-
ate convergence, by marginalizing discrete latent variable
z; when estimating 9L/07;. Unlike SCAVI, our MSNG
method allows variational parameters to be updated in paral-
lel, and has convergence guarantees even when finite sample
sets are used to approximate expectations.

4.1. Stochastic Natural Gradients

The natural gradient adjusts the direction of the traditional
gradient by accounting for the information geometry of its
parameter space, and leads to faster convergence in maxi-
mum likelihood estimation problems (Amari, 1998). We use
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stochastic natural gradients (SNG) to optimize the ELBO
by multiplying the standard REINFORCE gradient with the
inverse Fisher information matrix (Amari, 1982; Kullback
& Leibler, 1951) of the variational distribution ¢(z). For
naive mean-field approximations, the Fisher information
matrix is block-diagonal because the variational parameters
associated with different variables are uncorrelated.

We first consider binary hidden variables z;. The Fisher
information matrix F'(7;) of a Bernoulli distributon ¢(z;),
with natural parameter 7; defined as in Eq. (6), is
F(7i) = Eq(e) [(Vr, log 4(2:)) (Vr, log q(2:)) ]
=o(r)o(—7)- (10)
By introducing the mean parameter j;, we compute the
regular ELBO gradient with respect to 7; via the chain rule:

oL oL ou oL dlog q(z)
= h =E —. (11
or; Ou; OT; » Where O a(=) [ O (b

Opi

(logp(zi | z—i,x) — log Q(Zi))]7 o,

=o(r)o(—7).

When we compute the natural gradient, the Jacobian ma-
trix g’;? in Eq. (11) cancels with the inverse of the Fisher
information matrix F(7;) of Eq. (10). Then using a
REINFORCE-like unbiased estimate for the gradient ng,;’

our SNG ascent update for 7; becomes

oL oL
T?SW:T7;+OéF_1(Ti)87n ZTH-aaTM (12)
o ogp(e™ | 1 x) — log (™)
RTit T (m) N _ (1 _ (my
me1 % o(1i) = (1 =2 )o(—m)
Here zgm) ~ q(z) and Z(_’:‘) ~ q(z_;) are M samples from

the variational posterior, and « is the learning rate.

Stochastic natural gradient updates are guaranteed to con-
verge to a (local) optimum of the ELBO, like REINFORCE
and related stochastic gradient methods, because the inverse
Fisher information matrix pre-multiplying the noisy gradi-
ent is positive definite (Bottou, 1998). Hoffman et al. (2013)
also use natural gradients for variational inference, but con-
sider a fundamentally different source of randomness. Our
SNG method uses samples from the variational distribution
to approximate intractable expectations for high-degree or
non-conjugate models. Hoffman et al. (2013) instead con-
sider conditionally conjugate models where CAVI updates
have simple closed forms, but sample mini-batches of data
to allow efficient learning from big datasets.

4.2. Variance Reduction and Connections to CAVI

Stochastic gradient descent can achieve the minimax op-
timal convergence rate for both convex and non-convex
problems (Nemirovsky & Yudin, 1983; Ghadimi & Lan,
2012; Rakhlin et al., 2012; Ghadimi & Lan, 2013; Singer
& Vondrak, 2015; Arjevani et al., 2019; Drori & Shamir,
2020). One of the most common assumptions made in these

theoretical studies is that the gradient estimator g(z, 7) of
function £(7) is unbiased and has bounded variance:

E.[g(z,7)] = VL(7), (13)
E.[lg(z,7) — VL(T)|I”] < 6%, (14)

where Eq. (14) bounds the sum of variance across all the
gradient dimensions. Various results then show that smaller
0 values lead to guarantees of faster convergence rates.

We thus improve SNG by reducing the variance of the gra-
dient estimator: when estimating the gradient for varia-
tional parameter 7;, we analytically marginalize the corre-
sponding discrete variable z;. Via the Rao-Blackwell Theo-
rem (Casella & Robert, 1996), this marginalization provably
reduces the sampling variance of gradient estimation.

Again focusing on binary latent variables, we explicitly
marginalize out z; from the partial derivative in Eq. (11):

oL o [M(I(m(logp(mzZ—,x)—logq(zz'))

67/,41' = Bq(2) alul
= % ’ Eq(z—i) [logp(zz =1 | 2'77;,.’[') — 10gu2]+
L —
5 Bageg [logp(si = 0] 24, 2) —log(1 = pu)]

<Z1|Z—l‘>} 7 (13

p
=By [log p(zi =0z 2)
Given this identity, our marginalized stochastic natural gra-
dient (MSNG) variational update becomes:
oL oL

=l ) = b a e

i =1] 2,
=T+ a<]Eq(z_¢) |:10g p(Z|Z$):| — Ti)

p(zi =0 | 2_7;,37)

p(zi=1]2_4,2)
p(zi =01 z_4,x)

— (m)
el K2 LN (1-a)m. (17)
M= p(s = 0] 2,0
Eq. (16) intuitively updates natural parameters via an aver-
age, with weights determined by the learning rate «, of the
previous 7; and the CAVI update (7). Standard CAVI must
compute expectations exactly to ensure convergence, which
may not be possible for models with many dependent contin-
uous or discrete variables. In contrast, even with finite sam-
ples, the MSNG update of Eq. (17) gives unbiased estimates
of stochastic natural gradients. Our gradient-based optimiza-
tion perspective also justifies parallel variational parameter
updates; while this may cause CAVI to diverge, MSNG
is convergent with appropriate learning rates . Thus like
REINFORCE, MSNG updates all parameters in parallel
and only requires pointwise evaluation of log-probabilities,
enabling black-box variational inference.

Fig. 2 illustrates the advantages of MSNG over REIN-
FORCE on a toy noisy-OR model. Based on the contour

} +(1—-a)r (16)
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Figure 2. (a): Graphical illustration of a toy noisy-OR model with
two latent variables z and one observation x = 1. (b): Contour
plot of the model’s ELBO as a function of 1 and p2. The yellow
star indicates the global maximum. Although the likelihood is
symmetric with respect to z; and 22, the prior of z; is higher, so
to explain x = 1, the optimal u7 ~ 0.99 and p5 similar to its
prior. (c): The probability of ELBO increase after a REINFORCE
gradient update of Eq. (8). (d): The probability of ELBO increase
after a MSNG update of Eq. (17). (e): ELBO trace plot of different
methods, with initial ;i = 0.5, u2 = 0.9. In (c-e), the sampling
budget M = 2, and the learning rate o = 0.5 in (c) and (d).

plot of the ELBO in Fig. 2(b), this is a simple optimization
problem with a global maximum indicated by the yellow star.
However, due to its high variance, the noisy REINFORCE
gradient is more likely to decrease the ELBO than increase
it at every point in the blue region of Fig. 2(c). In contrast,
the variance of MSNG in Fig. 2(d) is much smaller, and the
promising red area around the global maximum makes it
more likely to “attract” variational parameters towards the
global optimum. The ELBO trace plot in Fig. 2(e) verifies
this, where MSNG (orange) converges much faster than RE-
INFORCE even with a well-tuned learning rate (red). We
can see that many REINFORCE iterations with relatively
high ELBO values actually decrease the ELBO, as predicted
by the blue region around the optimum in Fig. 2(c). Notice
that we adversarially pick our initialization from the blue
region in Fig. 2(d), so the ELBOs of MSNG (and other

1 import torch
2 from pyro import poutine

w

4 class MSNG:

5 “ee

6 def step(self, *args, *+kwargs):

7 log_p = {}

8 for group in self.variational params:

9 log_p[group] = torch.zeros_like(self.variational params[group])

10

11 for s in range(self.num samples):

12 # Sample z from the variational distribution

13 guide_trace = poutine.trace(self.guide).get_trace(*args, **kwargs)
14

15 # Iterate over each variable (each group is a tensor,

16 # so variational params[group][idx] is the actual individual variable)
17 for group in self.variational params:

18 for idx in self. get_indices(group):

19 # Remember actual sampled value of z_i

20 k0 = 1 * guide_trace.nodes[group]['value'][idx]

21

22 for k in range(self. get K(group)):

23 # Condition z_i =

24 guide_trace. nodes[group][ value'][idx] = torch.tensor (k)
25 model = poutine.replay(self.model, trace=guide_trace)

26 model_trace = poutine.trace(model).get_trace(*args, **kwargs)
27

28 # Compute log p(z_i =k, z_3, x)

29 model_log_p = self. compute_log_p(model_trace, group, idx)
30 log_pl[group][idx][k] += model_log_p

31

32 # Change value of z i back to k0

33 guide_trace.nodes[group]['value'][idx] = kO

34

35 for group in log_p:

36 # Compute log odds ratio

37 tau = log_p[group] / self.num samples

38 tau K = tau.index_select(-1, torch.tensor(self._get_K(group) - 1))
39 tau -= tau K

40

41 # Natural gradient ascent update

42 tau0 = self.variational_ params[group]

43 self.variational_params[group] = (1 - lr) * tau0 + lr * tau

Figure 3. Pyro implementation of MSNG. This inference code
works for any discrete-variable model specified by valid Pyro
model and guide functions. See the supplement for further details.

algorithms) initially drop. But after only a few iterations,
MSNG robustly increases the ELBO again. Fig. 2(e) also
demonstrates that SCAVI (blue) lacks convergence guar-
antees: even after achieving high ELBO values, “unlucky”
samples may regularly cause divergence.

4.3. Generalization to Categorical Variables

Our MSNG algorithm may be easily extended to general
categorical latent variables z; taking one of K discrete
states. The natural parameter of ¢(z;) now becomes a vec-

tor 7; = [log i log B log ”;KT*I] of length
K — 1. The MSNG update for each entry 7, is
(m)
p(z; =k z_ ,x
e = oz— Z 22 ) + (1 — o).

p(zi = K | 2m i , x)
A detailed derwatlon of this update is in the supplement,
and Fig. 3 shows our general-purpose Pyro implementation.

Our categorical MSNG update again has connections to
exact CAVI updates (5), and is equivalent to the binary
MSNG update (17) when K = 2. Sato (2001) and Hoffman
et al. (2013) discuss connections between natural gradients
and CAVI for continuous, conditionally conjugate models.

To enable black-box application of our MSNG variational
inference method, our experiments focus on models where
all latent variables are discrete. While the SNG estimator is
easily generalized to continuous latent variables, methods
for (approximate) black-box marginalization of continuous
variables is left as a promising area for future research.
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5. Experiments

We compare our proposed MSNG algorithm with seven
other variational methods: the non-marginalized stochastic
natural gradients (SNG) of Sec. 4.1, standard score-function
gradients (REINFORCE), their improved versions with con-
trol variates (SNG+CV and REINFORCE+CV), the heuris-
tic SCAVI method that approximates CAVI expectations in
Eq. (5) with Monte Carlo samples, the CONCRETE relax-
ation based on Gumbel-Max sampling, and model-specific
auxiliary-variable methods (AUX, for binary models only).
AUX methods are taken from prior work for noisy-OR (Ji
et al., 2019) and sigmoid belief networks (Gan et al., 2015),
and derived by us (extending Albert & Chib (1993)) for the
binary relational model’s probit likelihood.

We integrate the black-box methods MSNG, SNG(+CV),
and SCAVI into Pyro to make fair comparisons with the
already-supported REINFORCE(+CV) and CONCRETE.
We use Pyro’s standard decaying average baseline” to weight
control variates, with the default decay rate of 0.9. MSNG
is also compatible with control variates, but it does not need
a baseline CV because the latent variable associated with
the score function in each dimension has been marginalized.
More experimental details are provided in the supplement.

5.1. Models and Datasets

Noisy-OR topic graphs for text data. Following Ji et al.
(2019), we infer topic activations in a noisy-OR topic model
of documents from the “tiny” version of the 20 newsgroups
dataset collected by Sam Roweis. We use the same model
architecture, which has 44 latent topic nodes within two
layers, and 100 observed token nodes. The edge weights w
are learned on the training set through the full-model varia-
tional training method, with auxiliary bounds for noisy-OR
likelihoods, described in the original paper. Their values are
then fixed as we compare the different variational inference
algorithms on 100 randomly subsampled test documents.

Sigmoid belief networks for image data. On the binarized
MNIST training dataset, we learn the edge weights w of a
three-layer fully-connected sigmoid belief network using the
public data-augmented variational training code by Gan et al.
(2015). The top two layers each have 100 hidden nodes, and
the observed bottom layer corresponds to the 28 x 28 pixels.
Similar to noisy-OR topic model experiments, we fix the
edge weight when testing the different inference algorithms
on 100 images randomly selected from the MNIST test set.
Fig. 1 shows Pyro specifications of our belief networks.

Relational models for network data. We apply the two re-
lational models described in Sec. 2.2 to two network datasets
used by Miller et al. (2009). The first dataset describes

2https://pyro.ai/examples/svi_part_iii.html#
Decaying- Average-Baseline

various relations between 14 countries between 1950 and
1965 (Rummel, 1976). We choose the “conference” rela-
tion, which consists of symmetric connections indicating if
two countries co-participate in any international conference.
The second dataset is about NeurIPS coauthorship (Glober-
son et al., 2007), where a link indicates two individuals
being coauthors of a paper in one of the first 17 NeurIPS
conferences. Following Miller et al. (2009) and Palla et al.
(2012), we model the 234 most connected authors. Model
parameters and Pyro specifications for these two models are
provided in the supplement, as well as an AUX algorithm
derived by us for the probit latent-feature model.

Annotation models for crowd-sourcing data. We test the
annotation model of Passonneau & Carpenter (2014) on two
publicly available Amazon Mechanical Turk datasets (Snow
et al., 2008). The first dataset, on Recognizing Textual En-
tailment (RTE), has 800 questions and 164 annotators. For
each question, the annotator is presented with two sentences
to make a binary choice (X = 2) of whether the second
hypothesis sentence can be inferred from the first. The sec-
ond dataset, on Word Sense Disambiguation (WSD), has
177 questions and 34 annotators. The annotator is asked to
choose the most appropriate sense of a particular word in a
sentence out of K = 3 possible options.

For the annotation model, we use the conjugacy of Dirichlet
priors to analytically marginalize the unknown rater accu-
racy distributions ;. This leads to a “collapsed” variational
bound that depends only on the posteriors ¢(z;) for the
true category of each question (item). Collapsing induces
high-order dependencies that make classic CAVI updates
intractable, but we show that our black-box MSNG updates
are effective, while being simpler than previous collapsed
variational inference algorithms (Teh et al., 2007). See the
supplement for details about model hyperparameters.

5.2. Comparison of Variational Inference Results

Figs. 4 and 5 show the median ELBOs of different methods
across repeated runs, where the randomness is caused by
Monte Carlo sampling (for stochastic methods) and the or-
der of parameter updates (for sequential methods). Like Gan
et al. (2015), the ELBOs are evaluated via Monte Carlo sam-
pling. The algorithms compared with MSNG can be split
into four groups: unbiased gradient-based methods, the
heuristic SCAVI method, model-dependent AUX methods,
and the biased CONCRETE relaxation using continuous
variables. For clarity, we focus on one at a time below.

MSNG converges much faster, and requires fewer sam-
ples, than competing unbiased BBVI methods. The con-
vergence speed of a stochastic gradient method is influ-
enced by the learning rate and the sampling budget. We
find that MSNG is less sensitive to learning rates, and for
all but the probit relational model, we choose a fixed rate
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Figure 4. Improvement of ELBO (vertical axis) versus runtime (top row) and iteration (bottom row) on various models with binary

variables. Lines show the median,

while shaded regions show the 25th and 75th percentiles, across 10 repeated runs.
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Figure 5. Improvement of ELBO (vertical axis) versus runtime on various models with categorical variables (performance versus iterations
is in the supplement). Lines show the median, while shaded regions show the 25th and 75th percentiles, across 10 repeated runs.

via grid search. SNG and REINFORCE (with or without
control variates) and CONCRETE show greater sensitiv-
ity, so as suggested by Ranganath et al. (2014) we use
AdaGrad (Duchi et al., 2011) to adapt learning rates for
SNG(+CV), REINFORCE(+CV), CONCRETE, and MSNG
(probit only). For each method, we evaluate sample sizes
of M € {1,10, 100}, and then report results for the variant
that converges with lowest runtime. This leads to a sample
size of M = 1 for MSNG:; 100 for SNG and REINFORCE;
and 10 (noisy-OR, sigmoid, Countries probit) or 100 (all
else) for SNG+CV, REINFORCE+CYV, and CONCRETE.

In Figs. 4 and 5, all methods share the same initialization,
and we run them until convergence or for a maximum of
1,000 iterations. Across all eight model-dataset combina-
tions, a general trend of optimization speed is MSNG >
SNG+CV > REINFORCE+CV > SNG > REINFORCE.
Note that plots use a logarithmic horizontal scale, and
MSNG often converges tens or even hundreds of times faster
than other stochastic gradient methods, in terms of both
clock time and number of iterations. Marginalization and
natural gradients are both important for peak performance.

In simple problems such as the deep belief networks and
relational models of the small countries data, SNG con-
verges faster than REINFORCE, showing the benefit of
natural gradients. In harder cases like the annotation models

and relational models of the larger NeurIPS data, neither
is able to effectively improve the ELBO with a budget of
M = 100 samples. Meanwhile, methods with control vari-
ate (SNG+CV and REINFORCE+CYV) are able to make
faster improvement to the ELBO, even with 10 times fewer
samples. Finally, MSNG always converges much faster than
the other methods, even with just 1 sample per iteration.

Fig. 6 visualizes MNIST digit completion results using
the sigmoid belief network. REINFORCE and REIN-
FORCE+CYV are clearly worse than MSNG, with even 10
or 100 times more samples. This performance is consistent
with ELBO values of different methods in Fig 4(b).

MSNG is more stable than SCAVI. With only one sample,
the heuristic SCAVI method is also able to quickly improve
the ELBO in the first few iterations. But its ELBO values in
the final iterations are usually worse than MSNG, as shown
in Fig. 4 and 5, as well as tables in the supplement that report
detailed results for each dataset. Unlike MSNG, SCAVI is
not guaranteed to converge, as shown in the examples in
Fig. 7. We also observe that while SCAVI may increase
the ELBO faster in the first few iterations, it often runs
slower than MSNG when measured by the actual clock
time. This is because SCAVI has to sequentially update
variational parameters, but MSNG is able to compute the
gradient updates for all variables in parallel.
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FHABHLOEOANAA

(a) Original images

HENREGEORR

(b) Digit completion: bottom parts of the images are missing

EOBHOGBEEAA

(c) MSNG (1 sample)

EORBOGREEAA

(d) REINFORCE (100 samples)

EBRRECEHERA

(e) REINFORCE + CV (10 samples)

FHRHBHOGHEBA

(f) SCAVI (1 sample)

EHAEREHOGHAHKBEA

(g) CONCRETE (10 samples)

Figure 6. Digit completion results on binarized MNIST images.
We use upper halves of the images as observations to infer ¢(z),
and fill in the lower halves by averaging 100 samples of x drawn
from ¢(z)p(z|z). The number of samples used during inference
(shown in the parentheses after each method) is matched to the
settings for Fig. 4(b). For all methods, the number of inference
iterations is 50, and the initial value for each latent node is 0.5.

MSNG optimizes tighter bounds and is more robust to
initialization than AUX. In Fig. 4(b-d), model-dependent
AUX methods all converge to lower ELBO values than
MSNG. This is likely because these methods all optimize
looser variational bounds than the original ELBO.

Another possible reason is that by introducing more param-
eters into the objective, the optimization surface becomes
more complicated, and algorithms become more likely to
be trapped in local optima during sequential updates. Ran-
domizing update order does not avoid this issue, as shown
by the quantiles of AUX performance.

In an additional experiment reported in the supplement,
as suggested by Gan et al. (2015), we use the marginal
prior (as approximated by Monte Carlo) of each variable
in the sigmoid BN to initialize ¢(z). This engineering does
make AUX converge to better ELBOs than the uniform
initialization of Fig. 4(b), but MSNG is more robust and
converges to superior ELBOs for both initializations.

Finally, compared to hand-crafted auxiliary-variable algo-
rithms, the black-box property of MSNG allows for easy
integration with PPL for convenient model selection. Users
can easily and quickly fit different models on the same
dataset, and pick the best performing candidate with the
highest ELBO values. Take the results of the two relational

MSNG —— REINFORCE —— REINFORCE + CV —— SCAVI
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Time Time
MNIST (sigmoid) Countries (probit)

Figure 7. ELBO trace plots of MSNG and other black-box varia-
tional algorithms. Unlike the curves in Fig. 4 that are summarized
across data and repeated runs, the ELBO here is just for one
MNIST image (left) and a single run of the probit relation model
(right), in order to reveal the non-convergence of SCAVI.

models in Fig. 4(c-d) and Fig. 5(c-d) as an example. While
the simple Countries data does not show a clear preference
between the two models, the more complicated NeurIPS
author data strongly favors the more powerful probit latent-
feature model over the stochastic block model.

Biased CONCRETE updates achieve inferior ELBOs.
CONCRETE updates more rapidly increase the ELBO than
REINFORCE(+CYV) in the first few iterations, but much
of this advantage is lost when considering computation
time. Unlike all other methods we consider, CONCRETE
must (automatically) differentiate the model log-likelihood,
which has time and memory overhead. CONCRETE is com-
parable to MSNG and SCAVI for the annotation model; we
hypothesize this is because the likelihood depends only on
histograms of many discrete variables, so continuous relax-
ations are more accurate. But for other models, perhaps due
to its biased ELBO surrogate and sensitivity to the tempera-
ture hyperparameter, CONCRETE results are inconsistent
and often dramatically inferior to MSNG. Supplement Ta-
bles D.1 and D.2 contain more detailed comparisons.

6. Discussion

We have developed marginalized stochastic natural gradients
(MSNG) for black-box variational inference in probabilistic
models with discrete latent variables. The MSNG method
has better theoretical guarantees, and converges much faster,
than REINFORCE. Unlike model-specific auxiliary meth-
ods, MSNG directly optimizes a tighter likelihood bound,
and is more robust to initialization in spite of being simpler
to derive and implement. While our experiments focused
on models with only discrete variables, SNG updates are
easily extended to models that mix discrete and continuous
variables, and we are exploring applications to other model
families. Our Pyro-integrated MSNG code provides a com-
pelling method for scalable black-box variational inference.

Acknowledgements

This research supported in part by NSF CAREER Award No. IIS-
1758028, NSF RI Award No. I1IS-1816365, and a Facebook Proba-
bility and Programming research award. We thank Prof. Alexander
Ihler for insightful suggestions in early stages of this work.



Marginalized Stochastic Natural Gradients for Black-Box Variational Inference

References

Albert, J. H. and Chib, S. Bayesian analysis of binary and
polychotomous response data. Journal of the American
Statistical Association, 88(422):669-679, 1993.

Amari, S.-I. Differential geometry of curved exponential
families-curvatures and information loss. The Annals of
Statistics, pp. 357-385, 1982.

Amari, S.-I. Natural gradient works efficiently in learning.
Neural computation, 10(2):251-276, 1998.

Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J.,
Srebro, N., and Woodworth, B. Lower bounds for
non-convex stochastic optimization. arXiv preprint
arXiv:1912.02365, 2019.

Bingham, E., Chen, J. P, Jankowiak, M., Obermeyer, F.,
Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P., Hors-
fall, P., and Goodman, N. D. Pyro: Deep universal prob-
abilistic programming. Journal of Machine Learning
Research, 20(1):973-978, 2019.

Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent Dirichlet
allocation. Journal of Machine Learning Research, 3:
993-1022, 2003.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-
tional inference: A review for statisticians. Journal of
the American Statistical Association, 112(518):859-877,
2017.

Bottou, L. Online learning and stochastic approximations.
On-line learning in neural networks, 17(9):142, 1998.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D.,
Goodrich, B., Betancourt, M., Brubaker, M. A., Guo,
J., Li, P., and Riddell, A. Stan: A probabilistic program-
ming language. Journal of Statistical Software, T6(1):
1-32, 2017.

Casella, G. and Robert, C. P. Rao-Blackwellisation of sam-
pling schemes. Biometrika, 83(1):81-94, 1996.

Cusumano-Towner, M. F.,, Saad, F. A., Lew, A. K., and
Mansinghka, V. K. Gen: A general-purpose probabilis-
tic programming system with programmable inference.
In Conference on Programming Language Design and
Implementation, 2019.

Dong, Z., Mnih, A., and Tucker, G. Disarm: An antithetic
gradient estimator for binary latent variables. In Advances
in Neural Information Processing Systems, 2020.

Drori, Y. and Shamir, O. The complexity of finding station-
ary points with stochastic gradient descent. In Interna-
tional Conference on Machine Learning, 2020.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

Gan, Z., Henao, R., Carlson, D., and Carin, L. Learning
deep sigmoid belief networks with data augmentation. In
Artificial Intelligence and Statistics, 2015.

Ghadimi, S. and Lan, G. Optimal stochastic approxima-
tion algorithms for strongly convex stochastic composite
optimization I: A generic algorithmic framework. SIAM
Journal on Optimization, 22(4):1469-1492, 2012.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341-2368, 2013.

Globerson, A., Chechik, G., Pereira, F., and Tishby, N.
Euclidean embedding of co-occurrence data. Journal of
Machine Learning Research, 8:2265-2295, 2007.

Goodman, N. D. and Stuhlmiiller, A. The Design and Im-
plementation of Probabilistic Programming Languages.
http://dippl.org, 2014.

Gopalan, P,, Hao, W., Blei, D. M., and Storey, J. D. Scaling
probabilistic models of genetic variation to millions of
humans. Nature genetics, 48(12):1587, 2016.

Gopalan, P. K. and Blei, D. M. Efficient discovery of over-
lapping communities in massive networks. Proceedings
of the National Academy of Sciences, 110(36):14534—
14539, 2013.

Grathwohl, W., Choi, D., Wu, Y., Roeder, G., and Duve-
naud, D. Backpropagation through the void: Optimizing
control variates for black-box gradient estimation. In

International Conference on Learning Representations,
2018.

Greensmith, E., Bartlett, P. L., and Baxter, J. Variance
reduction techniques for gradient estimates in reinforce-

ment learning. Journal of Machine Learning Research, 5:
1471-1530, 2004.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
Stochastic variational inference. Journal of Machine
Learning Research, 14(1):1303-1347, 2013.

Holland, P. W., Laskey, K. B., and Leinhardt, S. Stochastic
blockmodels: First steps. Social networks, 5(2):109-137,
1983.

Horvitz, E. J., Breese, J. S., and Henrion, M. Decision theory
in expert systems and artificial intelligence. International
Journal of Approximate Reasoning, 2(3):247-302, 1988.


http://dippl.org

Marginalized Stochastic Natural Gradients for Black-Box Variational Inference

Jaakkola, T. S. and Jordan, M. 1. Variational probabilistic
inference and the QMR-DT network. Journal of Artificial
Intelligence Research, 10:291-322, 1999.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with gumbel-softmax. In International Conference
on Learning Representations, 2017.

Ji, G., Cheng, D., Ning, H., Yuan, C., Zhou, H., Xiong,
L., and Sudderth, E. B. Variational training for large-
scale noisy-OR Bayesian networks. In Conference on
Uncertainty in Artificial Intelligence, 2019.

Jordan, M. 1., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. An introduction to variational methods for graphical
models. Machine Learning, 37(2):183-233, 1999.

Kakade, S. M. A natural policy gradient. Advances in
Neural Information Processing Systems, 2001.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. In International Conference on Learning Repre-
sentations, 2014.

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and
Blei, D. M. Automatic differentiation variational infer-
ence. Journal of Machine Learning Research, 18(1):
430-474, 2017.

Kullback, S. and Leibler, R. A. On information and suf-
ficiency. The annals of mathematical statistics, 22(1):
79-86, 1951.

Liu, J., Ren, X., Shang, J., Cassidy, T., Voss, C. R., and Han,
J. Representing documents via latent keyphrase inference.
In International Conference on World Wide Web, 2016.

Liu, R., Regier, J., Tripuraneni, N., Jordan, M. 1., and
McAuliffe, J. Rao-Blackwellized stochastic gradients
for discrete distributions. In International Conference on
Machine Learning, 2019.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. In International Conference on Learning Rep-
resentations, 2017.

Miller, K., Jordan, M. L., and Griffiths, T. L. Nonparametric
latent feature models for link prediction. In Advances in
Neural Information Processing Systems, 2009.

Murphy, K. P. Machine Learning: A Probabilistic Perspec-
tive. MIT press, 2012.

Neal, R. M. Connectionist learning of belief networks.
Artificial Intelligence, 56(1):71-113, 1992.

Nemirovsky, A. S. and Yudin, D. B. Problem complexity and
method efficiency in optimization. Society for Industrial
and Applied Mathematics, 1983.

Paisley, J. W., Blei, D. M., and Jordan, M. 1. Variational
Bayesian inference with stochastic search. In Interna-
tional Conference on Machine Learning, 2012.

Palla, K., Knowles, D. A., and Ghahramani, Z. An infinite
latent attribute model for network data. In International
Conference on Machine Learning, 2012.

Papandreou, G. and Yuille, A. L. Perturb-and-map random
fields: Using discrete optimization to learn and sample
from energy models. In International Conference on
Computer Vision, 2011.

Passonneau, R. J. and Carpenter, B. The benefits of a model
of annotation. Transactions of the Association for Com-
putational Linguistics, 2:311-326, 2014.

Polson, N. G., Scott, J. G., and Windle, J. Bayesian in-
ference for logistic models using Pélya—Gamma latent
variables. Journal of the American statistical Association,
108(504):1339-1349, 2013.

Rakhlin, A., Shamir, O., and Sridharan, K. Making gradient
descent optimal for strongly convex stochastic optimiza-
tion. In International Conference on Machine Learning,
2012.

Ranganath, R., Gerrish, S., and Blei, D. M. Black box vari-
ational inference. In Artificial Intelligence and Statistics,
2014.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In International Conference on Machine
Learning, 2014.

Ritchie, D., Horsfall, P., and Goodman, N. D. Deep amor-
tized inference for probabilistic programs. arXiv preprint
arXiv:1610.05735, 2016.

Rummel, R. J. Attributes of nations and behavior of na-
tion dyads, 1950-1965. Inter-university Consortium for
Political Research, 1976.

Sato, M.-A. Online model selection based on the variational
Bayes. Neural Computation, 13(7):1649-1681, 2001.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
Conference on Machine Learning, 2015.

Shwe, M. A., Middleton, B., Heckerman, D. E., Hen-
rion, M., Horvitz, E. J., Lehmann, H. P., and Cooper,
G. F. Probabilistic diagnosis using a reformulation of
the INTERNIST-1/QMR knowledge base. Methods of
Information in Medicine, 30(4):241-255, 1991.



Marginalized Stochastic Natural Gradients for Black-Box Variational Inference

Singer, Y. and Vondrak, J. Information-theoretic lower
bounds for convex optimization with erroneous oracles.
In Advances in Neural Information Processing Systems,
2015.

gingliar, T. and Hauskrecht, M. Noisy-OR component analy-
sis and its application to link analysis. Journal of Machine
Learning Research, 7:2189-2213, 2006.

Snow, R., O’connor, B., Jurafsky, D., and Ng, A. Y. Cheap
and fast-but is it good? evaluating non-expert annota-
tions for natural language tasks. In Empirical Methods in
Natural Language Processing, 2008.

Teh, Y. W., Newman, D., and Welling, M. A collapsed vari-
ational Bayesian inference algorithm for latent Dirichlet
allocation. In Advances in Neural Information Processing
Systems, 2007.

Thomas, V., Pedregosa, F., Merriénboer, B., Manzagol, P.-
A., Bengio, Y., and Le Roux, N. On the interplay between
noise and curvature and its effect on optimization and
generalization. In Artificial Intelligence and Statistics,
2020.

Titsias, M. K. and L4zaro-Gredilla, M. Local expectation
gradients for black box variational inference. In Advances
in Neural Information Processing Systems, 2015.

Tran, D., Kucukelbir, A., Dieng, A. B., Rudolph, M., Liang,
D., and Blei, D. M. Edward: A library for probabilis-
tic modeling, inference, and criticism. arXiv preprint
arXiv:1610.09787, 2016.

Tran, D., Hoffman, M. W., Moore, D., Suter, C., Vasudevan,
S., and Radul, A. Simple, distributed, and accelerated
probabilistic programming. In Advances in Neural Infor-
mation Processing Systems, 2018.

Tucker, G., Mnih, A., Maddison, C. J., Lawson, J., and Sohl-
Dickstein, J. Rebar: Low-variance, unbiased gradient
estimates for discrete latent variable models. In Advances
in Neural Information Processing Systems, 2017.

Wainwright, M. J. and Jordan, M. I. Graphical models, ex-
ponential families, and variational inference. Foundations
and Trends in Machine Learning, 1:1-305, 2008.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8(3-4):229-256, 1992.

Wingate, D. and Weber, T. Automated variational in-
ference in probabilistic programming. arXiv preprint
arXiv:1301.1299, 2013.

Winn, J. and Bishop, C. M. Variational message passing.
Journal of Machine Learning Research, 6:661-694, 2005.

Ye, L., Beskos, A., De Iorio, M., and Hao, J. Monte Carlo
co-ordinate ascent variational inference. Statistics and
Computing, pp. 1-19, 2020.

Yellott Jr, J. I. The relationship between Luce’s choice ax-
iom, Thurstone’s theory of comparative judgment, and the
double exponential distribution. Journal of Mathematical
Psychology, 15(2):109-144, 1977.

Yin, M. and Zhou, M. ARM: Augment-REINFORCE-
merge gradient for stochastic binary networks. In Infer-
national Conference on Learning Representations, 2019.

Zhang, C., Biitepage, J., Kjellstrom, H., and Mandt, S. Ad-
vances in variational inference. Pattern Analysis and
Machine Intelligence, 41(8):2008-2026, 2018.



