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A. MSNG Update for Categorical Variables
We generalize our MSNG method to discrete variables with
K > 2 states. We define q(zi = k) , µik, and parame-
terize the variational distribution using natural parameters
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µiK
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Via the chain rule, the gradient of the ELBO L with re-
spect to τi equals ∂L

∂τi
= ∇τiµi · ∂L∂µi

. The Jacobian matrix
∇τiµi of the soft-max transform from natural to moment
parameters is also a (K − 1)× (K − 1) matrix, with entries
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Like the binary case detailed in the main paper,∇τiµi can-
cels the inverse Fisher information when we compute the nat-
ural gradient, so F−1(τi)

∂L
∂τi

= ∂L
∂µi

. Explicitly marginaliz-
ing the K states of zi, this gradient becomes
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= Eq(z)
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We can then use Monte Carlo samples from q(z−i) to ap-
proximate the kth entry of the gradient vector as follows:
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Therefore, the MSNG update of τik for k = 1, . . . ,K − 1

with learning rate α simplifies to:
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B. Auxiliary-variable Variational Algorithms
Here we provide more details about the auxiliary-variable
methods (AUX) used in the three binary-variable models in
the experiment section. With simpler, closed-form coordi-
nate updates than the regular CAVI method, these algorithms
optimize looser, hand-designed variational bounds than the
ELBO. Because they are model dependent, we go through
each of them one by one.

B.1. AUX Algorithm for Noisy-OR Belief Networks

The AUX algorithm we use for the deep noisy-OR belief
networks is by Ji et al. (2019). It leverages the log-concavity
of the noisy-OR function f in Eq. (1) of the main paper.
Following Jaakkola & Jordan (1999), it applies Jensen’s
inequality to f and builds a lower bound to the ELBO by
introducing the auxiliary categorical distribution r defined
for the non-leak parents k ∈ P(i) of each node i:

f
(
w0i +
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k∈P(i)

wkizk
)

(B.3)

≥ f(w0i) +
∑

k∈P(i)
rkizk

[
f(uki)− f(w0i)

]
,

where f(x) , log
(
1− exp(−x)

)
, uki , w0i+ wki

rki
, and r

should satisfy rki ≥ 0,
∑
k∈P(i) rki = 1. Because the lower

bound in Eq. (B.3) is a linear function of parent states zk,
the update equation for the variational distribution q(z) has
a simple closed form. The auxiliary variables r are updated
using the following fixed-point iterations till convergence:

rki ∝ qkrki
[
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wki
rki

f ′(uki)
]
,
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where f ′(x) = exp(−x)
1−exp(−x) is the derivative of f(x). The

variational algorithm interleaves between the updates of q(z)
and r, and is guaranteed to converge to a local maximum of
the auxiliary variational bound.

B.2. AUX Algorithm for Sigmoid Belief Networks

The AUX algorithm we use for the deep sigmoid belief net-
works is developed by Gan et al. (2015). It derives a lower
bound of the ELBO by making use of the Pólya-Gamma
data augmentation trick (Polson et al., 2013), which leads
to a tractable lower bound for the logistic log likelihood

log p(zij | zi+1) = log σ(wTijzi+1 + cj)

≥− log 2 + (zi,j − 0.5)(wTijzi+1 + cj)

− 0.5 · γij · (wTijzi+1 + cj)
2

+ Eq(γij)[log PG(γij | b, 0)− log q(γij)],

because it is only a quadratic function of z. The optimal
variational distribution for each augmented variable γij ∼
PG(b, 0) can be approximately updated via
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(

1,
√

Eq(zi+1)[(w
T
ijzi+1 + cj)2]

)
≈ PG

(
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B.3. AUX Algorithm for Probit Latent-feature Models

The AUX algorithm we build for the probit latent-feature re-
lational model is based on the data augmentation trick by Al-
bert & Chib (1993). The naive mean-field variational distri-
bution for the latent features is q(z) =

∏N
i=1

∏D
d=1 q(zid),

in which N is the number of entities and D is the feature di-
mension. Each dimension zid is a Bernoulli distribution
q(zid) ∼ Bernoulli(qid), with the activation probability
µid , q(zid = 1) as the free parameter.

The standard ELBO L of the model is
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. (B.4)

By using the thresholded Gaussian data augmentation
trick (Albert & Chib, 1993), we introduce an auxiliary vari-
able yij for each pair of entities. Then rows two and three

of Eq. (B.4) would be equivalent to
N∑
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N∑
j>i

log

∫
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in which p(xij | yij) , 1{yij ≥ 0}xij1{yij < 0}1−xij ,
and p(yij | z) , N (yij | w0 +

∑D
d=1 wdzidzjd, 1). The

greater-than-or-equal-to sign comes from applying Jensen’s
inequality to the log function.

Bringing Eq. (B.5) back to Eq. (B.4), we get a lower bound
of the original ELBO. It’s also mathematically equivalent
to the ELBO of a data-augmented model, in which a latent
variable yij with a unit normal prior is added to each pair of
entities. We interleave the updates of q(y) and q(z). Follow-
ing Eq. (5) of the main paper, the optimal coordinate-ascent
variational factor of yij is a truncated normal distribution:

q(yij) (B.6)
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)
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)
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Eq. (B.5) also shows that the data-augmented ELBO is a
quadratic function of z, so the coordinate update for the
latent feature distribution q(z) can be efficiently computed:

µid = Φ
(

log ρ− log(1− ρ) +
∑
j 6=i

µjdwd
(
Eq(yij)[yij ]

− w0 −
1

2
wd −

∑
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weµieµje
))
,

where q(yij) is the truncated normal of Eq. (B.6), and its
mean Eq[yij ] can be computed via the unit normal CDF.

C. Code Explanation
Here we provide a brief explanation of the code in Figs. 1
and 3 from the main paper, focusing on the Pyro syntax.
For inference, Pyro requires users to specify two stochastic
functions: the generative model (simply called model) and
the variational distribution or inference model (commonly
referred to as guide in Pyro). The model and the guide
have to take the same arguments. Lines 13-28 of Fig. 1
illustrate the model specification of a three-layer Bayesian
network. We use pyro.plate to mark the conditional
independence structure (lines 14-17), and pyro.sample
to specify the random variables in the model (lines 19, 23,
27). Each sample or plate site is named. For example, in
lines 18-20, we define N × DH2 independent Bernoulli
random variables called z top. Fig. C.1 implements the
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 1 class BN: 
 2     ... 
 3     def guide(self, data): 
 4         dat_axis = pyro.plate('dat_axis', data.shape[0], dim=0) 
 5         top_axis = pyro.plate('top_axis', self.D_H2, dim=1) 
 6         mid_axis = pyro.plate('mid_axis', self.D_H1, dim=1) 
 7         with dat_axis, top_axis: 
 8             logit_top = self.variational_params['z_top'] 
 9             pyro.sample('z_top', dist.Bernoulli(logits=logit_top)) 
10         with dat_axis, mid_axis: 
11             logit_bottom = self.variational_params['z_bot'] 
12             pyro.sample('z_bot', dist.Bernoulli(logits=logit_bottom)) 

Figure C.1. Mean-field guide for three-layer Bayesian networks.

guide for our Bayesian network example using mean-field
variational distribution where each zi is independent.

Fig. 3 shows the implementation of one optimization step of
MSNG in Pyro. We store the variational parameters to opti-
mize in a dictionary called variational params with
sample site names as keys. poutine.trace executes the
model, and records sampled values from pyro.sample
statements and the corresponding log probabilities in a dic-
tionary data structure. poutine.replay conditions the
model on the previously sampled trace. Concretely, in line
13 we sample z(m) from our variational distribution. These
sampled values can be accessed through the value key
of guide trace.nodes[group]. Since each sample
site is a tensor, we use idx to index into each element in
the tensor to access variable zi (lines 20, 24). For each
possible value k of each variable zi, we fix zi = k and
condition the model on the rest of the sampled z

(m)
−i by

calling poutine.replay in line 25. Finally, we run
poutine.trace on the conditioned model to obtain the
new log probabilities. compute log p in line 29 is im-
plemented to compute these log joint probabilities more
efficiently by leveraging the conditional independence struc-
ture of the model specified using Pyro’s plate notation.

D. Experimental Details
D.1. Deep Noisy-OR and Sigmoid Belief Networks

In the main paper, we uniformly initialize variational distri-
butions as µi = 0.5 for both models. We additionally try
initializing each latent node in the sigmoid belief network
to its marginal prior distribution, approximated using Monte
Carlo sampling (Gan et al., 2015). In the results shown in
Fig. D.2, the final ELBO of AUX improves to −139, better
than the −192 under the uniform initialization. It is still far
worse than MSNG, which is much more robust to differ-
ent initializations (−109 under both initial value settings).
Detailed ELBO values of different methods are recorded in
Tables D.1 and D.2. They show that MSNG outperforms
other approaches on almost all datasets and models.

D.2. Categorical and Binary Relational Models

For the categorical stochastic block model of relational data,
we set K = 5 for both the countries and NeurIPS datasets.

MSNG
SNG

SNG + CV
REINFORCE

REINFORCE + CV
SCAVI

CONCRETE
AUX

Figure D.2. Improvement of ELBO over runtime (left) and iter-
ation (right) of the sigmoid belief network on MNIST dataset,
using marginal prior initializations. AUX converges to higher lo-
cal optimum than Fig. 4(b) of the main the paper with uniform
initializations. MSNG proves to be more robust to initial values.

 1 class SBM: 
 2     def __init__(self, hyperparams): 
 3         self.K, self.W, self.theta = hyperparams 
 4  
 5     def model(self, links): 
 6         row_idx, col_idx = tuple(torch.triu_indices(len(links), len(links), 1)) 
 7         obs = links[row_idx, col_idx] 
 8          
 9         entity_axis = pyro.plate('entity_axis', len(links)) 
10         link_axis = pyro.plate('link_axis', len(obs)) 
11         with entity_axis: 
12             z = pyro.sample('z', dist.Categorical(self.theta)) 
13             p = self.W[z[row_idx], z[col_idx]] 
14         with link_axis: 
15             pyro.sample('x', dist.Bernoulli(p), obs=obs) 

 1 class LFRM: 
 2     def __init__(self, hyperparams): 
 3         self.D, self.W, self.W0, self.z_prior = hyperparams 
 4  
 5     def squash_fun(self, x): 
 6         return dist.Normal(loc=0.0, scale=1.0).cdf(x) 
 7  
 8     def model(self, links): 
 9         triu_idx = tuple(torch.triu_indices(len(links), len(links), 1)) 
10         obs = links[triu_idx] 
11          
12         entity_axis = pyro.plate('entity_axis', len(links), dim=0) 
13         D_axis = pyro.plate('D_axis', self.D, dim=1) 
14         link_axis = pyro.plate('link_axis', len(obs)) 
15         with entity_axis, D_axis: 
16             features = pyro.sample('features',  
17                                    dist.Bernoulli(self.z_prior)) 
18             wz = self.W0 + torch.einsum('id,jd->ij', 
19                                         self.W * features, features)[triu_idx] 
20         with link_axis: 
21             pyro.sample('links', dist.Bernoulli(self.squash_fun(wz)), 
22                         obs=obs) 

Figure D.3. Pyro code for stochastic block models (top) and probit
latent-feature relational models (bottom).

We assign a high interaction probability within the same
community, and a low probability between different com-
munities: wkk = 0.9, and wk` = 0.05 if k 6= l. We assign
uniform probabilities for prior community memberships,
πk = 1

K , and initialize the variational distributions uni-
formly as µik = 1

K .

For the binary probit latent-feature relational model, we
set D = 4 for the countries dataset. Model parameters
wd = 2, w0 = −2, ρ = 0.5 are selected through grid search.
For the NeurIPS dataset, we set D = 10, wd = 2, w0 =
−2, ρ = 0.1. We initialize µid = ρ for all features.

Fig. D.3 gives Pyro specifications for both relational models.
To supplement Fig. 5 in the main paper, Fig. D.4 shows
ELBO improvement versus iteration for categorical models
of relational data and crowd-sourced annotations.
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MSNG SNG SNG + CV REINFORCE REINFORCE + CV SCAVI CONCRETE

(a) RTE (annotation) (b) WSD (annotation) (c) countries (SBM) (d) NeurIPS (SBM)

Figure D.4. Improvement of ELBO values (y axis) over iteration (x axis) on various datasets using general categorical models. Lines
show the median, while shaded regions show the 25th - 75th percentiles of ELBO values across 10 runs.

Table D.1. ELBO values at 100-th iteration for all dataset(model, initialization) combinations. Top methods with the same ELBO values
up to the first 2 decimal places are highlighted in bold. The number of samples used for each method is described in the main paper. The
temperature hyperparameters for CONCRETE runs are tuned from possible values {0.01, 0.1, 1, 10, 100} for best performance, which
end up with 0.1 for NeurIPS (SBM) and 10 for all else.

Dataset MSNG SNG SNG+CV REIN REIN+CV SCAVI CONC AUX

Newsgroups (noisy-OR) -16.520 -26.960 -21.974 -29.876 -31.697 -16.566 -79.216 -16.120
MNIST (sigmoid, 0.5) -109.280 -214.950 -182.24 -222.612 -196.087 -118.094 -135.33 -191.612
MNIST (sigmoid, prior) -109.216 -182.424 -152.254 -182.355 -157.370 -118.502 -135.715 -138.596
Countries (probit) -0.498 -0.581 -0.578 -0.590 -0.589 -0.574 -0.537 -0.626
NeurIPS (probit) -0.086 -0.179 -0.123 -0.179 -0.125 -0.086 -0.114 -0.113
Countries (SBM) -0.525 -1.070 -0.522 -0.866 -0.526 -0.535 -0.926 -
NeurIPS (SBM) -0.469 -0.544 -0.539 -0.544 -0.534 -0.474 -0.540 -
RTE (annotation) -0.505 -0.723 -0.608 -0.726 -0.623 -0.505 -0.507 -
WSD (annotation) -0.254 -0.884 -0.315 -0.899 -0.325 -0.254 -0.254 -

Table D.2. Final ELBO values for all dataset(model, initialization) combinations. Fast converging methods MSNG, SCAVI and AUX run
100 iterations. SNG(+CV), REINF(+CV) and CONCRETE run 1,000 iterations if they do not converge within the first 100 iterations. Top
methods with the same ELBO values up to the first 2 decimal places are highlighted in bold. With more iterations, the performance of
SNG+CV and REINF+CV starts to approach MSNG, but is still inferior for many models. The biased CONCRETE method converges to
inferior ELBO values than SNG+CV and REIN+CV, despite faster ELBO improvement at the beginning iterations shown in Table D.1.

Dataset MSNG SNG SNG+CV REIN REIN+CV SCAVI CONC AUX

Newsgroups (noisy-OR) -16.520 -17.538 -16.214 -17.386 -18.504 -16.566 -53.388 -16.120
MNIST (sigmoid, 0.5) -109.280 -130.672 -116.990 -132.844 -122.096 -118.094 -133.879 -191.612
MNIST (sigmoid, prior) -109.216 -123.054 -113.988 -124.574 -115.539 -118.502 -133.591 -138.596
Countries (probit) -0.498 -0.503 -0.501 -0.504 -0.501 -0.574 -0.517 -0.626
NeurIPS (probit) -0.086 -0.173 -0.112 -0.173 -0.113 -0.086 -0.114 -0.113
Countries (SBM) -0.525 -0.586 -0.522 -0.555 -0.526 -0.535 -0.926 -
NeurIPS (SBM) -0.469 -0.544 -0.483 -0.544 -0.480 -0.474 -0.533 -
RTE (annotation) -0.505 -0.725 -0.505 -0.730 -0.511 -0.505 -0.507 -
WSD (annotation) -0.254 -0.868 -0.267 -0.882 -0.257 -0.254 -0.254 -
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D.3. Annotation Models

Because the RTE and WSD datasets contain ground-truth
labels, we set K to match the true number of categories
(K = 2 for the RTE data, and K = 3 for the WSD data).
We omit these labels for our experiments, and treat them
as the latent variables in the model. We fix the label cat-
egory distribution to be uniform, πk = 1

K , and assign
conjugate priors for the annotator reliability distributions
θjk ∼ Dirichlet(βk). We set the Dirichlet hyperparameters
to be biased towards prediction of correct labels: βkk = 5,
and βk` = 1 if k 6= `. The variational distribution is initial-
ized uniformly as µik = 1

K .

We analytically marginalize the unknown rater accuracy
distributions θjk to create a model with only discrete latent
variables. Let A be the total number of annotators, nk the
number of items whose true category is k, njk` the number
of times annotator j assigns label ` to an item whose true
category is k, and njk· ,

∑
` njk`. The marginal joint

distribution p(z, x | π, β) can then be written as∏
k

πnk

k

(
Γ(
∑
` βk`)∏

` Γ(βk`)

)A A∏
j=1

∏
` Γ(njk` + βk`)

Γ(njk· +
∑
` βk`)

, (D.7)

where the gamma functions Γ(·) arise from the Dirichlet
normalization constants.
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