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Abstract—Graphical models provide a powerful general frame-
work for encoding the structure of large-scale estimation problems.
However, the graphs describing typical real-world phenomena
contain many cycles, making direct estimation procedures pro-
hibitively costly. In this paper, we develop an iterative inference
algorithm for general Gaussian graphical models. It operates
by exactly solving a series of modified estimation problems on
spanning trees embedded within the original cyclic graph. When
these subproblems are suitably chosen, the algorithm converges
to the correct conditional means. Moreover, and in contrast
to many other iterative methods, the tree-based procedures we
propose can also be used to calculate exact error variances.
Although the conditional mean iteration is effective for quite
densely connected graphical models, the error variance com-
putation is most efficient for sparser graphs. In this context,
we present a modeling example suggesting that very sparsely
connected graphs with cycles may provide significant advantages
relative to their tree-structured counterparts, thanks both to the
expressive power of these models and to the efficient inference
algorithms developed herein.

The convergence properties of the proposed tree-based itera-
tions are characterized both analytically and experimentally. In
addition, by using the basic tree-based iteration to precondition
the conjugate gradient method, we develop an alternative, ac-
celerated iteration that is finitely convergent. Simulation results
are presented that demonstrate this algorithm’s effectiveness on
several inference problems, including a prototype distributed
sensing application.

Index Terms—Belief propagation, error variances, Gaussian
processes, graphical models, Markov random fields, multiscale,
optimal estimation, tree-based preconditioners.

1. INTRODUCTION

AUSSIAN processes play an important role in a wide
G range of practical, large-scale statistical estimation prob-
lems. For example, in such fields as computer vision [3], [4]
and oceanography [5], Gaussian priors are commonly used to
model the statistical dependencies among hundreds of thou-
sands of random variables. Since direct linear algebraic methods
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are intractable for very large problems, families of structured
statistical models, and associated classes of efficient estimation
algorithms, must be developed.

For problems with temporal, Markovian structure, linear state
space models [6] provide a popular and effective framework for
encoding statistical dependencies. Temporal Markov models
correspond to perhaps the simplest class of graphical models
[7], in which nodes index a collection of random variables (or
vectors), and edges encode the structure of their statistical re-
lationships (as elucidated in Section II). Specifically, temporal
state-space models are associated with simple chain graphs (see
Gss in Fig. 1). When a collection of random variables has more
complex statistical structure, more complex graphs—often
containing loops or cycles and many paths between pairs of
nodes—are generally required.

For graphs without loops, including Markov chains and
more general tree-structured graphs, very efficient optimal
inference algorithms exist. For example, for Gaussian pro-
cesses, the Kalman filter and Rauch-Tung-Striebel (RTS)
smoother for state space models [6], and their generalizations
to arbitrary trees [8], produce both optimal estimates and error
variances with constant complexity per graph node. However,
for large graphs with cycles, exact (noniterative) methods
become prohibitively complex, leading to the study of iterative
algorithms. Although one can apply standard linear algebraic
methods (such as those discussed in Section II-B), there is also
a considerable literature on iterative algorithms specialized for
statistical inference on loopy graphs.

In this paper, we present a new class of iterative inference
algorithms for arbitrarily structured Gaussian graphical models.
As we illustrate, these algorithms have excellent convergence
properties. Just as importantly, and in contrast to existing
methods, our algorithms iteratively compute not only optimal
estimates but also exact error variances. Moreover, we show
that our algorithms can be combined with classical linear
algebraic methods (in particular conjugate gradient) to produce
accelerated, preconditioned iterations with very attractive
performance.

In some contexts, such as the sensor network problem pre-
sented in Section VI-C, the structure of the graph relating a
set of variables may be determined a priori by physical con-
straints. In many other situations, however, the choice of the
graph is also part of the signal processing problem. That is, in
many cases, the model used does not represent “truth” but rather
a tradeoff between the accuracy with which the model cap-
tures important features of the phenomenon of interest and the
tractability of the resulting signal processing algorithm. At one
extreme are tree-structured graphs, which admit very efficient
estimation algorithms but have comparatively limited modeling
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Three different graphs for modeling 128 samples of a 1-D process: a Markov chain (state space model) G, a multiscale autoregressive (MAR) model

Gmar, and an augmented multiscale model G, which adds three additional edges (below arrows) to the finest scale of G,,.,. All nodes represent Gaussian vectors

of dimension 2.

power. The addition of edges, and creation of loops, tends to
increase modeling power, but also leads to more complex infer-
ence algorithms.

The following example explores these tradeoffs in more detail
and demonstrates that for many statistical signal processing
problems, it is possible to construct graphical models that
effectively balance the conflicting goals of model accuracy
and algorithmic tractability. Although these modeling issues
are not resolved by this paper, they provide explicit motivation
for the inference algorithms that we develop. In particular, as
we demonstrate in Section VI-A, our methods are especially
effective for this example.

A. Graphical Modeling Using Chains, Trees, and Graphs with
Cycles

Consider the following one-dimensional (1-D), isotropic co-
variance function, which has been used to model periodic “hole
effect” dependencies arising in geophysical estimation prob-
lems [9], [10]:

1

C(r;w) = — sin(wT), w > 0. (1
wT
Fig. 2 shows the covariance matrix corresponding to 128 sam-
ples of a process with this covariance. In the same figure, we
illustrate the approximate modeling of this process with a chain-
structured graph G;. More precisely, we show the covariance of
a temporal state space model with parameters chosen to provide
an optimal' approximation to the exact covariance, subject to
the constraint that each state variable has dimension 2. Notice
that although the Markov chain covariance P accurately cap-
tures short-range correlations, it is unable to model important
long-range dependencies inherent in this covariance.
Multiscale autoregressive (MAR) models provide an alter-
native modeling framework that has been demonstrated to be
powerful, efficient and widely applicable [12]. MAR models
define state-space recursions on hierarchically organized trees,
as illustrated by G, in Fig. 1. Auxiliary or hidden variables
are introduced at “coarser” scales of the tree in order to cap-
ture more accurately the statistical properties of the “finest”
scale process defined on the leaf nodes.? Since MAR models
are defined on cycle-free graphs, they admit efficient optimal
estimation algorithms and, thus, are attractive alternatives for

IFor all modeling examples, optimality is measured by the Kullback—Leibler
(KL) divergence [11]. We denote the KL divergence between two zero mean
Gaussians with covariances P and ¢ by D(P||Q).

2In some applications, coarse scale nodes provide an efficient mechanism
for modeling nonlocal measurements [13], but in this example, we are
only interested in the covariance matrix induced at the finest scale.

‘
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Fig. 2. Approximate modeling of the target covariance matrix P (sampled
from C(7;w)) using each of the three graphs in Fig. 1. The KL divergence
of each approximating distribution is given below an intensity plot of the
corresponding covariance matrix (largest values in white).

many problems. Multiscale methods are particularly attractive
for two-dimensional (2-D) processes, where quadtrees may
be used to approximate notoriously difficult nearest-neighbor
grids [4], [5].

Fig. 2 shows a multiscale approximation P, to the hole
effect covariance, where the dimension of each node is again
constrained to be 2. The MAR model captures the long-range
periodic correlations much better than the state-space model.
However, this example also reveals a key deficiency of MAR
models: Some spatially adjacent fine-scale nodes are widely
separated in the tree structure. In such cases, the correlations
between these nodes may be inadequately modeled, and blocky
boundary artifacts are produced. Blockiness can be reduced by
increasing the dimension of the coarse scale nodes, but this often
leads to an unacceptable increase in computational cost.

One potential solution to the boundary artifact problem is
to add edges between pairs of fine-scale nodes where discon-
tinuities are likely to arise. Such edges should be able to ac-
count for short-range dependencies neglected by standard MAR
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models. To illustrate this idea, we have added three edges to the
tree graph G, across the largest fine-scale boundaries, pro-
ducing an “augmented” graph G,., (see Fig. 1). Fig. 2 shows
the resulting excellent approximation P, to the original co-
variance. This augmented multiscale model retains the accurate
long-range correlations of the MAR model while completely
eliminating the worst boundary artifacts.

The previous example suggests that very sparsely connected
graphs with cycles may offer significant modeling advantages
relative to their tree-structured counterparts. Unfortunately, as
the resulting graphs do have cycles, the extremely efficient in-
ference algorithms that made tree-structured multiscale models
so attractive are not available. The main goal of this paper is to
develop inference techniques that allow both estimates and the
associated error variances to be quickly calculated for the widest
possible class of graphs. The algorithms we develop are partic-
ularly effective for graphs, like that presented in this example,
which are nearly tree-structured.

B. Outline of Contributions

The primary contribution of this paper is to demonstrate that
tree-based inference routines provide a natural basis for the
design of estimation algorithms that apply to much broader
classes of graphs. All of the algorithms depend on the fact
that, within any graph with cycles, there are many embedded
subgraphs for which optimal inference is tractable. Each em-
bedded subgraph can be revealed by removing a different subset
of the original graph’s edges. We show that by appropriately
combining sequences of exact calculations on tractable sub-
graphs, it is possible to solve statistical inference problems
defined on the original graph with cycles exactly and efficiently.
Without question, the most tractable subgraphs are trees, and
for simplicity of terminology, we will refer to our methods
as embedded tree (ET) algorithms. Similarly, we will often
think of extracted subgraphs as being trees. However, all of
the ideas developed in this paper carry over immediately to the
more general case in which the extracted subgraph contains
cycles but is still tractable, as illustrated in Section VI-C.

After presenting the necessary background regarding
Gaussian graphical models and numerical linear algebra
(Section II), we develop the details of our ET algorithm for
iterative, exact calculation of both means (Section III) and error
variances (Section IV). The performance of this algorithm is
analyzed both theoretically and experimentally, demonstrating
the convergence rate improvements achieved through the use of
multiple embedded trees. In Section V, we then show how the
basic ET algorithm may be used to precondition the conjugate
gradient method, producing a much more rapidly convergent
iteration. To emphasize the broad applicability of our methods,
we provide an experimental evaluation on several different
inference problems in Section VI. These include the augmented
multiscale model of Fig. 1, as well as a prototype distributed
sensing application.

II. GAUSSIAN GRAPHICAL MODELS

A graph G = (V, ) consists of a node or vertex set V and
a corresponding edge set £. In a graphical model [7], a random
variable x4 is associated with each node s € V. In this paper,
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we focus on the case where {z;|s € V} is a jointly Gaussian
process, and the random vector z4 at each node has dimension
d (assumed uniform for notational simplicity). Given any subset

ACV, letzy 2 {zs|s € A} denote the set of random vari-

ables in A. If the N 2 [V| nodes are indexed by the integers
VY ={1,2,..., N}, the Gaussian process defined on the overall
graph is given by z 2 [z1zd - 2% )T Letz ~ N(p, P) in-
dicate that = is a Gaussian process with mean y, and covariance
P. With graphical models, it is often useful to consider an al-
ternative information parameterization z ~ N ~1(h, .J), where
J = P~1istheinverse covariance matrix, and the mean is equal
top = J h.

Graphical models implicitly use edges to specify a set of con-
ditional independencies. Each edge (s,t) € & connects two
nodes s, t € V, where s # t. In this paper, we exclusively em-
ploy undirected graphical models for which the edges (s, t) and
(t,s) are equivalent.? Fig. 3(a) shows an example of an undi-
rected graph representing five different random variables. Such
models are also known as Markov random fields (MRFs) or, for
the special case of jointly Gaussian random variables, as covari-
ance selection models in the statistics literature [16]—[18].

In undirected graphical models, conditional independence is
associated with graph separation. Suppose that A, B, and C
are subsets of V. Then, B separates A and C if there are no
paths between sets A and C that do not pass through B. The
stochastic process z is said to be Markov with respect to G if
x4 and x¢ are independent conditioned on the random vari-
ables zp in any separating set. For example, in Fig. 3(a), the
random variables 1 and {x4,x5} are conditionally indepen-
dent given {x9, z3}. If the neighborhood of a node s is defined

to be I'(s) 2 {t|(s,t) € £}, which is the set of all nodes that
are directly connected to s, it follows immediately that

p(wslovne) = p (2sl7r(s)) - 2)

That is, conditioned on its immediate neighbors, the probability
distribution of the random vector at any given node is indepen-
dent of the rest of the process.

For general graphical models, the Hammersley—Clifford the-
orem [16] relates the Markov properties implied by G to a fac-
torization of the probability distribution p(z) over cligues, or
fully connected subsets, of G. For Gaussian models with positive
definite covariance matrices, this factorization takes a particular
form that constrains the structure of the inverse covariance ma-
trix. Given a Gaussian process z ~ N '(u, P), we partition the

inverse covariance J 2 P~!intoan N x N grid of d x d subma-
trices {J, +|s,t € V}. We then have the following result [16],
[18]:

Theorem 1: Let x be a Gaussian stochastic process with
inverse covariance .J, which is Markov with respect to
G = (V,€). Assume that £ is minimal so that z is not
Markov with respect to any G’ = (V,€’) such that &' € £.
Then, for any s, ¢ € V such that s # ¢, Jo, = J will be
nonzero if and only if (s,¢) € €.

3There is another formalism for associating Markov properties with graphs
that uses directed edges. Any directed graphical model may be converted into an
equivalent undirected model, although some structure may be lost in the process
[14], [15].
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(b)

Fig.3. (a) Graphical model representing five jointly Gaussian random vectors.
(b) Structure of the corresponding inverse covariance matrix P~', where black
squares denote nonzero entries.

Fig. 3 illustrates Theorem 1 for a small sample graph. In most
graphical models, each node is only connected to a small subset
of the other nodes. Theorem 1 then shows that P~ will be a
sparse matrix with a small (relative to V) number of nonzero
entries in each row and column.

Any Gaussian distribution satisfying Theorem 1 can be
written as a product of positive pairwise potential functions
involving adjacent nodes:

mmzé [T wsilws ). 3)
(

s,t)eE

Here, Z is a normalization constant. For any inverse covariance
matrix .J, the pairwise potentials can be expressed in the form

1 J Js s
watnso=en{ it 00 ][]
4

where the J ;) terms are chosen so that for all s € V),
2ter(s) Js(t) = Js,s- Note that there are many different ways
to decompose p(z) into pairwise potentials, each corresponding
to a different partitioning of the block diagonal entries of .J.
However, all of the algorithms and results presented in this
paper are invariant to the specific choice of decomposition. See
[2] for further discussion of this parameterization.

A. Graph-Based Inference Algorithms

Graphical models may be used to represent the prior dis-
tributions underlying Bayesian inference problems. Let z ~
N (0, P) be an unobserved random vector that is Markov with
respect to G = (V, ). We assume that the graphical prior is
parameterized by the graph-structured inverse covariance ma-
trix J = P~! or equivalently by pairwise potential functions
as in (4). Given a vector of noisy observations y = Cz + v,
v ~ N(0, R), the conditional distribution p(x|y) ~ N(Z, P)
may be calculated from the information form of the normal
equations:

Pz =C"R™y ©)
-1

P=(J+CTR™'C)". (6)

The conditional mean 7 provides both the Bayes’ least squares
and maximum a posteriori (MAP) estimates of x. The error co-
variance matrix P measures the expected deviation of x from
the estimate 7.
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We assume, without loss of generality,* that the observation
vector i decomposes into a set {, } Y, of local observations of
the individual variables {z; }_, . In this case, C' and R are block
diagonal matrices. We would like to compute the marginal dis-
tributions p(z;|y) ~ N (Zs, Ps) forall s € V. Note that each 7
is a subvector of Z, whereas each P, is a block diagonal element
of P. These marginal distributions could be directly calculated
from (5) and (6) by matrix inversion in O((Nd)?*) operations.
For large problems, however, this cost is prohibitively high, and
the structure provided by G must be exploited.

When G is a Markov chain, efficient dynamic program-
ming-based recursions may be used to exactly compute p(xs|y)
in O(Nd?) operations. For example, when the potentials are
specified by a state-space model, a standard Kalman filter may
be combined with a complementary reverse-time recursion [6].
These algorithms may be directly generalized to any graph
that contains no cycles [8], [14], [19], [20]. We refer to such
graphs as tree-structured. Tree-based inference algorithms
use a series of local message-passing operations to exchange
statistical information between neighboring nodes. One of the
most popular such methods is known as the sum-product [19]
or belief propagation (BP) [14] algorithm. The junction tree
algorithm [7], [16] extends tree-based inference procedures to
general graphs by first clustering nodes to break cycles and
then running the BP algorithm on the tree of clusters. However,
in order to ensure that the junction tree is probabilistically
consistent, the dimension of the clustered nodes must often
be quite large [7]. In these cases, the computational cost is
generally comparable to direct matrix inversion.

The intractability of exact inference methods has motivated
the development of alternative iterative algorithms. One of
the most popular is known as loopy belief propagation [21].
Loopy BP iterates the local message-passing updates under-
lying tree-based inference algorithms until they (hopefully)
converge to a fixed point. For many graphs, especially those
arising in error-correcting codes [19], these fixed points very
closely approximate the true marginal distributions [22]. For
Gaussian graphical models, it has been shown that when loopy
BP does converge, it always calculates the correct conditional
means [21], [23]. However, the error variances are incorrect
because the algorithm fails to account properly for the cor-
relations induced by the graph’s cycles. For more general
graphical models, recently developed connections to the sta-
tistical physics literature have led to a deeper understanding
of the approximations underlying loopy BP [15], [24], [25].

Recently, two independent extensions of the loopy BP algo-
rithm have been proposed that allow exact computation of error
variances, albeit with greater computational cost. Welling and
Teh [26] have proposed propagation rules for computing linear
response estimates of the joint probability of all pairs of nodes.
For Gaussian models, their method iteratively computes the
full error covariance matrix at a cost of O(N|E|) operations
per iteration. However, for connected graphs, |£| is at least
O(N), and the resulting O(N?) cost is undesirable when only
the N marginal variances are needed. Plarre and Kumar [27]

4Any observation involving multiple nodes may be represented by a set of
pairwise potentials coupling those nodes and handled identically to potentials
arising from the prior.
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have proposed a different extended message passing algorithm
that exploits the correspondence between recursive inference
and Gaussian elimination [12]. We discuss their method in
more detail in Section V.

B. Linear Algebraic Inference Algorithms

As shown by (5), the conditional mean 7 of a Gaussian infer-
ence problem can be viewed as the solution of a linear system
of equations. Thus, any algorithm for solving sparse, positive
definite linear systems may be used to calculate such estimates.
Letting J 2 P~ denote the inverse error covariance matrix

A . .
and § = CT R~y the normalized observation vector, (5) may
be rewritten as

Iz = 7. 7

A wide range of iterative algorithms for solving linear systems
may be derived using a matrix splitting J = M — K. The unique
solution Z of (7) is also the only solution of

(J+ K)z =K%+ 1. (8)

Assuming M = J + K is invertible, (8) naturally suggests the
generation of a sequence of iterates {2 }°2_; according to the
recursion

" =M HKzZ" ! +g). ©)

The matrix M is known as a preconditioner, and (9) is an ex-
ample of a preconditioned Richardson iteration [28], [29]. Many
classic algorithms, including the Gauss—Jacobi and successive
overrelaxation methods, are Richardson iterations generated by
specific matrix splittings.

The convergence of the Richardson iteration (9) is determined
by the eigenvalues {\;(M~*K)} of the matrix M K. Let-
ting p(M~1K) 2 maxye(x,(M-1k)} |A| denote the spectral
radius, 2" will converge to 7, for arbitrary z°, if and only if
p(M~1K) < 1. The asymptotic convergence rate is

p(M'K) = p(I — M~1J) (10)

If M is chosen so that M~'J ~ I , the Richardson iteration
will converge after a small number of iterations. However, at
each iteration, it is necessary to multiply Kz"~! by M~ or,
equivalently, to solve a linear system of the form Mz = b. The
challenge, then, is to determine aApreconditioner M that well
approximates the original system .J but whose solution is much
simpler.

Although Richardson iterations are often quite effective,
more sophisticated algorithms have been proposed. For pos-
itive definite systems, the conjugate gradient (CG) iteration
is typically the method of choice [28], [30]. Each iteration of
the CG algorithm chooses z" to minimize the weighted error
metric [|JZ" — g||5_, over subspaces of increasing dimension.
This minimization can be performed in O(/Nd?) operations per
iteration, requiring only a few matrix-vector products involving
the matrix J and some inner products [28]. CG is guaranteed
to converge (with exact arithmetic) in at most Nd iterations.
However, as with Richardson iterations, any symmetric precon-
ditioning matrix may be used to modify the spectral properties
of .J, thereby accelerating convergence.
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The standard CG algorithm, like RicAhardsog iterations, does
not explicitly calculate any entries of ./~ = P and, thus, does
not directly provide error variance information. In principle, it
is possible to extend CG to iteratively compute error variances
along with estimates [31]. However, these error variance for-
mulas are very sensitive to finite precision effects, and for large
or poorly conditioned problems, they typically produce highly
inaccurate results (see the simulations in Section VI).

With any iterative method, it is necessary to determine when
to stop the iteration, i.eA. , to decide that " is a sufficiently
close approximation to J 4. For all of the simulations in this
paper, we follow the standard practice [30] of iterating until the
residual r™ = y — Jz" satisfies

[l 1[2

191l

<e (11)

where € is a tolerance parameter. The final error is then upper
bounded as ||J 717 — Z"||2 < eAmin(J)]|Fll2-

III. CALCULATING CONDITIONAL MEANS USING
EMBEDDED TREES

In this section, we develop the class of ET algorithms for
finding the conditional mean of Gaussian inference problems
defined on graphs with cycles. Complementary ET algorithms
for the calculation of error variances are discussed in Section I'V.
The method we introduce explicitly exploits graphical structure
inherent in the problem to form a series of tractable approxima-
tions to the full model. For a given graphical model, we do not
define a single iteration but a family of nonstationary generaliza-
tions of the Richardson iteration introduced in Section II-B. Our
theoretical and empirical results establish that this nonstation-
arity can substantially improve the ET algorithm’s performance.

A. Graph Structure and Embedded Trees

As discussed in Section II-A, inference problems defined on
tree-structured graphs may be efficiently solved by direct, re-
cursive algorithms. Each iteration of the ET algorithm exploits
this fact to perform exact computations on a tree embedded in
the original graph. For a graph G = (V, ), an embedded tree
Gr = (V,E&7) is defined to be a subgraph (£7 C &) that has
no cycles. We use the term tree to include both spanning trees
in which G+ is connected, as well as disconnected “forests” of
trees. As Fig. 4 illustrates, there are typically a large number
of trees embedded within graphs with cycles. More generally,
the ET algorithm can exploit any embedded subgraph for which
exact inference is tractable. We provide an example of this gen-
erality in Section VI-C. For clarity, however, we frame our de-
velopment in the context of tree-structured subgraphs.

For Gaussian graphical models, embedded trees are closely
connected to the structural properties of the inverse covariance
matrix. Consider a Gaussian process & ~ N ~1(0,.J) that is
Markov with respect to an undirected graph G = (V,&). By
Theorem 1, forany s, ¢ € V such that s # ¢, J; ; will be nonzero
ifand only if (s, ¢) € €. Thus, modifications of the edge set £ are
precisely equivalent to changes in the locations of the nonzero
oft-diagonal entries of .J. In particular, consider a modified sto-
chastic process 7 ~ N ~1(0, Jr) that is Markov with respect
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Fig. 4. Embedded trees produced by three different cutting matrices { K7, }3_, for a nearest-neighbor grid.

to an embedded tree G = (V, £7). For any tree-structured in-
verse covariance J7, there exists a symmetric matrix K7 such
that

Jr=J+Kr. (12)
Because it acts to remove edges from the graph, K is called
a cutting matrix. As Fig. 4 illustrates, different cutting matrices
may produce different trees embedded within the original graph.
Note that the cutting matrix K7 also defines a matrix splitting
J = (Jr — K1) as introduced in Section II-B.

Certain elements of the cutting matrix, such as the off-
diagonal blocks corresponding to discarded edges, are uniquely
defined by the choice of embedded tree Gr. However, other
entries of K7, such as the diagonal elements, are not constrained
by graph structure. Consequently, there exist many different
cutting matrices K7 and associated inverse covariances Jr,
corresponding to a given tree G7. In later sections, it will be
useful to define a restricted class of regular cutting matrices;

Definition 1: For aregular cutting matrix K7 corresponding
to an embedded tree Gr, all off-diagonal entries not corre-
sponding to cut edges must be zero. In addition, the block
diagonal entries for nodes from which no edge is cut must be
Zero.

Thus, for a given G7, elements of the corresponding family
of regular cutting matrices may differ only in the block diagonal
entries corresponding to nodes involved in at least one cut edge.

As discussed in Section I, many potentially interesting
classes of graphical models are “nearly” tree-structured.
For such models, it is possible to reveal an embedded tree
by removing a small (relative to N) number of edges. Let
E2 |€ \ €7 denote the number of discarded or “cut” edges.
Clearly, any regular cutting matrix K7 removing F edges may
have nonzero entries in at most 2Fd columns, implying that
rank(K7) is at most O(Ed). Thus, for sparsely connected
graphical models where £ < N, cutting matrices may always
be chosen to have low rank. This fact is exploited in later
sections of this paper.

B. Tree-Based Stationary and Nonstationary Richardson
Iterations

Consider the graphical inference problem introduced in Sec-
tion II-A. As before, let 7 2 P! denote the inverse error co-
variance matrix and § = CT R~y the normalized observation
vector. As discussed in the previous section, any embedded tree
Gr, and associated cutting matrix K7, defines a matrix splitting

J= (jT — K7). The standard Richardson iteration (9) for this
splitting is given by
= I K"+ ). (13)

By comparison to (7), we see that, assuming Jr is positive
definite, this iteration corresponds to a tree-structured Gaussian
inference problem, with a set of perturbed observations given by
(K72"~'+7%). Thus, each iteration can be efficiently computed.
More generally, it is sufficient to choose K7 so that jq— is
invertible. Although the probabilistic interpretation of (13) is
less clear in this case, standard tree-based inference recursions
will still correctly solve this linear system. In Section III-D,
we discuss conditions that guarantee invertibility of JT

Because there are many embedded trees within any graph cy-
cles, there is no reason that the iteration of (13) must use the
same matrix splitting at every iteration. Let {G7, }5° ; be a se-
quence of trees embedded within G, and let {K7, }2 be a
corresponding sequence of cutting matrices such that Jr, =
(J+ K7, ) is Markov with respect to G7. . Then, from some ini-
tial guess 7°, we may generate a sequence of iterates {7™}°°_,
using the recursion

= I (K777 4 g). (14)

We refer to this nonstationary generalization of the standard
Richardson iteration as the ET algorithm [1], [2]. The cost
of computing z" from z"~! is O(Nd® + Ed?), where E =
|€ \ £7,| is the number of cut edges. Typically, E is at most
O(N); therefore, the overall cost of each iteration is O(Nd?).

Consider the evolution of the error ¢” 2 (z™ — ) between
the estimate Z™ at the n'" iteration and the solution 7 of the
original inference problem. Combining (7) and (14), we have

= J; Kr,em! (15)

From the invertibility of J and jq—n , it follows immediately
that , which is the conditional mean of the original inference
problem (7), is the unique fixed point of the ET recursion. One
natural implementation of the ET algorithm cycles through a
fixed set of T'embedded trees {G7, }T_, in a periodic order so
that

ng+k-T = ng kezt. (16)
In this case, e™ evolves according to a linear periodically varying
system whose convergence can by analyzed as follows:
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Proposition 1: Suppose the ET mean recursion (14) is im-
plemented by periodically cycling through 7' embedded trees,

. A o~ .
as in (16). Then, the error ¢™ = ™ — T evolves according to

A

T
eIn+T — H jilKT7 eIn 2 geTn (17)
J=1

If p(S) < 1, then for arbitrary 2°, ™ "=3" 0 at an asymptotic
rate of at most -y 2 p(S)/T),

Thus, the convergence rate of the ET algorithm may be opti-
mized by choosing the cutting matrices K7, such that p(.5) is
as small as possible.

As discussed earlier, when the ET iteration uses the same cut-
ting matrix K7 at every iteration [as in (13)], it is equivalent to
a stationary preconditioned Richardson iteration. The following
proposition shows that when the recursion is implemented by
periodically cycling through 7' > 1 cutting matrices, we may
still recover a stationary Richardson iteration by considering
every 1" iterate.

Proposition 2: Suppose that the ET recursion (14) is im-
plemented by periodically cycling through 7 cutting matrices
{Kz,}T_,. Consider the subsampled sequence of estimates
{@"T}eo_, produced at every T'th iteration. The ET procedure
generating these iterates is equivalent to a preconditioned
Richardson iteration

7Tn _ (1 - M;lf) 7= L MIICTR™Yy  (18)
where the preconditioner My " is defined according to the re-
cursion

~1

N -1 ~
M = (T+Kz) KoM+ (T+Kr) (19
with initial condition M;™' = (J + K7,)~".

Proof: This result follows from an induction argument;
see [2, Th. 3.3] for details. O

Several classic Richardson iterations can be seen as special
cases of the ET algorithm. For example, if the cutting matrix
removes every edge, producing a disconnected forest of single-
node trees, the result is the well known Gauss—Jacobi algorithm
[28], [29]. For nearest-neighbor grids (as in Fig. 4), one possible
ET iteration alternates between two cutting matrices, the first re-
moving all vertical edges and the second all horizontal ones. It
can be shown that this iteration is equivalent to the alternating
direction implicit (ADI) method [29], [30], [32]. For more de-
tails on these connections, see [2, Sec. 3.2.5].

There are also heuristic similarities between the ET iteration,
which uses the BP algorithm to exactly solve a sequence of
tree-structured subproblems, and loopy BP. This relationship is
particularly apparent when loopy BP’s messages are updated
according to tree-based schedules [25]. However, it is straight-
forward to show that the cutting matrix used by ET to con-
nect subsequent iterations [see (14)] is not equivalent to any
set of BP message updates. The precise relationship between
these methods is complex and depends on the numerical struc-
ture of the chosen cutting matrix. However, as we demonstrate
in Section III-D, the ET cutting matrix may always be chosen
to guarantee convergence, whereas there exist graphs for which
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loopy BP is known to diverge. In addition, the ET algorithm may
be extended to compute exact error variances (see Section 1V),
whereas loopy BP’s variance estimates are approximate.

C. Motivating Example: Single-Cycle Inference

In this section, we explore the ET algorithm’s behavior on a
simple graph in order to motivate later theoretical results; more
extensive simulations are presented in Section VI. Our results
provide a dramatic demonstration of the importance of allowing
for nonstationary Richardson iterations.

Consider a 20-node single-cycle graph, with randomly
chosen inhomogeneous potentials. Although, in practice, single
cycle problems can be solved easily by direct methods [33],
they provide a useful starting point for understanding iterative
algorithms. The cutting matrix K7 must only remove a single
edge to reveal a spanning tree of a single cycle graph. In this
section, we consider only regular cutting matrices, for which
all off-diagonal entries are zero except for the pair required
to remove the chosen edge. However, we may freely choose
the two diagonal entries (K1), (K7 )+ corresponding to
the nodes from which the single edge (s,t) is cut. We con-
sider three different possibilities, corresponding to positive
semidefinite ((K7)s,s = (K7)t: = |[(K7)s,|), zero diag-
onal ((K7)ss = (K7)tr = 0), and negative semidefinite
((K7)s,s = (K7)t,t = —|(K7)s,¢|) cutting matrices.

When the ET iteration is implemented with a single cutting
matrix K7, Proposition 1 shows that the convergence rate is
given by v = p(j;IKT). Fig. 5(a) plots « as a function of
the magnitude |jst| of the off-diagonal error covariance entry
corresponding to the cut edge. Intuitively, convergence is fastest
when the magnitude of the cut edge is small. For this example,
zero diagonal cutting matrices always lead to the fastest conver-
gence rates.

When the ET algorithm is implemented by periodi-
cally cycling between two cutting matrices Kr, Kg,,
Proposition 1 shows that the convergence rate is given by
v = p(jilKTQ filKTI )1/2. Figs. 5(b) and 5(c) plot these con-
vergence rates when K7, is chosen to cut the cycle’s weakest
edge, and K7, is varied over all other edges. When plotted
against the magnitude of the second edge cut, as in Fig. 5(b),
the vy values display little structure. Fig. 5(c) shows these same
~ values plotted against an index number showing the ordering
of edges in the cycle. Edge 7 is the weak edge removed by
K7, . Notice that for the zero diagonal case, cutting the same
edge at every iteration is the worst possible choice, despite the
fact that every other edge in the graph is stronger and leads to
slower single-tree iterations. The best performance is obtained
by choosing the second cut edge to be as far from the first edge
as possible.

In Fig. 5(d) and (e), we examine the convergence behavior
of the zero diagonal two-tree iteration corresponding to edges
7 and 19 in more detail. For Fig. 5(d) and (e), the error at each
iteration is measured using the normalized residual introduced
in (11). Fig. 5(d) shows that even though the single-tree iteration
generated by edge 19 converges rather slowly relative to the
edge 7 iteration, the composite iteration is orders of magnitude
faster than either single-tree iteration. In Fig. 5(e), we compare
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(BP) and conjugate gradient (CG). (f) Two individually divergent cutting matrices produce a convergent two-tree iteration.

the performance of the parallel BP and unpreconditioned CG
iterations, showing that for this problem, the ET algorithm is
much faster.

The previous plots suggest that a two-tree ET iteration may
exhibit features quite different from those observed in the cor-
responding single-tree iterations. This is dramatically demon-
strated by Fig. 5(f), which considers the negative semidefinite
cutting matrices corresponding to the two strongest edges in the
graph. As predicted by Fig. 5(a), the single-tree iterations corre-
sponding to these edges are divergent. However, because these
strong edges are widely separated in the original graph (indexes
1 and 12), they lead to a two-tree iteration that outperforms even
the best single-tree iteration.

D. Convergence Criteria

When the ET mean recursion periodically cycles through
a fixed set of 1" cutting matrices, Proposition 1 shows that
its convergence depends entirely on the eigenstructure of
S = Hz:zl Jil K1, . However, this matrix is never explicitly
calculated by the ET recursion, and for large-scale problems,
direct determination of its eigenvalues is intractable. In this
section, we derive several conditions that allow a more tractable
assessment of the ET algorithm’s convergence.

Consider first the case where the ET algorithm uses the same
cutting matrix K7 at every iteration. We then have a standard
Richardson iteration, for which the following theorem, proved
by Adams [34], provides a simple necessary and sufficient con-
vergence condition:

Theorem 2: Let J be a symmetric positive definite matrix
and K7 be a symmetric cutting matrix such that (J + Kr) is
nonsingular. Then

0 ((f+ KT)—lKT) <1, ifandonlyif J+ 2Kz > 0.

The following two corollaries provide simple procedures for sat-
isfying the conditions of Theorem 2:

Corollary 1: If the ET algorithm is implemented with a
single positive semidefinite cutting matrix K7, the resulting
iteration will be convergent for any positive definite inverse
error covariance J.

Proof: 1f J is positive definite and K7 is positive semidef-
inite, then (.J + 2K ) is positive definite. O
Corollary 2: Suppose that J is diagonally dominant so that

Tos > D> |l (20)
)

tel—'(s

for all s € V. Then, any regular cutting matrix with non-nega-
tive diagonal entries will produce a convergent embedded trees
iteration.

Proof: Regular cutting matrices only modify the off-diag-
onal entries of J by setting certain elements to zero. Therefore,
the entries set to zero in (J + K1) will simply have their signs
flipped in (j +2K7), leaving the summation in (20) unchanged.
Then, by the assumption that K7 has non-negative diagonal en-
tries, we are assured that (.J4+2K ) is diagonally dominant and,
hence, positive definite. R O

Note that Corollary 2 ensures that if .J is diagonally dominant,
the zero diagonal cutting matrices of Section III-C will produce
convergent ET iterations.
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Although Theorem 2 completely characterizes the conditions
under which the single tree ET iteration converges, it says
nothing about the resulting convergence rate. The following
theorem allows the convergence rate to be bounded in certain
circumstances.

Theorem 3: When implemented with a single positive
semidefinite cutting matrix K7, the convergence rate of the ET
algorithm is bounded by

)‘max(K'T) )‘max(K’T)

=~

—~ <p(J7'K7r)<
)‘max(KT)‘i'Amax(J) ( 7 ) /\lllax(KT)+)\min(J)~

Proof: This follows from [35, Th. 2.2]; see [2, Th. 3.14]
for details. O

Increasing the diagonal entries of K7 will also increase
the upper bound on p(.J;* K1) provided by Theorem 3. This
matches the observation made in Section III-C that positive
semidefinite cutting matrices tend to produce slower conver-
gence rates.

When the ET algorithm employs multiple trees, obtaining a
precise characterization of its convergence behavior is more dif-
ficult. The following theorem provides a simple set of sufficient
conditions for two-tree iterations.

Theorem 4: Consider the embedded trees iteration generated
by a pair of cutting matrices { K7, , K7, }. Suppose that the fol-
lowing three matrices are positive definite:

J+Kr+Kg, =0 J+Kg—Kg, =0 J-Kr+Kg, 0.

Then, the resulting iteration is convergent (p(S) < 1).
Proof: See [2, App. C.4]. ]
The conditions of this theorem show that in the multiple tree
case, there may be important interactions between the cutting
matrices that affect the convergence of the composite iteration.
These interactions were demonstrated by the single cycle infer-
ence results of Section III-C and are further explored in Sec-
tion VI. Note that it is not necessary for the cutting matrices
to be individually convergent, as characterized by Theorem 2,
in order for the conditions of Theorem 4 to be satisfied. When
more than two trees are used, a singular value analysis may be
used to provide sufficient conditions for convergence; see [2,
Sec. 3.4.2] for details.

IV. EXACT ERROR VARIANCE CALCULATION

The ET algorithm introduced in the preceding section used
a series of exact computations on spanning trees to calculate
the conditional mean Z of a loopy Gaussian inference problem.
In this section, we examine the complementary problem of de-
termining marginal error variances’ { Ps|s € V}. We develop
a class of iterative algorithms for calculating error variances
that are particularly efficient for very sparsely connected loopy
graphs, like that of Section I-A.

Due to the linear algebraic structure underlying Gaussian in-
ference problems, any procedure for calculating 7 may be easily
adapted to the calculation of error variances. In particular, sup-
pose that the full error covariance matrix P is partitioned into

SWhen nodes represent Gaussian vectors (d > 1), P is actually a d-di-
mensional covariance matrix. However, to avoid confusion with the full error
covariance matrix I, we always refer to { P;|s € V} as error variances.
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columns {p; } ¥4 . Then, letting ¢; be an N d-dimensional vector

of zeros with a one in the ¢th position, the :th column of Pis
equal to Pe;, or equivalently

J ]31 = €;. (2 1 )
By comparison to (7), we see that p; is equal to the conditional
mean of a particular inference problem defined by the synthetic
observation vector e;. Thus, given an inference procedure like
the ET algorithm that calculates conditional means at a cost of
O(Nd?) | per iteration, we may calculate a series of approxima-
tions to P using O(N?2d*) operations per iteration.

While the procedure described in the previous paragraph is
theoretically sound, the computational cost may be too large for
many applications. We would prefer an algorithm that only cal-
culates the [V desired marginal error variances P, avoiding the
O(N?) cost that any algorithm calculating all of P must require.
Consider the ET iteration generated by a single cutting matrix
K7 chosen so that p(J7'K7) < 1. When 2° = 0, a simple
induction argument shows that subsequent iterations z" may be
expressed as a series of linear functions of the normalized ob-
servation vector ¥:

7 — [f;l n Fn] g 22)
F,=J7 Kt [f;I +F ,_1]
F =0. 23)

Since we have assumed that p(f; 'K7) < 1, Proposition 1
guarantees that z "—5° 7 for any 7. Therefore, the sequence
of matrices defined by (22), (23) must converge to P:

P=3 7t [Kngl] = lim (f;l n Fn) L4
n=0
In fact, these matrices correspond exactly to the series expansion
of P generated by the following fixed-point equation:
P=J'+ I K P. (25)
The matrix sequence of (24) may be derived by repeatedly using
(25) to expand itself.

Clearly, if we could somehow track the matrices composing
the ET series expansion (24), we could recover the desired
error covariance matrix P. In order to perform this tracking
efficiently, we must exploit the fact that, as discussed in
Section III, for many models, the cutting matrix K7 is low
rank. This allows us to focus our computation on a particular
low-dimensional subspace, leading to computational gains
when rank(K7) < N. We begin in Section IV-A by presenting
techniques for explicitly constructing rank-revealing decompo-
sitions of cutting matrices. Then, in Section IV-B, we use these
decompositions to calculate the desired error variances.

A. Low-Rank Decompositions of Cutting Matrices

For any cutting matrix K7, there exist many different additive
decompositions into rank-one terms:
T
KT = Z wi;uiu,;
i

u; € RNV, (26)
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For example, because any symmetric matrix has an orthogonal
set of eigenvectors, the eigendecomposition K+ = UDUT is
of this form. However, for large graphical models, the O(N3d?)
cost of direct eigenanalysis algorithms is intractable. In this sec-
tion, we provide an efficient decomposition procedure that ex-
ploits the structure of K7 to reduce the number of needed terms.

Consider a regular cutting matrix K7 that acts to remove the
edges £ \ £ from the graph G = (V,€), and let E = €\ E7.
The decomposition we construct depends on a set of key nodes
defined as follows.

Definition 2: Consider a graph G = (V, £) with associated
embedded tree G = (V,E7). A subset W C V of the vertices
forms a key node set if for any cut edge (s,t) € € \ &7, either
s or t (or both) belong to W.

In other words, at least one end of every cut edge must be a
key node. In most graphs, there will be many ways to choose VW
(see Fig. 6). In such cases, the size of the resulting decomposi-
tion is minimized by minimizing W 2 |[W)|. Note that 1V may
always be chosen so that W < FE.

Given a set of key nodes W of dimension d, we decompose
K7 as

Kr= ZHw

weW

27)

where H,, is chosen so that its only nonzero entries are in the d
rows and columns corresponding to w. Because every cut edge
adjoins a key node, this is always possible. The following propo-
sition shows how each H,, may be further decomposed into
rank-one terms.

Proposition 3: Let H be a symmetric matrix whose only
nonzero entries lie in a set of d rows and the corresponding
columns. Then, the rank of H is at most 2d.

Proof: See Appendix. O

Thus, the rank of a cutting matrix with W corresponding
key nodes can be at most 2Wd. The proof of Proposition 3 is
constructive, providing an explicit procedure for determining a
rank-one decomposition as in (26). The cost of this construction
is at most O(NW d?) operations. However, in the common case
where the size of each node’s local neighborhood does not grow
with IV, this reduces to O(W d?). Note that because at most one
key node is needed for each cut edge, Proposition 3 implies that
a cutting matrix K7, which cuts F edges, may always be de-
composed into at most 2Fd terms. When d = 1, the number of
terms may be reduced to only E by appropriately choosing the
diagonal entries of K7 (see [2, Sec. 3.3.1] for details), which is
a fact we exploit in the simulations of Section VI-B.

B. Fixed-Point Error Variance Iteration

In this section, we provide an algorithm for tracking the
terms of the ET series expansion (24). Since the block diagonal
entries of j;I may be determined in O(Nd?) operations
by an exact recursive algorithm, one obvious solution would
be to directly track the evolution of the F,, matrices. This
possibility is explored in [2, Sec. 3.3.3], where it is shown that
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Fig. 6. Graphical representation of a spanning tree (solid) and the
corresponding cut edges (dashed). Both of the shaded groups of nodes
define key node sets, but the darker one would produce a more efficient
decomposition.

low-rank decompositions of F;, may be recursively updated in
O(NW?d?) operations per iteration. Here, however, we focus
on a more efficient approach based on a specially chosen set
of synthetic inference problems.

We begin by considering the fixed point (25) characterizing
the single tree ET series expansion. Using the low-rank decom-
position of K given by (26), we have

Poiit i (Z wiuiuz> p

= j,;l + Z w; (j\,]_—lul) (I/;ui)T (28)

As discussed in Section IV-A, the decomposition of K7 may
always be chosen to have at most O(Wd) vectors u;. Each
of the terms in (28) has a probabilistic interpretation. For ex-
ample, JT is the covanance matrlx of a tree-structured graph-
ical model. Similarly, JT u,; and Pu, are the conditional means
of synthetic inference problems with observations u,;.

Algorithm 1 shows how all of the terms in (28) may be effi-
ciently computed using the inference algorithms developed ear-
lier in this paper. The computational cost is dominated by the
solution of the synthetic estimation problems on the graph with
cycles [step 3(b)]. Any inference algorithm can be used in this
step, including the ET algorithm (using one or multiple trees),
loopy BP, or conjugate gradient. Thus, this fixed-point algorithm
can effectively transform any method for computing conditional
means into a fast error variance iteration.

Although (28) was motivated by the ET algorithm, nothing
about this equation requires that the cutting matrix produce a
tree-structured graph. All that is necessary is that the remaining
edges form a structure for which exact error variance calculation
is tractable. In addition, note that (28) gives the correct pertur-
bation of JT for calculating the entire error covariance P and
not just the block diagonals P Thus, if the BP algorithm is ex-
tended to calculate a particular set of off-diagonal elements of
JT , the exact values of the corresponding entries of P may be
found in the same manner.
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Given a tree-structured matrix split-
ting j}:(f—Bhﬁ, where the cutting matrix
K+ has W key nodes:

1) Compute the block diagonal entries

of Jf using the BP algorithm (O(Nd?3)

operations) .

2) Determine a rank one decomposi-
tion of Ky into O(Wd) vectors u;, as
in (26).

3) For each of the O(Wd) vectors wu;:

a) Compute j;HM using the BP algo-
rithm (O(Nd?) operations).

b) Compute ﬁU¢ using any convenient
conditional mean estimation algo-
rithm (typically O(Nd?®) operations
per iteration).

4) Using the results of the previous
steps, calculate the block diagonal en-
tries of P as in (28) (O(NWd?) opera-
tions) .

Algorithm 1. ET fixed-point algorithm for computing error variances. The overall com-

putational cost is (’)(NVVd“) operations for each conditional mean iteration in step 3(b).

V. TREE-STRUCTURED PRECONDITIONERS

Preconditioners play an important role in accelerating the
convergence of the CG method. In Section III-B, we demon-
strated that whenever the ET algorithm is implemented by pe-
riodically cycling through a fixed set of 1" cutting matrices, it
is equivalent to a preconditioned Richardson iteration. An ex-
plicit formula for the implicitly generated preconditioning ma-
trix is given in Proposition 2. By simply applying the standard
ET iteration in (14) once for each of the 7" cutting matrices, we
can compute the product of the ET preconditioning matrix with
any vector in O(1'Nd?) operations. This is the only operation
needed to use the ET iteration as a preconditioner for CG [28],
[30].

In this section, we explore the theoretical properties of
embedded tree-based preconditioners (see Section VI for sim-
ulation results). For a preconditioning matrix to be used with
CG, it must be symmetric. While any single-tree ET itera-
tion leads to a symmetric preconditioner, the preconditioners
associated with multiple-tree iterations are in general nonsym-
metric. It is possible to choose multiple-tree cutting matrices
so that symmetry is guaranteed. However, in dramatic contrast
to the tree-based Richardson iterations of Section III, multiple
tree preconditioners typically perform slightly worse than their
single-tree counterparts [2, Sec. 4.3]. Thus, in this paper, we
focus our attention on single tree preconditioners.

If a single spanning tree, generated by cutting matrix K, is
used as a preconditioner, the system which CG effectively solves
is given by

(T+K7r) Tz =(T+Kr) 'y (29)
The convergence rate of CG is determined by how well the
eigenspectrum of the preconditioned system (J +K7) ! J can
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be fit by a polynomial [28]. Effective preconditioners produce
smoother, flatter eigenspectra that are accurately fit by a lower
order polynomial.

Several authors have recently rediscovered [36], analyzed
[37], and extended [38], [39] a technique called support graph
theory, which provides powerful methods for constructing
effective preconditioners from maximum-weight spanning
trees. Support graph theory is especially interesting because it
provides a set of results guaranteeing the effectiveness of the
resulting preconditioners. Preliminary experimental results [37]
indicate that tree-based preconditioners can be very effective
for many, but not all, of the canonical test problems in the
numerical linear algebra literature.

In general, the support graph literature has focused on tree-
based preconditioners for relatively densely connected graphs,
such as nearest-neighbor grids. However, for graphs that are
nearly tree-structured (K7 is low rank), it is possible to make
stronger statements about the convergence of preconditioned
CG, as shown by the following theorem.

Theorem 5: Suppose that the conjugate gradient algorithm is
used to solve the NV d-dimensional preconditioned linear system
given by (29). Then, if the cutting matrix K7 has rank(Kr) =
m, the preconditioned CG method will converge to the exact
solution in at most m + 1 iterations. R

Proof: Let \ be any eigenvalue of (J+ K7)~1.J,and let v
be one of its corresponding eigenvectors. By definition, we have

(J+Kr) " Jv =X

(1= X)Jv =AK7w. (30)

Since rank(K7) = m, there exist N — m linearly independent
eigenvectors in the null space of K7. Each one of these eigen-
vectors satisfies (30) when A = 1. Thus, A = 1 is an eigenvalue
of (J + K7)~'J, and its multiplicity is at least N' — m.

Let {);}7, denote the m eigenvalues of (J + K7)~'.J not
constrained to equal one. Consider the (m + 1)st-order polyno-
mial p,,+1(\) defined as

:(1_)\)1_[%

=1

Pm+1(A) (31)

By construction, p,,+1(0) = 1. Let A 2 (J + K7)~1J. Then,

from [28, p. 313], we see that

[l 4
———— < max |pmiy1(A (32)
[[70]].4-1 Aeiy pmaa (V]
where 7™+ is the residual at iteration m + 1. Since p,,1+1(\) =

0 forall A € {)\;(A)}, we must have r™*+1 = 0. Therefore, CG
must converge by iteration m + 1. O

Thus, wheAn the cutting matrix rank is smaller than the di-
mension of .J, the preconditioned CG iteration is guaranteed to
converge in strictly fewer iterations than the unpreconditioned
method.

When combined with the results of the previous sections,
Theorem 5 has a number of interesting implications. In partic-
ular, from Section IV-A, we know that a cutting matrix K1
with W associated key nodes can always be chosen so that
rank(K7) < O(Wd). Then, if this cutting matrix is used to
precondition the CG iteration, we see that the conditional mean
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Fig. 7. Comparison of inference methods on the augmented multiscale model of Figs. 1 and 2. (a) Single and alternating tree ET iterations. (b) Comparison to

other conditional mean iterations. (¢) Error variance methods.

can be exactly (noniteratively) calculated in O(NW d*) opera-
tions. Similarly, if single-tree preconditioned CG is used to solve
the synthetic estimation problems [step 3(b)] of the fixed-point
error variance algorithm (Section IV-B), error variances can be
exactly calculated in O(NW?2d®) operations. Note that in prob-
lems where W is reasonably large, we typically hope (and find)
that iterative methods will converge in less than O(Wd) itera-
tions. Nevertheless, it is useful to be able to provide such guaran-
tees of worst-case computational cost. See the following section
for examples of models where finite convergence dramatically
improves performance.

Exact error variances may also be calculated by a recently
proposed extended message passing algorithm [27], which
defines additional messages to cancel the “fill” associated
with Gaussian elimination on graphs with cycles [12]. Like
the ET fixed point iteration of Algorithm 1, the extended mes-
sage-passing procedure is based on accounting for perturbations
from a spanning tree of the graph. The cost of extended message
passing is O(N L?), where L is the number of nodes adjacent
to any cut edge. In contrast, Algorithm 1 requires O(NW?)
operations, where the number of key nodes W is strictly less
than L (and sometimes much less, as in Section VI-C). More
importantly, extended message passing is noniterative and
always requires the full computational cost, whereas Algorithm
1 produces a series of approximate error variances that are
often accurate after far fewer than W iterations.

VI. SIMULATIONS

In this section, we present several computational examples
that explore the empirical performance of the inference algo-
rithms developed in this paper. When calculating conditional
means, we measure convergence using the normalized residual
of (11). For error variance simulations, we use the normalized

<qz >
seV

(z |ﬁs|2)
sey

where P are the true error variances, and P! are the approx-
imations at the nth iteration. Error variance errors are always

W=

ﬁ:L - I/;s

(33)

plotted versus the number of equivalent BP iterations; therefore,
we properly account for the extra cost of solving multiple syn-
thetic inference problems in the ET fixed point method [Algo-
rithm 1, step 3(b)].

A. Multiscale Modeling

In Fig. 7, we compare the performance of the inference
methods developed in this paper on the augmented multiscale
model G, (see Figs. 1 and 2) constructed in Section I-A. To
do this, we associate a 2-D observation vector ys = x5 + v
with each of the 64 finest scale nodes, where v; is independent
noise with variance equal to the marginal prior variance of
Zs. The resulting inverse error covariance matrix is not well
conditioneds (k(J) & 3.9 x 10%), making this a challenging
inference problem for iterative methods.

We first consider the ET Richardson iteration of Section III.
We use zero-diagonal regular cutting matrices to create two dif-
ferent spanning trees: the multiscale tree G, of Fig. 1 and an
alternative tree where three of the four edges connecting the
second and third coarsest scales are removed. These cutting ma-
trices provide a pair of single-tree iterations [denoted by ET(1)
and ET(2)], as well as a two-tree iteration [denoted by ET(1,2)],
which alternates between trees. As shown in Fig. 7(a), despite
the large condition number, all three iterations converge at an
asymptotically linear rate as predicted by Proposition 1. How-
ever, as in Section III-C, the ET(1,2) iteration converges much
faster than either single-tree method.

In Fig. 7(b), we compare the ET(1,2) iteration to CG and
loopy BP, as well as to the single-tree preconditioned CG (PCG)
algorithm of Section V. Due to this problem’s large condition
number, BP converges rather slowly, whereas standard CG be-
haves extremely erratically, requiring over 1000 iterations for
convergence. In contrast, since the cutting matrices are rank 12
for this graph, Theorem 5 guarantees that (ignoring numerical
issues) the ET PCG iteration will converge in at most 13 iter-
ations. Since the preconditioned system is much better condi-
tioned (x((J + K1)~ 'J) = 273), this finite convergence is
indeed observed.

Finally, we compare the ET fixed-point error variance iter-
ation (Section IV-B, Algorithm 1) to loopy BP’s approximate

For a symmetric positive definite matrix .J, the condition number is defined

as £(J) £ Amax(T)/Amin(J)).
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TABLE 1
CONDITIONAL MEAN SIMULATION RESULTS: NUMBER OF ITERATIONS BEFORE CONVERGENCE TO A NORMALIZED RESIDUAL OF 10 ~°. FOR THE DISORDERED
CASE, WE REPORT THE AVERAGE NUMBER OF ITERATIONS ACROSS 100 RANDOM PRIOR MODELS, PLUS OR MINUS TWO STANDARD DEVIATIONS

Inference Augmented Tree Nearest-Neighbor Grid
Algorithm Homogeneous Disordered Homogeneous  Disordered
ET(1) 55 123.0 £ 145.4 331 219.3 £107.0
ET(2) 37 82.9 £110.0 346 216.8 £114.5
ET(1,2) 13 11.1+6.0 314 110.8 + 34.7
ET(1) PCG 4 4+0.0 59 477+ 4.8
CG 60 95.0 £ 8.0 78 85.8 8.1
BP 54 42.5+10.6 380 62.6 = 19.6

error variances, as well as variances derived from the CG
iteration, as in [31]. We consider two options for solving
the synthetic inference problems [step 3(b)]: the ET(1,2)
Richardson iteration and single-tree PCG. As shown in
Fig. 7(c), this problem’s poor conditioning causes the CG error
variance formulas to produce very inaccurate results that never
converge to the correct solution. Although loopy BP converges
to somewhat more accurate variances, even a single iteration
of the PCG fixed-point iteration produces superior estimates.
We also see that the PCG method’s advantages over ET(1,2)
for conditional mean estimation translate directly to more rapid
error variance convergence.

B. Sparse versus Dense Graphs with Cycles

This section examines the performance of the ET algorithms
on graphs with randomly generated potentials. We consider two
different graphs: the sparse augmented multiscale graph G, of
Fig. 1 and a more densely connected, 20 x 20 nearest-neighbor
grid (analogous to the small grid in Fig. 4). For grids, one must
remove O(N) edges to reveal an embedded tree so that the ET
fixed-point error variance algorithm requires O(N?) operations
per iteration. This cost is intractable for large N; therefore, in
this section, we focus solely on the calculation of conditional
means.

For each graph, we assume all nodes represent scalar
Gaussian variables and consider two different potential func-
tion assignments. In the first case, we create a homogeneous
model by assigning the same attractive potential

1
buslowa) = {-Jo-m?h
to each edge. We also consider disordered models, where each
edge is randomly assigned a different potential of the form

1/}s,t(xsvxt) = exXp {_lwst(xs - astxt)Q} . (35)

2
Here, wg; is sampled from an exponential distribution with
mean 1, whereas ag; is set to +1 or —1 with equal prob-
ability. These two model types provide extreme test cases,
each revealing different qualitative features of the proposed
algorithms.

To create test inference problems, we assign a measurement
of the form y; = zs4vs, vs ~ (0, 10) to each node in the graph.
We consider high noise levels because they lead to the most (nu-
merically) challenging inference problems. For the augmented

multiscale model, the ET algorithms use the same spanning trees
as in Section VI-A, whereas the grid simulations use trees sim-
ilar to the first two spanning trees in Fig. 4.

Table I lists the number of iterations required for each algo-
rithm to converge to a normalized residual of 1071°. For the
disordered case, we generated 100 different random graphical
priors, and we report the mean number of required iterations,
plus or minus two standard deviations. For the augmented multi-
scale model, as in Section VI-A, we find that the ET(1,2) and ET
PCG methods both dramatically outperform their competitors.
In particular, since the cutting matrix must remove only three
edges and nodes represent scalar variables, preconditioned CG
always finds the exact solution in four iterations.

For the nearest-neighbor grid, the performance of the ET
Richardson iterations is typically worse than other methods.
However, even on this densely connected graph, we find that
single-tree preconditioning improves CGs convergence rate,
particularly for disordered potentials. This performance is not
predicted by Theorem 5 but is most likely attributable to the
spectral smoothing provided by the tree-based preconditioner.

C. Distributed Sensor Networks

In this section, we examine an inference problem motivated
by applications involving networks of distributed sensors.
Fig. 8(a) shows a graph in which each of the 600 nodes is
connected to its spatially nearest neighbors, except for the
three central nodes, which produce long-range connections
(dashed). Most of the nodes are clustered near the perimeter
of a square region: a configuration suggestive of surveillance
applications in which nodes represent simple, range-limited
sensors. The few long-range relationships might be caused by
the presence of nodes with long-range communications abilities
or spatial sensitivities or could represent objects sensed in the
environment.” We assign potentials to this graph using the
disordered distribution of Section VI-B. We assume that exact
inference is possible for the graph consisting of only the black
nodes (e.g. via local clustering) but difficult when the longer
range relationships are introduced. Thus, for this example, the
“tree-based” algorithms developed earlier in this paper will

TWhile distributed sensor networks motivate the structure of this example, our
goal here is to illustrate the features of the ET estimation algorithms, and we do
not resolve many issues presented by real sensor networks. In particular, while
our algorithms involve message passing, truly distributed implementation of ET
algorithms involves issues beyond the scope of this paper. For example, in real
networks, nodes representing objects cannot participate in communication and
computation. This is a topic of ongoing research.
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Fig. 8.

Distributed sensing example. (a) Sensor network where the edges (dashed) connected to three nodes (open circles) lead to nonlocal interactions. The solid

nodes form a core structure that is solved exactly at each step of the presented inference results. (b) Conditional mean results. (c) Error variance results.

actually solve this (loopy) system of local interactions at each
iteration.

Fig. 8(b) compares several different methods for calculating
conditional means on this graph. BP performs noticeably better
than either unpreconditioned CG or the single “tree” Richardson
iteration. However, since the three central nodes form a key node
set (see Section IV-A), the cutting matrix has rank 6, and pre-
conditioned CG converges to the exact answer in only seven it-
erations. For the error variance calculation [see Fig. 8(c)], the
gains are more dramatic. BP quickly converges to a suboptimal
answer, but after only one iteration of the six synthetic inference
problems, the fixed-point covariance method finds a superior so-
lution. The CG error variance formulas of [31] are again limited
by finite precision effects.

VII. DISCUSSION

We have proposed and analyzed a new class of embedded
trees (ET) algorithms for iterative, exact inference on Gaussian
graphical models with cycles. Each ET iteration exploits the
presence of a subgraph for which exact estimation is tractable.
Analytic and experimental results demonstrate that the ET pre-
conditioned conjugate gradient method rapidly computes con-
ditional means even on very densely connected graphs. The
complementary ET error variance method is most effective for
sparser graphs. We provide two examples, drawn from the fields
of multiscale modeling and distributed sensing, which show
how such graphs may naturally arise.

Although we have developed inference algorithms based on
tractable embedded subgraphs, we have not provided a pro-
cedure for choosing these subgraphs. Our results indicate that
there are important interactions among cut edges, suggesting
that simple methods (e.g. maximal spanning trees) may not pro-
vide the best performance. Although support graph theory [36],
[37] provides some guarantees for embedded trees, extending
these methods to more general subgraphs is an important open
problem.

The multiscale modeling example of Section I-A suggests
that adding a small number of edges to tree-structured graphs
may greatly increase their effectiveness, in particular alleviating
the commonly encountered boundary artifact problem. The ET

algorithms demonstrate that it is indeed possible to perform
efficient, exact inference on such augmented multiscale models.
However, our methods also indicate that this computational
feasibility may depend on how quickly the number of “extra”
edges must grow as a function of the process size. This edge
allocation problem is one example of a more general modeling
question: How should hidden graphical structures be chosen
to best balance the goals of model accuracy and computational
efficiency?

APPENDIX

We present the proof of Proposition 3. Without loss of gen-
erality, assume that the nonzero entries of H lie in the first d
A BT
B 0
where A is a d x d symmetric matrix. Similarly, partition the
eigenvectors of H as v = [Z‘;] , where v, is of dimension d. The
eigenvalues of H then satisfy

rows and columns. Let H be partitioned as H =

Av, + BT, = M,
Buv, = \vy.

(36)
(37)

Suppose that A # 0. From (37), vy is uniquely determined by A
and v,. Plugging (37) into (36), we have

A2, — Mo, — BT Bv, = 0. (38)

This d-dimensional symmetric quadratic eigenvalue problem
has at most 2d distinct solutions. Thus, H can have at most 2d
nonzero eigenvalues, and rank(H) < 2d.
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