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Abstract

The appeal of distributed sensing and computation is
matched by the formidable challenges it presents in terms
of estimation and communication. Applications range from
military surveillance to collaborative office environments.
Despite the attractiveness of exploiting networks of low-
power and low-cost sensors, how to do so is a difficult
problem. In this paper, we adopt a statistical viewpoint
of such networks, and identify three key challenges. The
first is to develop principled methods for low-level fusion
of sensors measuring different modalities. We discuss
an information-theoretic approach to sensor fusion, and
present experimental results using audio and video data.
The core component of this method is the learning of a
nonparametric joint statistical model for the sensing modes.
Secondly, we discuss how one might apply such a sen-
sor fusion algorithm to acquire the relative geometry of a
network of sensors using passively-sensed data. Spe-
cifically, we show how the fusion method previously de-
veloped can be used to find correspondences between
pairs of long-baseline sensors. Finding such correspon-
dences is, in general, the starting point for recovering
the geometry. Finally, we discuss two iterative algorithms
for performing inference on graphical models with cy-
cles. Such models provide a flexible framework for con-
structing globally consistent statistical models from a set
of local interactions. Importantly, the algorithms that we
present allow information to be transmitted and processed
in a distributed manner.

1 Introduction

The idea of deploying large numbers of networked,multi-
modal sensors to monitor, analyze, and adapt to the char-

acteristics of an unknown environment has broad appeal
in a rich variety of contexts. These applications include
military surveillance, collaborative environments for vir-
tual meetings, and “intelligent rooms” where embedded
sensors provide an untethered interface to communica-
tions and computational systems. As is often the case,
the raw data provided by increasingly complex sensory
systems greatly exceeds our current understanding of
how to effectively transform that data into useful infor-
mation.
As a result, there are a number of basic challenges

that must be met if the promise of distributed sensing is
to be realized. Fundamental to many of these problems
is the fact that in isolation, each of the available sensor
data streams is of limited value. For example, in con-
cepts being developed for military surveillance, large
numbers of very inexpensive sensors of differing modali-
ties – acoustic, seismic, infrared, optical, magnetic, pres-
sure, temperature, etc. – might be scattered throughout a
region of interest. Each individual sensor is extremely
myopic, providing limited information about the environ-
ment and objects in its immediate vicinity. As a result,
extracting useful information of the form needed by
decision-making and planning systems requires thefusion
of multiple signals into a coherent environment model.
Similarly, in an intelligent room scenario in which mul-
tiple persons simultaneously interact with different data
sources, automatic audio/video environmental responses
must be constructed separately for each individual. This
requires a system that can disentangle superimposedaudio
signals, and properly attribute them to individuals pres-
ent in the room. In either case, data from each individ-
ual sensor is of limited value; indeed, the challenge is to
determine relations among the signals from different sen-
sors, and then exploit such relations to perform sensor
fusion.
Another important challenge, present in many dis-

tributed sensing contexts, arises from constraints on
computation and communication. For example, in military
contexts, most of the sensing nodes may be extremely
simple (i.e., they are “throw-away” sensors that are de-
ployed only for a single mission). Such sensors may
only be able to communicate through local wireless con-
nections, perhaps augmented with connections to more
powerful platforms. Similarly, embedded sensors in the
home may not be coordinated through centralized pro-
cessing; even if there is such a central node, much of the
communication and computation is likely to take place
in a distributed manner. Such contexts require distributed
algorithms for passing information so as to maintain con-
sistent statistical information throughout the network.
Indeed, in a centralized system in which all sensed sig-
nals are available at a common point (e.g., as in a smart
room), the vast amounts of data necessitate methods for
fusion with computational complexity that scales well
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with the dimensionality of both the data and the desired
output information.
In this paper, we provide an overview of several pro-

jects aimed at addressing the challenges we have just
described. In particular, we describe three research efforts:

Multi-modal Sensor Fusion.Our first line of research
addresses the fusion of signals from differing modalities
in the absence of any explicit prior information about
relationships among the signals. More precisely, we do
not assume knowledge of the mechanisms by which the
underlying causes interact to give rise to the multi-
modal measurements. The specific context inwhich we
describe this work is that of audio-videofusion. The
methods we describe are based on exploiting the notion
of mutual information in order to identify linear projec-
tions of the signals that are related to a common cause,
without explicitly modeling or identifying that cause.

Calibration of Multi-modal Sensors from Pas-
sively Sensed Data.A critical problem in many distrib-
uted sensor systems is caused by uncertainty in the
locations or calibration of the various sensors. Suchuncer-
tainties can lead to substantial errors in the fusion of
data collected by these sensors. Thus, the development
of methods for performing such calibration is critical if
these data are to be exploited correctly. We describe
preliminary work on a particular version of this problem,
namely that of identifying multi-modal correspondences
for the purpose of ultimately recovering the relativegeom-
etry of a set of passive sensors using the methodology
described in the first section. Specifically, we consider
co-located audio-video sensors and how to fuse their
complementary information in order to locate theirsource
using passive sensing.

Information Propagation in Networks with Cycles.
As indicated previously, a major challenge in distrib-
uted fusion is the development of algorithms for propa-
gating information throughout the network in order to
produce consistent statistical descriptions at each local
region. Accordingly, we devote the third section todescrib-
ing two new iterative algorithms for estimating unknown
variables in a network based on a set of noisy or incom-
plete observations. In this setting, the network itself is a
graphical model:that is, at each node lies a random
variable, and the graphical structure of the network rep-
resents dependencies (and more importantly, conditional
independencies) among these variables. The problem of
estimation or inference in such graphical models is the
focus of considerableresearch in a variety of fields,
including artificial intelligence [22, 24], image processing
[14, 15], and the decoding of error correcting codes [18,
21]. For acyclic graphs or trees, there exist well-known

and very efficient algorithms for performing inference.
However, for graphs with cycles of any substantial size,
these same problems are intractable. Although there exist
methods for obtaining approximate solutions (e.g., belief
propagation [24]) in graphs with cycles, such algorithms
are not guaranteed to converge. Moreover, even when
they do converge, the accuracy of the resulting approxi-
mation can vary substantially.
In this paper, we describe some new iterative algo-

rithms for graphs with cycles. These algorithms are char-
acterized by acommon computational engine – that of
exploiting very efficient algorithms to perform asequence
of exact calculations on acyclic graphs embedded within
the original network. As we discuss, the behavior of the
resulting algorithms is at least as good as that of previ-
ous methods for relatively easy problems; in addition,
these new methods perform much better for many prob-
lems in which previous methods fail.

The presentations we provide of these three topics
are, of necessity, overview in nature, and we refer the
reader to more complete descriptions of each of these
[11, 12, 27–31].

2 Information Theoretic Audio-Video
Fusion

In this section we describe an information theoretic
approach for signal-level sensor fusion. An obstacle to
signal-level fusion of disparate signal types is the lack
of simple joint statistical models (e.g., jointly Gaussian).
For modalities whose relationship is complicated, fusion
is not a straightforward task. For example, the optimal
predictor from one sensor to another might be nonlin-
ear, or the joint statistics might be multi-modal. In this
section, we describe and justify an information-theoretic
approach applicable to such problems. Although we dem-
onstrate our approach using audio and video sensors,
the technique is not restricted to these modalities, and is
quite general.
A critical question is whether, in the absence of an ade-

quate parametric model for joint measurement statistics,
can one integrate measurements in a principled way,
incorporating all available knowledge about statistical
uncertainties. A nonparametric statistical estimationframe-
work provides one attractive solution to this problem. In
such approaches, we appeal to the information-theoretic
notions of mutual information (MI) and minimum con-
ditional entropy, which are equivalent to the principles
of maximum a posteriori (MAP) and maximum likeli-
hood (ML) in the parametric framework. We suggest an
approach for learning maximally informative joint
subspaces for multimedia signal analysis. The technique
is a natural application of the learning method described
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in [10, 12, 13], which is an entropy/MI optimization
method for differentiable maps.
Fusion problems may be further complicated by the

dimensionality of the signals. The video signals in the
experiments we present are of high dimension (e.g. 360×
240 pixels) while the audio signals are sampled at 24Khz.
The fusion approach makes use of a few seconds of
data. Consequently, relative to the dimensionality of
the signals, we have a small number of samples. High
dimensionality is addressed by working in a subspace of
the original measurements.
The approach is illustrated notionally in Figure 1.Given

a video and audio signal collected at the same time, we
treat the video frames as samples of a random variable
and, likewise, the audio frames (windowed spectra com-
puted every 1/30 seconds) as samples of another ran-
dom variable. These variables correspond toX v Nv∈ ℜ
and X a Na∈ ℜ in the graphical model of Figure 2(a).
These samples are passed through functionsY g X hi

v
i
v

v= ( , )
andY g X hi

a
i
a

a= ( , ) whereYi
v Mv∈ ℜ andYi

a Ma∈ ℜ have
reduced dimensionality (i.e.Mv << Nv , Ma << Na ).
For the experimental results presented here, the func-
tions are linear projections wherehv and ha are the
coefficients of the linear projection. The dimensionality
of the projections is such that each video and audio
frame is reduced to ascalar. While our experiments map
video and audioframes to a one-dimensional statistic
(each) using a linear projection, the method itself is, in
principle, extensible to any differentiable function and
higher output dimension.
The goal of the approach is to choose the projection

coefficients to optimize our fusion criterion. Specifically,
the fusion criterion is the mutual information between

the projections of the audio and video data defined in
three equivalent ways as:

I Y Ya v( ; ) = h Y h Y h Y Ya v a v( ) ( ) ( , )+ − (1)

= h Y h Y Ya a v( ) ( | )− (2)

= h Y h Y Yv v a( ) ( | )− (3)

whereh( ) is differential entropy [7] of the random vari-
ableYwith densityp yY ( ). Differential entropy is defined
as

h p h Y p y p y dyY Y Y

Y

( ) ( ) ( ) log( ( ))= = −∫
Ω

(4)

Entropy quantifies uncertainty in terms of the volume
occupied by a random variable (as opposed to moments,
which capture the spread of a density.1)
Intuitively, one can think of this criterion as design-

ing features which summarize the common information
in X a andX v . The underlyis notion is that of a maximally
informative subspace: the variableYa summarizes infor-
mation aboutX v that is contained inX a andYv summa-
rizes information aboutX a that is contained inX v . The
challenge of using such a criterion is that mutualinfor-
mation is an integral functional of adensity. Furthermore,
we can only infer that density from samples. Conse-
quently one needs an approximation to entropy (and by
extension mutual information), an (implicit) estimate of
the density, and an efficient means to compute the gra-
dient with respect to the mapping coefficients (ha and
hv ). We refer the reader to [10, 13] where the approach
is described in detail.
A brief description of the algorithm is as follows. We

estimate the density in the low-dimensionaloutput space
using the Parzen density estimator [23], defined as

� ( )p y
N

k
y y

Y

j

j
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
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∑1

σ σ
(5)

wherey can be eitherya, yv when estimating their mar-
ginal densities,k(y) is a kernel and must be a valid pdf
(in our case a unit-variance Gaussian), {yj} are samples
of the random variable, andN is the number of samples.
Joint densities are similarly estimated using measure-
ment pairs:
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The Parzen density estimate is chosen because it has the
capacity to model densities with complex structure. Fur-
thermore, it has desirableL1 convergence properties [9].
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Fig. 1 Multi-modal fusion approach: Audio-video exam-
ple in which the independent causes are the person
speaking and the monitor flickering (due to asynchron-
ous sampling). Note that the functions g hv([ ], )• and
g ha([ ], )• may have different functional forms.



Next we replace the integrand of (4)( log )p p with a
second-order Taylor series approximation (expandedabout
the uniform density) obtaining the following relation-
ship between the approximation and the true entropy of
the estimated density.

�( �) ( �) ( � | | )
( )

( �( ) ( ))h p h p D p p
p y

p y p y dyu
u

u

y

= + − −∫
1

2
2

Ω

(7)

where pu ( ) is the uniform density over the support of
the output space (constrained to lie in a unit hyper-cube)
andD p pu( � | | ) is the Kullback-Leibler divergencebetween
the densities�( )p andpu ( ) [19].
This particular choice of entropy approximation and

density estimate lead to a closed form gradient of MI
with respect to the projection coefficients which can be
computed by evaluating afinite number of functions at a
finite number of points in the output space (see [13]).
The update term for theindividual entropy terms in (1)
of sampleyi at iterationk as a function ofyi’s at itera-
tion k – 1 is (note the opposite sign on the third term)
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whereyi denotes a sample of eitherY
a orYv , M Ma= ,

Mv or M Ma v+ depending on which entropy term in
equation (1) is being completed. Bothb yr i( ) andκ σa iy( , )
are vector-valued functions (M-dimensional) andd is
the support of the output (i.e. a hyper-cube with volume
dM ). The notationb yr i j( ) indicates thejth element of
b yr i( ). Adaptation consists of the update rule above fol-
lowed by a modified least squares solution forhv and
ha until a local maximum is reached. In the experiments
that followM Mv a= =1with 150 to 300 iterations.

2.1 STATISTICAL JUSTIFICATION

While mutual information as a fusion criterion has intu-
itive appeal a natural question is when is it appropriate
for fusion. One case arises in the context of the directed
graph of Figure 2(a) which corresponds to the (statisti-
cally) independent cause model where the joint density
of the variables( , , , , )A B C X Xa v has the form:

p A B C X X p Aa v( , , , , ) ( )=

× p B p C p X A B p X B Ca v( ) ( ) ( | , ) ( | , )

where (A, B, C) are the independent causes of theobser-
vation variables( , )X Xa v . In Figure 1(a) the causeswould
be (as we shall see) the person speaking and the monitor
flickering. The image sequence depends on both of those
“causes” while the audio signal depends only on the
person speaking. Figure 2(b) represents the extension to
the graph when we add our projections.
Addressing the question of fusion criterion, consider

the graphical models of Figure 3 which can be derived
using graphical manipulations (or equivalently Bayes’
rule) from the independent cause model. They show that
information aboutX a is conveyed through thejoint sta-
tistics of the causesA andB. A similar statement can be
made aboutX v . As a result we cannot, in general, dis-
ambiguate the influences thatA, B, andC have on the
measurementX a andX v .
However, suppose decompositions of the measurements

X a andX v existsuch that the following joint densities
can be written:

P A B X P A P B P X A P X Ba
A
a

B
a( , , ) ( ) ( ) ( | ) ( | )=

P B C X P B P C P X B P X Cv
B
v

C
v( , , ) ( ) ( ) ( | ) ( | )=

whereX X Xa
A
a

B
a= [ , ] and X X Xv

B
v

C
v= [ , ]. An example

for our specific application would be segmenting the
video image (or filtering the audio signal). Under this
assumption, the model simplifies to the graph shown in
Figure 4(a); from this simplified graph, we can extract
the Markov chain which contains elements related only
toB. Figure 4(b) shows equivalent graphs of theextracted
Markov chain; panel 4(c) shows these same Markovchains
with the projections and fusion variables. In theseMarkov
chains, there is no longer any influence due toA or C.
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Fig. 2 (a) Graph of the independent cause model,
and (b) the extension to the graph when the projec-
tions are considered.



However, this does not say how muchX a or X v depend
on one another, or their common causeB.
There exist more general decompositions that lead to

this type of decoupling. Finding such a decomposition

may be nontrivial. However, given the decomposition
property, we can demonstrate why the fusion criterion is
appropriate. Using the data processing inequality [7]
applied to the Markov chains of Figure 4(c), the follow-
ing inequalities hold:

I Y Y I X Y I B Y I X YB
a

B
v

B
a

B
v

B
v

B
v

B
v( ; ) ( ; ) ( ; ) ( ; )≤ ≤ ≤ (11)

I Y Y I X Y I B Y I X YB
v

B
a

B
v

B
a

B
a

B
a

B
a( ; ) ( ; ) ( ; ) ( ; )≤ ≤ ≤ (12)

and consequently

I Y Y I Y Ba v a( , ) ( , )≤ (13)

I Y Y I Y Ba v v( , ) ( , )≤ (14)

So, by maximizing the mutual informationI Y Ya v( , ), we
must necessarily increase the mutual informationbetween
Ya and B andYv and B. The implication is that this
method of fusion discovers the underlying cause of the
observations, so that the joint density ofP Y Ya v( , ) is
strongly related toB, without explicitly modelingB. Fur-
thermore, with an approximation, we can optimize this
criterion without estimating the separating function
directly. In fact, learning the separating functions is an
implicit part of the adaptation [13]. In the event that a
perfect decomposition does not exist, it can be shown
that the method will approach a “good” solution in the
Kullback-Leibler sense. In the collaborative signal pro-
cessing domain, such fusion would allow multiple sig-
nals to be broken down into their constituent associated
parts.

2.2 FUSION OF AUDIO-VIDEO DATA:
EMPIRICAL RESULTS

We now present experimental results fusing audio/video
data. In all cases the video signals in our experiments
have dimension 360×240 pixels taken at 30 frames per
second while the audio signals are sampled at 24 KHz.
Audio signals are converted to a spectral representation
by computing periodograms at the video rate using a
window of length 2/30 seconds. Approximately three to
four seconds of data are used in each case.
In each experiment video and audio frames are pro-

jected to a scalar. The projected variables are defined as

Y h Xa
a
T a= audio projection (15)

Y h Xv
v
T v= video projection (16)

whereha andhv are one-dimensional vectors of appro-
priate dimension. Processing is performed on samples
of these random variables.
In this experiment we illustrate the utility of the

approach for localization of the speaker in a video
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Fig. 3 Dependency graphs derived from the inde-
pendent cause model (a)–(c) show the causal depend-
ency induced by observing (a) X a , (b) Xv , and (c) both
X a and Xv .

Fig. 4 (a) Modified directed graph when decomposi-
tion exists. (b) Extracted Markov chain and equivalent
graphs. (c) Extracted Markov chain with projection vari-
ables.



sequence using the audio signal. Figure 5(a) shows a
single video frame from one sequence of data while 5(b)
shows the sequence of periodograms computed from an
audio signal recorded at the same time. In the figure
there is a single speaker and a video monitor. Thoughout
the sequence the video monitor exhibits significantflicker.
Figure 5(c) shows an image of the pixel-wise standard
deviations computed over the video sequence. As can be
seen the energy associated with changes due to monitor
flicker is significantly greater than that due to thespeaker.
However, one would not expect the changes in the mon-
itor to be related statistically to the voice of the speaker.
One would expect the changes due to the speakers lip
motion to be related to the audio, but an exact model
may not be available. The algorithm itself is agnostic
with regard to the exact nature of the cause of the
audio/video signal. It merely searches for projections
which exhibit relatedness as measured by mutual infor-
mation. This approach would be expected to work on
other motion/sound pairs so long as the motion/sound
pairs were related.
As we have described, we learn a projection of both

the video and audio measurements such that the projec-
tions have high mutual information. Figure 5(d) shows
the magnitude of the video projection coefficients after
running the algorithm. As can be seen the projection

coefficients have high magnitude in the region of the
speakers lips and insignificant magnitude elsewhere, con-
sistent with the independent cause model. Again, the
utility lies in the fact the we do not place any express
constraints on the form of the relationship of the projec-
tions, merely that they have high mutual information as
estimated by our algorithm.
An example from a second video sequence is shown

in Figure 6. In this sequence there is a single speaker
(foreground), a monitor flickering (left) and an addi-
tional person in the background (moving their arms).
This example is more difficult than the previous due to
the presence of additional motion distractors which
exhibit higher energy as measured by frame-to-frame
pixel differences than changes due to the motion of the
speaker’s mouth.

3 Array Geometry from Passively
Sensed Data

Unknown sensor geometry can pose a significant chal-
lenge for distributed sensing. In the presence of sensor
location uncertainties, data fusion becomes problematic.
This problem is particularly acute when careful sensor
placement is neither possible nor practical. If none of
the sensors are active, calibration (when possible) relies

342 COMPUTING APPLICATIONS

Fig. 5 Example of video localization using fusion approach: (a) one frame from 3 second sequence, (b) image of
periodogram sequences (horizontal is time, vertical is frequency), (c) image of pixel standard deviations, and (d)
image of learned video projection.



on passively sensed data. In particular, a basic require-
ment is the necessity to associate measurements taken
from different locations which have a long baseline sep-
aration.
Using the basic method from the previous section, we

discuss an approach which might be used forlong-baseline
stereocamera calibration. In this particular case we con-
sider two cameras with co-located microphones. Asbefore
video and audio data are captured synchronously. Fig-

ures 7(a and b) show a frame from each of the cameras.
Figures 7(c and d) show the pixel standard deviations
for each of the sequences.
In typical stereo camera calibration methods, corre-

spondences in each image are used to find a homography
between the two viewpoints (i.e. a transformation that
maps points in the scene taken from one viewpoint to
the scene taken from the other viewpoint). There are
various methods for finding correspondences, but most
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Fig. 7 Audio/video data was collected from two viewpoints with two speakers in the scene. (a) and (b) show one
frame from each of the sequences, while (c) and (d) are images of the sequence pixel standard deviations.

Fig. 6 Example of video localization using fusion approach: (a) one frame from 2.5 second sequence, (b) image
of pixel standard deviations, and (c) image of learned video projection.



use a local correlation approach. That is, small image
patches from one viewpoint are correlated with an image
takenfrom the other viewpoint. This method works rea-
sonably well for short baselines. However, as the baseline
increases, correlation–based approaches degradesignifi-
cantly. We propose an alternative method for finding
correspondences based on the learning algorithm of the
previous section. That is, the common variation in the
image sequences associated to a common audio signal
will provide correspondence locations between the view-
points. In the data presented, the subjects in the scene
speak at different times. Breaking the sequence into two
segments (one for the person on the left, and one for the
person on the right), we learn two projections (one for
each camera) that relate their common audio signal as in
the previous section. This is done for each segment of
data. As we shall see, the projections (or the maximal
point of the projection) provide fairly good correspon-
dence to the individual speakers mouths. While this is a
very specific example, it illustrates the notion of using
complementary properties of multi-modal sensors.
As can be seen in Figures 8 and 9, for this set of data,

the peak magnitude of the learned projection provides a

good correspondence for the individuals’ mouth locations.
Of course, significantly more experimentationwill be nec-
essary, but these preliminary results show promise for
the idea conceptually and are a good example of lever-
aging joint properties of sensing modes for signal pro-
cessing.
We should note that in order to complete the calibra-

tion more than two correspondences are necessary. As a
practical matter, stationary sensors can acquire additional
correspondences over time as people (or objects) enter
and leave the scene.

4 Inference techniques for graphs with
cycles

We now bring our attention to another important and
challenging problem: namely, given a network of nodes
with constraints on computation and communication,
how does one distribute information so as to perform
statistical inference in an efficient manner? In this sec-
tion, we describe two new approaches to the problem of
estimation or inference on graphs with cycles. As dis-
cussed in the introduction, such inference problems arise
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Fig. 8 Magnitude image of resulting projections for speaker on left for the camera on left (a) and right (b). A sur-
face plot of the two projections are shown in (c) and (d). The largest peak in both plots corresponds to the mouth
area of the subject on the left.



in a wide range of applications. In the context of sensor
networks, the prototypical example is illustrated in Fig-
ure 10(a). Each sensor in the distributed networkobserves
the activities occurring in a local area which overlaps
the observation domains of its immediate neighbors. The
objective is to fuse the information from all of the sen-
sors to obtain a consistent, and preferably optimal, esti-
mate of the observed environmental variables over the
entire region. In some problems, these variables corre-
spond to random fields representing quantities defined
over the entire domain (e.g. pressure or temperature). In
others, they may represent discrete objects whose num-
ber, characteristics, locations, and interrelationships we
wish to estimate. In either case, the resulting problem
can be cast abstractly in graphical terms as depicted in
Figure 10(b).
Each node, or vertex, of the graph in Figure 10(b)

represents a different random variable in the original
distributed sensing problem. Some nodes represent the
observations recorded at each sensor, while others corre-
spond to the unobserved, or hidden, environmental vari-
ables we would like to estimate. The edges between
nodes specify their statistical interrelationships. Forexam-
ple, signals recorded by acoustic sensors may be the

superposition of the sounds generated by several differ-
ent environmental sources. In this case, there are edges
between the node representing the sensor and all of the
nodes corresponding to hidden variables that directly
influence the sensor. Alternatively, edges between hid-
den variables can capture known or suspected relation-
ships among these variables. For example, pressure and
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Fig. 9 Magnitude image of resulting projections for speaker on right for the camera on left (a) and right (b). A
surface plot of the two projections are shown in (c) and (d). The largest peak in both plots corresponds to the
mouth area of the subject on the right.

Fig. 10 (a) Notional sensor network in which field of
view overlaps for “neighboring” sensors. (b) Corre-
sponding graphical model, where circles represent
unobserved (hidden) random variables and squares
represent noisy observations.



temperature distributions have spatial correlations that
can be modeled with such edges. Similarly, edges could
model hypotheses concerning the relationships between
objects, allowing phenomena like coordinated naviga-
tion to be captured.
Given such a graphical model, our objective is to infer

the behavior of variables throughout the network from
imperfect, uncertain observations of a subset of thenodes.
Typically, we also wish to perform this inference in a
network–constrained manner, where all information is
exchanged through a series of local message–passing
operations between neighboring nodes. As indicated in
the introduction, if the graph is acyclic, there exist effi-
cient optimal inference algorithms which scale linearly
with problem size (as measured by the number of nodes)
and satisfy the network constraint. For graphs withcycles,
however, exact inference is known to be NP hard [6].
Moreover, in virtually every context in which graphical
inference arises, there are compelling reasons to con-
sider graphs with cycles. In particular, note that remov-
ing a single node or link from an acyclic graph will
cause the nodes to become disconnected. Therefore, to
model sensor networks which are robust to the failure of
individual components, we must consider graphs with
cycles.
Is this section, we discuss a pair of novel statistical

inference algorithms for graphs with cycles. Each algo-
rithm generates a sequence of iterates by solving a series
of modified problems on acyclic, or tree–structured,graphs
embedded within the original graph. The first technique,
called theembedded treesalgorithm [31], is designed
for exact inference on graphs in which the variables are
jointly Gaussian. We also discuss a family oftree-based
reparameterizationalgorithms for approximate inference,
with particular emphasis on discrete–valued random vari-
ables. More detailed and extended descriptions of these
methods and their properties can be found in [27–31].

4.1 GRAPHICAL MODELS

Graphical models derive their power from the fact that
their graphical structure directly specifies the Markovian
structure, or conditional independencies, of the underlying
random variables. In particular, conditioned on the values
of any set of nodes, disjoint subsets of the graphwhich
are separated by those nodes are independent.2 For exam-
ple, in Figure 10(b), nodesA and D are conditionally
independent given nodesB andC. The conditional inde-
pendencies specified by a given graph in turn constrain
the probability distribution of the variables in the graph.
These constraints are made precise by the Hammersley–
Clifford Theorem [3], which asserts that any valid distri-
bution on a graphical model can be compactly encoded
using the structure of the graph itself.

The Hammersley–Clifford Theorem is stated in terms
of cliques, which are sets of nodes in which every node
is directly connected to every other node in the clique.
For example, in Figure 10(b) any pair of nodes con-
nected by an edge forms a clique, and certain node tri-
ples such as {A, B, C} and {B, C, D} form cliques.
However, {A, B, C, D} is not a clique because there is
no edge between nodesA andD. Let C be the set of all
cliques in the graph. Then, a positive distributionp( )x
defined on the set of hidden nodesx satisfies the condi-
tional independencies implied by the graph if and only
if it can be written in the factorized form

p
Z

xC C
C

( ) ( )x =
∈

∏1
ψ

C

(17)

wherexC is the set of random variables in cliqueC, Z is
a normalization constant, andψC Cx( ) is an arbitrary
function taking positive values, called a compatibility
function or clique potential.
From the Hammersley–Clifford Theorem, we know

that the distributionp(x) of the hidden variables must
factorize into local potential terms as in equation (17).
Let y be the set of observations made by all of the sen-
sors. Under the typical assumption that each observation
ys is of a single hidden nodexs , the conditional distribu-
tion p(x|y) will retain the same functional form as (17),
and hence the same graphical structure. This structure
can be exploited by inference algorithms, which must
compute functions ofp(x|y). Some inference problems,
such as computing the MAP estimate�xMAP maximizing
p( � | )x y , involve global optimization over the entire graph.
Many others, however, reduce to a set of local estimates
for which the core challenge is computing the marginal
distributionsp xs( | )y for some or all of the nodess in the
graph.
In principle, one could calculate these single-node

marginals by integrating or summing over all possible
configurations of the other hidden variables. However,
such a brute force approach is, in general, intractable.
For example, given a set ofn nodes taking discrete values
from an alphabet of sizem, the direct approach would
requireO( )mn operations. Alternatively, if the hidden
nodes and observations were jointly Gaussian, the exact
conditional distribution could be found by solving a sys-
tem of linear equations. Forn hidden nodes, each repre-
senting a vector Gaussian random variable of dimension
d, this would requireO( )n d3 3 operations. In either case,
direct costs are intractable for values ofn arising in
many practical applications.
For acyclic or tree-structured graphs, there existextrem-

ely efficient techniques for inference. A key property of
trees is that nodes in a tree can be partially ordered in
terms of their distance from a root node. Exploiting this
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partial ordering leads to direct recursive inferencealgo-
rithms which generalize dynamic programming–based [2]
two–pass smoothing algorithms [16] for inference on
Markov chains. In the discrete case, such algorithms
require onlyO( )nm2 to compute single node marginals.
In the Gaussian case, generalizations of the Kalman fil-
ter [5] requireO( )nd3 operations.
For graphs with cycles, exact algorithms that scale

linearly with n are generally not available. As a result,
there is considerable interest and activity [4, 17] in
developing approximate inference methods that work
directly on the original graphical structure and are thus
well–matched to network–constrained estimation prob-
lems. One of the best known, and most widely studied,
approaches is the message–passing algorithm known as
belief propagation [24]. In its standard form, belief prop-
agation (BP) consists of an iterative sequence of local
updates in which each node performs local computa-
tions and sends the results to its immediate neighbors.
For tree–structured graphs, BP is similar to the two–pass
tree inference algorithms mentioned above, and it con-
verges to the exact optimal solution in a finite number
of steps.
Much of the contemporary interest in BP, however,

lies in its application to graphs with cycles, where it has
been found to perform well for certain subclasses of
graphs with cycles. In particular, it has received a great
deal of attention in the coding theory literature [18, 21],
where it provides the decoding procedure for the capacity-
approaching turbo codes and low–density parity check
codes.3 For other graphs, however, BP may yield very
poor approximations, or even fail to converge at all. In
the Gaussian case, it can be shown that if BP converges,
it always computes the correct conditional means, but
incorrect error covariances [26, 33]. In the discrete case,
recent work [1, 25, 32, 34] has yielded some insight into
the dynamics and convergence properties of BP. None-
theless, there remains much to be understood about the
behavior of this algorithm, and more generally about
other (perhaps superior) approximation algorithms.
In the following sections, we briefly describe two new

network–constrained algorithms that improve on some
of the limitations of belief propagation. The updates of
belief propagation are purelylocal, in that at each iter-
ation each node exchanges information only with its
neighbors. In contrast, both of the techniques that we
describe are based on the idea of isolating a spanning
tree embedded within the original graph with cycles,
and then performing exact calculations on this substruc-
ture. Since the tree is chosen to span the graph, the asso-
ciated updates areglobal, in the sense that information
from each node propagates throughout the graph within
a single iteration. Despite the global nature of theseupdates,
the computational cost is equivalent to or cheaper than
BP, since we can make use of efficient tree algorithms.

4.2 TREE-BASED INFERENCE FOR
GAUSSIAN PROCESSES

In this section, we examine inference techniques forgraphs
where the variables are jointly Gaussian. Letx =
[ ... ]x x xT T

n
T T

1 2 be a vector containing the hidden vari-
ables, wherex ~ N ( , )0 P . In the Gaussian case, the
constraints on the clique potentials implied by the
Hammersley–Clifford Theorem translate into a sparse
structure for the inverse covariance matrixP−1 . If it is
partitioned into blocks according to the hidden variable
dimensions, the( , )s t th block can be nonzero only if there
is an edge between nodessandt.
Let y = Cx + v, v ~ N ( , )0 R , be a vector of noisy

observations consisting of independent measurementsys
of individual nodesxs . This implies that bothC andRare
block diagonal. We are interested inp xs( | )y ~N ( � , � )x s sP ,
the conditional distributions of the hidden variables at
each node givenall of the observations. Standard formu-
las exist for the computation ofp(x|y) ~N ( �, �)x P :

[ ] �P C R C C RT T− − −+ =1 1 1x y (18)

� [ ]P P C R CT= +− − −1 1 1 (19)

The conditional means�x s are simply subvectors of�x,
while the error covariances�Ps are the block diagonal
elements of�P.

4.2.1 Calculation of Conditional Means using
Embedded Trees. For a Gaussian process on a graph,
the operation of removing edges corresponds to modifying
the inverse covariance matrix. Specifically, we apply a
matrix splitting

P C R C P K C R CT
t t

T− − − −+ = − +1 1 1 1
tree ( )

whereKt is a symmetric cutting matrix chosen to ensure
thatP ttree ( )

−1 corresponds to a valid tree-structured inverse
covariance matrix. This matrix splitting allows us to consider
defining a sequence of iterates {�x n } by the recursion:

[ ]P C R C K C Rt n
T n

t n
n T

tree ( ( )) ( )� �
− − − −+ = +1 1 1 1x x y

Heret(n) indexes the embedded tree used in thenth iter-
ation. For general graphs, there are a huge number of
potential cutting matricesKt n( ) . For example, Figure 11
shows two of the many spanning trees embedded in a
nearest–neighbor grid.
When the matrix( )( ( ))P C R Ct n

T
tree
− −+1 1 is invertible, it

is possible to solve for the next iterate�x n in terms of
datay and the previous iterate�x n−1 . Thus, given some
starting point�x 0 , we can generate a sequence of iterates
{ �x n } by the recursion
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� [ � ]( ) ( )x x yn
t n t n

n TJ K C R= +− − −1 1 1 (20)

where Jt n( ) =∆ ( )( ( ))P C R Ct n
T

tree
− −+1 1 . By comparing equa-

tion (20) to equation (18), it can be seen that computing
then th iterate corresponds to a linear-Gaussian problem,
which can be solved efficiently and directly with stan-
dard tree algorithms [5].
Due to the linearity of the ET iterations, their conver-

gence is easily analyzed. Assuming theJt n( ) matrices
are invertible, algebraic manipulation of equation (20)
shows that for any starting point,�x is the unique fixed
point of the recursion. The erroren n= −∆

� �x x at then th

iteration obeys the dynamics

e J K en
t j t j

j

n

=





−

=
∏ ( ) ( )

1

1

0 (21)

One natural implementation of the ET algorithm cycles
through the embedded trees in some fixed order, say
t T=1, ..., . In this case, the convergence of the algorithm
can be analyzed in terms of the spectral radius of the

product matrixE= =
−∆ Π j

T
j jJ K1
1 . In particular, ifρ( )E >1

then the algorithm will not converge, whereas ifρ( )E <1,
then( � �)x xn n−  →→∞

0geometrically at rateγ ρ=∆ ( ) /E 1 T .
Although ρ( )E completely defines the convergence

behavior, for large problems we cannot explicitly com-
pute this quantity. The challenge is then to find guide-
lines for choosing cutting matricesK which produce
rapidly convergent iterations. Empirically, we find that
cuts which remove weak edges and modify the diagonal
entries of( )P C R CT− −+1 1 as little as possible generally
converge fastest. In addition,much faster convergence
rates are typically found by cycling through multiple
embedded trees. Intuitively, this happens because using
multiple trees allows the immediate reinstatement of
constraints that were neglected on previous iterations.
For theoretical analyses and substantial experimentation
supporting these observations, see [27, 31].

4.2.2 Calculation of error covariances using embed-
ded trees.Although there exist a variety of iterative
algorithms, such as belief propagation, for computing
the conditional mean of a linear-Gaussian problem, none
of these methods correctly compute error covariances at
each node. We show here that the ET algorithm can
efficiently compute these covariances in an iterative
fashion. For many distributed sensing applications, these
error statistics are as important as the estimates.
We assume for simplicity in notation that�x 0 0= and

then expand equation (20) to yield that for any iteration
� [ ]( )x yn

n t n
TF J C R= + − −1 1 , where the matrixFn satisfies

the recursion

F J K F Jn t n t n n t n= +−
− −

−
( ) ( ) ( )[ ]1

1 1
1 (22)

with the initial conditionF1 =0. It is straightforward to
show that whenever the recursion for the conditional
means in equation (20) converges, then the matrix
sequence{ }( )F Jn t n+ −1 converges to the full errorcovariance�P.
Moreover, the cutting matricesK are typically of low

rank, sayO( )Ed whereE is the number of cut edges and
d is the dimension of the hidden variables. On this basis,
it can be shown that eachFn can be decomposed as a
sum ofO( )Ed rank 1 matrices. Directly updating this
low–rank decomposition ofFn from that ofFn−1 requires
O( )nE d2 5 operations. However, an efficient restructuring
of this update requires onlyO( )nEd4 operations [27].
The diagonal blocks of the low–rank representation may
be easily extracted and added to the diagonal blocks of
Jt n( )

−1 , which are computed by standard tree smoothers.
All together, we may obtain these error variances in
O( )nEd4 operations per iteration. Thus, the computation
of error variances will be particularly efficient for graphs
where the number of edgesE that must be cut is small
compared to the total number of nodesn.

4.2.3 Comparison to other techniques.Consider
again the estimation formulas given in equation (18). In
the Gaussian case, computing the conditional mean�x is
equivalent to taking the product of the inverse of a sparse
matrix with a vector. A variety of extremely efficient
techniques for this problem are available in the numeri-
cal linear algebra literature [8]. Of these, the conjugate
gradients (CG) method is one of the most effective, so it
will be used to provide a comparison point for the per-
formance of the embedded trees algorithm. Note, how-
ever, that like BP, CG does not provide the correct error
covariances. In addition, CG iterations donot decom-
pose into the local structure needed for network–con-
strained estimation.
We have applied the ET algorithm to a variety of

graphs, ranging from single cycle graphs to nearest-
neighbor grids. Figure 12(a) compares the rates of con-
vergence for embedded trees (ET), belief propagation
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Fig. 11 Embedded trees produced by two different
cutting matrices Ki for a nearest-neighbor grid (obser-
vation nodes not shown).



(BP), and conjugate gradients (CG) on a nearest-neighbor
grid. ET and BP have per iteration costs ofO( )nd3 ,
while CG isO( )nd2 . The ET algorithm employed two
embedded trees analogous to those shown in Figure 11.
In accordance with theoretical results, the ET algorithm
converges geometrically. For graphs with inhomogeneous
potentials, allthree algorithms typically havesimilar con-
vergence rates. However, for these tests we did not
attempt to optimize the trees used by ET. Figure 12(b)
shows that in contrast to CG and BP, the ET algorithm
can also be used to compute the error variances, where
the convergence rate is again geometric. Note that the
approximate error variances calculated by the BP itera-
tion are much less accurate than the asymptotically exact
variances produced by the ET algorithm.

4.3 TREE-BASED REPARAMETERIZATION
FOR DISCRETE PROCESSES

In other work [28–30], we have shown that the same
idea of performing exact computations over trees embed-
ded within a graph with cycles can be applied fruitfully
to discrete processes as well. Our work provides a new
conceptual view of various algorithms for approximate
estimation, including belief propagation (BP). The basic
idea is to seek areparameterizationof the distribution
that yields factors which correspond, either exactly or
approximately, to the desired marginal distributions. If
the graph is tree-structured (i.e., acyclic), then thereexists
a unique reparameterization specified by exact marginal
distributions over cliques. For a graph with cycles, we
consider the idea of iteratively reparameterizing differ-
ent parts of the distribution, each corresponding to an
acyclic subgraph. We show that the usual parallel mes-
sage-passing BP can be interpreted in exactly this man-
ner, in which each reparameterization takes place over a
pair of neighboring nodes. More generally, we consider
updates in which reparameterization is performed over

arbitrary spanning trees, which we refer to astree-based
reparameterization(TRP) algorithms. At one low level,
these more global updates can be viewed as a tree-based
schedule for message-passing.
Viewing approximate estimation asreparameterization

leads to a number of new conceptual insights. First of
all, we derive an intuitive characterization of BP fixed
points: they must be consistent, in a suitable sense to be
defined, overall trees embedded within the originalgraph
with cycles. Secondly, we establish that all iterates of
TRP/BP algorithms, as well as their fixed points, obey
an intrinsic invariance: namely, although the updates
alter the local compatibility functions, the distribution
on the graph with cycles is left unchanged. These two
results enable us to make a contribution to an important
open problem – viz., characterizing the approximation
error that arises in applying BP to a graph with cycles.
Some results have been obtained in certain special cases:
Weiss [32] for the single cycle, and Richardson [25] for
turbo codes. We derive an exact expression for the dif-
ference between the BP approximations and the actual
marginals on an arbitrary graph with cycles. Moreover,
we derive computable bounds on this error, which help
to illustrate factors controlling approximation accuracy.
More details of the work described here can be found in
the papers [28–30].

4.3.1 Inference in trees as reparameterization.To
understand the notion of tree-based reparameterization,
recall that as shown in equation (17), any probability
distribution defined by a graphical model decomposes
as a product of functions, each involving only maximal
cliques of the graph. In general, determining the mar-
ginal distributions of subsets of variables from such repre-
sentations is a daunting task [6]. However, suchfactorized
representations are far from unique. This suggests the
possibility of finding factorizations of the probability
distribution in which individual factors correspond,either
exactly or approximately, to the desired marginal distri-
butions.
The lack of uniqueness in the parameterization ofp( )x

is illustrated in Figure 13. Shown in (a) is the original
parameterization in terms of compatibility functionsψst

and observation functionsψs . For such a tree-structured
graph, it is well-known that the distributionp( )x can be
reparameterized in terms of the exact joint marginals
p x xst s t( , ) and single node marginalsp xs s( ), as illus-
trated in Figure 13(b). This result generalizes the repre-
sentation of a discrete-time Markov chain as the product
of an initial distribution and successive one-step transi-
tions. (Consider, for instance, the simple Markov chain
formed by nodes 1 and 2.) Alternatively, it can be con-
sidered a special case of the factorization of distribu-
tions specified by the junction tree representation [20].
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Fig. 12 (a) Convergence rates for computing condi-
tional means (normalized L

2
error). (b) Convergence

rate of ET algorithm for computing error variances,
compared to the approximate error variances calcu-
lated by the BP algorithm.



4.3.2 Tree-based reparameterization for graphs
with cycles.Thus, exact graphical inference algorithms
for trees can be viewed as reparameterizing the distribu-
tion p( )x in terms of the exact marginals. From this
viewpoint arises the idea of iterative algorithms forgraphs
with cycles in which, at each iteration, a partialrepara-
meterization is performed over a collection of factors
corresponding to a tree embedded within the original
graph. In particular, the first step of any iteration is to
decompose the original distribution as a productp( )x =
p ri i( ) ( )x x , where pi denotes a distribution over the
embedded tree, andr i denotes a set of residual terms.
The second step is to perform reparameterization on the
embedded tree, leaving fixed the potentials on edges not
in the tree. Finally, we can choose some other embed-
ded tree, and repeat the procedure.
This sequence of operations can be formulated precisely

as updating a vectorT ={ , }T Ts st of pseudomarginalson
each node and edge of the graph. Ultimately, weseek
pseudomarginals that are locally consistent (i.e., forwhich
the local marginalTst on edge (s, t) agrees with the sin-
gle node marginalsTs andTt .) A key property is that
these updates can be viewed as reparameterizations,since
(as with exact estimation on a tree), they simply express
the full distributionp( )x in an alternative form (but do
not alter it). This invariance has a number of important
theoretical consequences.
As we show in [29], belief propagation can be refor-

mulated as a procedure of exactly this type, where each
reparameterization takes place over the extremely sim-
ple subgraph formed by a pair of neighboring nodes.
More generally, the reparameterization perspective leads
to a new class of algorithms, which we refer to astree-
reparameterization(TRP) algorithms. At each iteration,
an entire spanning tree of the original graph isrepara-
meterized simultaneously, thereby propagating informa-
tion globally across all nodes of the graph. We prove

that the fixed points of the reparameterization algorithms
described in [29] coincide with those of BP.
Nonetheless, we find that global updates lead to some

important practical advantages. In particular, one might
expect such an algorithm to have better convergence
properties than the purely local two-node updates of BP.
Indeed, experimentation with TRP supports this conclu-
sion: when applied to problems for which BP converges,
TRP converges at least as quickly, and for many prob-
lems often much more quickly. Figure 14 gives a sam-
ple empirical comparison of BP versus a TRP algorithm
using two spanning trees, as applied to a binary process
defined on a7 7× grid. The condition shown in (a) cor-
responds to attractive potentials that encourage equality
between neighboring random variables; the mixed con-
dition consists of a mixture of attractive and repulsive
potentials. In both cases, the TRP algorithm using two
spanning trees (those shown in Figure 11) converges
more quickly than BP, with lower computational cost
and storage. The advantage is especially marked in the
harder problem case shown in (b). Moreover, in addi-
tion to faster convergence documented here, the global
updates of TRP using spanning trees has another and
perhaps more important advantage – namely, we find
that it converges in many cases where BP does not.

4.3.3 Conceptual insights into approximate infer-
ence.The reparameterization perspective also provides
new theoretical insights. First of all, it leads to a new
characterization of fixed points of algorithms likeTRP/BP.
Recall that each iteration entails reparameterizating the
full distribution p( )x in terms of pseduomarginalsTst
and Ts obtained from calculations over an embedded
tree. Suppose that this sequence converges to a fixed set
of functionsTts

* and Ts
* , which leads to the situation

illustrated in Figure 15(a). We prove that this fixed point
T * must be consistent on each embedded tree contained
within the original graph with cycles. In particular, if
we remove edges (4, 5) and (5, 6) from the graph shown
in Figure 15(a), then we obtain the spanning tree shown
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Fig. 14 Convergence plots of log error versus itera-
tion number n for the 7 7× grid under two conditions.

Fig. 13 Non-uniqueness in the parameterization of a
distribution p( )x on a graphical model. (a) The origi-
nal parameterization is given in terms of compatibility
functions { , }ψ ψs st . (b) The desired parameterization
is specified in terms of the exact marginal distribu-
tions p x xst s t( , ) and p xs s( ) on the graph with cycles.



in (b). The functionsTs
* (for all s ∈ V) andTst

* must be
the exactmarginal distributions for this tree-structured
distribution. More remarkably, this property must hold
for any acyclic structure embedded within the original
graph. So a similar condition would have to hold if (for
instance) we removed edges (1, 2) and (2, 3) from the
graph in (a) to obtain a different embedded tree.
Another fundamental property of the reparameterization

updates is that they leave invariant the full distribution on the
graph with cycles. That is, if the original parameterization
was given asp x x xZ s s s s t st s t( ) ( ) ( , )( , )x = 1 Π Πψ ψ , thenupon

convergence, a TRP algorithm will simply have found
an alternative parameterization of the formp( )x =
1
Z s s s s t

T

T x T xT x st

s s t t
'

*
( , ) ( ) ( )

*

* *Π ( )Π . This invariance has a num-

ber of important consequences, including geometric in-
sight into thereparameterization updates; consequences for
the exactness of algorithms like TRP and BP; implica-
tions for BP in the Gaussian setting; and an exact expres-
sion and bounds on the approximation error. This last
result is especially important, in that it leads to concep-
tual insight into the cases where TRP/BP are expected
to perform well or poorly. We refer the reader to the
papers [28–30] for full details.

5 Discussion

In this paper, we have described research in severalimpor-
tant areas pertaining to networks: information extrac-
tion, sensor fusion, and information propagation. The
research we have described is part of an ongoing effort
aimed at establishing a foundation for an integrated the-
ory and methodology for such networks. A common
theme is the need for algorithms that retain the capacity
for modeling complex relationships while minimizing
computation.
We presented a general framework for fusing signals

from disparate sensor modalities based on concepts from
information theory. In addition, we described a practical
algorithm which embodies these principles. While the
experimental results focused on audio/video data, such

an approach is likely to work on other modalities as well.
Moreover, using the previously described approach to
fusion, we developed a method for finding correspon-
dences for sensors separated by long baselines.Experi-
mental results were given for a two camera system.
Although these results are preliminary, they highlight a
basic challenge for randomly placed sensor arrays:namely,
the need to either recover a relative sensor geometry
from passively sensed data or, failing that, to develop
algorithms that remain robust to sensor uncertainty. This
problem is particularly challenging when the sensor array
contains mixed mode sensors. An additional issue is the
scalability of the algorithm. As the number of sensors
increases it becomes difficult to perform joint fusion in
an optimal manner, which motivates work on inference
techniques for graphs with cycles.
We discussed two new approaches for performing

inference on graphs with cycles. First, we presented the
embedded trees algorithm for exact inference in graphs
where the variables are Gaussian. Brute force approaches
to this problem are intractable for sufficiently large
graphs. Instead, we exploited the fact that any graph
with cycles has a large number of trees embedded within
it, and that tree-structured problems can be solved effi-
ciently. We showed that an exact solution to the original
problem on the graph with cycles can be obtained by
solving an appropriately constructed sequence of tree
problems. Unlike other methods (e.g., belief propaga-
tion), the embedded trees algorithm computes exactly
both the means and error covariances. Our second
approach showed that similar ideas can be applied for
inference problems involving discrete processes. Here
the general problem is NP hard [6], which motivates the
analysis of approximate rather than exact methods. We
presented the tree-based reparameterization framework,
which provides a new conceptual view of a large class
of algorithms for approximate inference including belief
propagation. Among the important theoretical insights
are a new characterization of fixed points, and analysis
of the error in the approximation for an arbitrary graph
with cycles.
There are a variety of important and interesting open

problems which bridge the boundaries between the different
research areas discussed above. Traditionalapproaches to
heterogeneous sensor fusion (as in Section 2) assume
that the relative sensor geometry is known so that each
sensor’s measurements can be correctly registered. How-
ever, as described in Section 3, this fusion procedure
may in fact enhance our ability to estimate and account
for relative geometry. For example, robust coherent pro-
cessing of distributed acoustic sensors requires reducing
or accommodating errors in sensor location. However,
if we also have video sensors to which the acoustic sen-
sors can be fused, we can use stereo processing of the
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Fig. 15 Parameterization upon convergence (a) and
tree-based consistency condition (b).



video data to improve our estimation of acoustic sensor
location, which may in turn improve their coherentexploi-
tation.
A second area for future work is that of performing

multimodal fusion, as in Section 2, in a network–con-
strainedmanner. Distributed fusion procedures must
account for the fact that each sensor has only a limited
domain of observation, overlapping that of nearby sen-
sors, and also has only limited communication connec-
tivity. To develop efficient network fusion algorithms,
we must extend network-constrained inference methods,
such as those described in Section 4, to accommodate
the types of inference problems arising in multimodal
fusion. One particularly important challenge is the problem
of distributed learning. Specifically, the methoddescribed
in Section 2 involved learning how the observables from
two sensors are related, while the methods in Section 4
assume aknown probabilistic model for sensorinterrela-
tionships. Building network-constrained algorithms for
learning such models adaptively is thus of great impor-
tance.
Finally, it is interesting to consider problems in which

the sensor network is itself an embedded system within
a larger sensing and global awareness system. For exam-
ple, in military contexts, distributed ground sensors may
represent only one component of a system that also
includes conventional sensing systems such as airborne
radars and imaging devices. In such cases, there are typ-
ically higher-level graphical models of the military situ-
ation, describing how the activities of different objects
are related over space and time. Such graphical models
are well matched to the framework described in Section 4.
In addition, this more global perspective raises another
important direction for research, namely that of sensor
cueing or control. For example, particular sensors may
have multiple modes of operation and be able to directly
focus their attention on areas of specific interest. In this
situation, this flexibility should be exploited by direct-
ing these sensors to perform those measurements which
best reduce the uncertainty in estimates of particularly
important environmental variables. Implementing this dis-
tributed control in a network–constrained mannerrepre-
sents, in a sense, a “dual” to network–constrainedinference
problems.

NOTES

1. Note that two random variables can have the same vari-
ance (second central moment), but very different entropies.

2. These relationships are valid for graphs with undirected
edges. There is a related theory for graphical models with
directed edges which leads to a different set of conditional
independence relationships. For a more detailed introduction to
graphical models, see [20, 24].

3. In the coding community, belief propagation is known as
the sum-product algorithm.

BIOGRAPHIES

John W. Fisher IIIreceived a Ph.D. degree in electri-
cal and computer engineering from the University of
Florida, Gainesville, Florida in 1997. He is currently a
research scientist in the Artificial Intelligence Labora-
tory and affiliated with the Laboratory for Information
and Decision Systems at the Massachusetts Institute of
Technology. Prior to joining the Massachusetts Institute
of Technology he was affiliated with the University of
Florida, as both a faculty member and graduate student
since 1987, during which time he conducted research in
the areas of ultra-wideband radar for ground penetration
and foliage penetration applications, radar signal process-
ing, and automatic target recognition algorithms. His cur-
rent area of research focus includes information theoretic
approaches to signal processing, multi-modal data fusion,
machine learning and computer vision. He is a member
of IEEE and SPIE.

Martin Wainwright is currently a postdoctoral associ-
ate in EECS and Statistics at the University of California,
Berkeley. He received his Ph.D. in ElectricalEngi-
neering and Computer Science from Massachusetts
Institute of Technology in January 2002. His research
interests include graphical models, machine learning,
network information theory, and combinatorial optimi-
zation.

Erik Sudderthis a Ph.D. student in the department of
electrical engineering and computerscience at the Mas-
sachusetts Institute of Technology, where he received
the M.S. degree in 2002. He received the B.S. degree
(summa cum laude) in electrical engineering from the
University of California at San Diego in 1999. His
research interests include statistical modeling andmachine
learning, and their application to such fields as com-
puter vision, remote sensing, and error correcting codes.

Dr. Alan Willsky joined the M.I.T. faculty in 1973
and is currently the Edwin S. Webster Professor of
Electrical Engineering. He is a founder and member of
the board of directors of Alphatech, Inc. and a member
of the US Air Force ScientificAdvisory Board. He has
received several awards including the1975 American
Automatic Control Council Donald P. Eckman Award,
the 1979 ASCE Alfred Noble Prize and the 1980 IEEE
Browder J. Thompson Memorial Award. Dr. Willsky
has held visiting positions in England and France and
various leadership positions in the IEEE Control Sys-
tems Society (which made him a Distinguished Member
in 1988). He has delivered numerous keynote addresses
and is co-author of the undergraduate text Signals and
Systems. His research interests are in the development
and application of advanced methods of estimation and

352 COMPUTING APPLICATIONS



statistical signal and image processing. Methods he has
developed have been successfully applied in a variety
of applications including failure detection, surveillance
systems, biomedical signal and image processing, and
remote sensing.

REFERENCES

[1] Aji, S. M., Horn, G., and McEliece, R. On the conver-
gence of iterative decoding on graphs with a single cycle.
In Proceedings IEEE Intl. Symp. on Information Theory,
page 276, Cambridge, MA, 1998.

[2] Bertsekas, D.Dynamic programming and stochastic con-
trol, volume 1. Athena Scientific, Belmont, MA, 1995.

[3] Besag, J. Spatial interaction and the statistical analysis
of lattice systems.J. Roy. Stat. Soc. Series B, 36:192–236,
1974.

[4] Besag, J. and Green, P. J. Spatial statistics and Bayesian
computation.J. R. Stat. Soc. B, 55(1):25–37, 1993.

[5] Chou, K., Willsky, A., and Nikoukhah, R. Multiscale sys-
tems, Kalman filters, and Riccati equations.IEEE Trans.
AC, 39(3):479–492, March 1994.

[6] Cooper, G. The computational complexity of probabilis-
tic inference using Bayesian belief networks.Artificial
Intelligence, 42:393–405, 1990.

[7] Cover, T. M. and Thomas, J. A.Elements of Information
Theory. John Wiley & Sons, Inc., New York, 1991.

[8] Demmel, J.Applied numerical linear algebra. SIAM,
Philadelphia, 1997.

[9] Devroye, L.A Course in Density Estimation, volume 14
of Progress in Probability and Statistics. Birkhauser,
Boston, 1987.

[10] Fisher, J. and Principe, J. Unsupervised learning for non-
linear synthetic discriminant functions. In Casasent, D.
and Chao, T., editors,Proc. SPIE, Optical Pattern Rec-
ognition VII, volume 2752, pages 2–13, 1996.

[11] FisherIII, J. W., Darrell, T., Freeman, W. T., and Viola, P.
Learning joint statistical models for audio-visual fusion
and segregation. InAdvances in Neural Information
Processing Systems 13, 2000.

[12] Fisher III, J. W., Ihler, A. T., and Viola, P. A. Learning
informative statistics: A nonparametric approach. In
Solla, S. A., Leen, T. K., and Müller, K.-R., editors,
Advances in Neural Information Processing Systems 12,
1999.

[13] Fisher III, J. W. and Principe, J. C. A methodology for
information theoretic feature extraction. In A. Stuberud,
editor,Proceedings of the IEEE International Joint Con-
ference on Neural Networks, 1998.

[14] Freeman, W. T., Pasztor, E. C., and Carmichael, O. T.
Learning low-level vision.Intl. J. Computer Vision,
40(1):25–47, 2000.

[15] Frey, B., Koetter, R., and Petrovic, N. Very loopy belief
propagation for unwrapping phase images. InNIPS 14.
MIT Press, 2001.

[16] Jazwinski, A. H.Stochastic processes and filtering the-
ory. Academic Press, New York, 1970.

[17] Jordan, M., Ghahramani, Z., Jaakkola, T. S., and Saul, L.
An introduction to variational methods for graphical
models. InLearning in graphical models, pages 105–161.
MIT Press, 1999.

[18] Kschischang, F. and Frey, B. Iterative decoding of com-
pound codes by probability propagation in graphical mod-
els. IEEE Sel. Areas Comm., 16(2):219–230, February
1998.

[19] Kullback, S.Information Theory and Statistics. John Wiley
and Sons, New York, 1959.

[20] Lauritzen, S. L.Graphical models. Oxford University
Press, Oxford, 1996.

[21] McEliece, R., McKay, D., and Cheng, J. Turbo decoding
as an instance of Pearl’s belief propagation algorithm.
IEEE Jour. Sel. Communication, 16(2):140–152, Febru-
ary 1998.

[22] Murphy, K., Weiss, Y., and Jordan, M. Loopy-beliefprop-
agation for approximate inference: An empirical study.
In Uncertainty in Artificial Intelligence, volume 9, 1999.

[23] Parzen, E. On estimation of a probability density function
and mode.Ann. of Math Stats., 33:1065–1076, 1962.

[24] Pearl, J.Probabilistic reasoning in intelligent systems.
Morgan Kaufman, San Mateo, 1988.

[25] Richardson, T. The geometry of turbo-decoding dynamics.
IEEE Trans. Info. Theory, 46(1):9–23, January 2000.

[26] Rusmevichientong, P. and Van Roy, B. An analysis of
belief propagation on the turbo decoding graph with
Gaussian densities.IEEE Trans. Info. Theory, 47(2):
745–765, Feb. 2001.

[27] Sudderth, E. Embedded trees: Estimation of Gaussian
processes on graphs with cycles. Master’s thesis, Massa-
chusetts Institute of Technology, February 2002.

[28] Wainwright, M. J.Stochastic processes on graphs with
cycles: geometric and variational approaches. PhD the-
sis, MIT, Laboratory for Information and Decision Sys-
tems, January 2002.

[29] Wainwright, M. J., Jaakkola, T., and Willsky, A. S. Tree-
based reparameterization for approximate estimation on
graphs with cycles. LIDS Tech. report P-2510: available
at http://ssg.mit.edu/group/mjwain/mjwain.shtml, May
2001.

[30] Wainwright, M. J., Jaakkola, T., and Willsky, A. S.
Tree-based reparameterization for approximate inference
on loopy graphs. InNIPS 14. MIT Press, 2002.

[31] Wainwright, M. J., Sudderth, E. B., and Willsky, A. S.
Tree-based modeling and estimation of Gaussian pro-
cesses on graphs with cycles. InAdvances in Neural
Information Processing Systems 13, pages 661–667.
MIT Press, 2001.

[32] Weiss, Y. Correctness of local probability propagation
in graphical models with loops.Neural Computation,
12:1–41, 2000.

[33] Weiss, Y. and Freeman, W. T. Correctness of belief prop-
agation in Gaussian graphical models of arbitrary topol-
ogy.Neural Computation, 13:2173–2200, 2001.

[34] Yedidia, J., Freeman, W. T., and Weiss, Y. Generalized
belief propagation. InNIPS 13, pages 689–695. MIT
Press, 2001.

METHODS FOR NETWORKED SENSORS 353


