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Abstract

The problem of approximating the product of several Gaunssiiture
distributions arises in a number of contexts, includingrtbeparametric
belief propagation (NBP) inference algorithm and the irajrof prod-
uct of experts models. This paper develops two multiscajerdhms
for sampling from a product of Gaussian mixtures, and coegp#reir
performance to existing methods. The first is a multiscatewaof pre-
viously proposed Monte Carlo techniques, with comparaid®tetical
guarantees but improved empirical convergence rates. ddund makes
use of approximate kernel density evaluation methods tetooct a fast
approximate sampler, which is guaranteed to sample panisthin a
tunable parameter of their true probability. We compare both multi-
scale samplers on a set of computational examples motivatédBP,
demonstrating significant improvements over existing mmoes$h

1 Introduction

Gaussian mixture densities are widely used to model comphetimodal relationships.
Although they are most commonly associated with parametiimation procedures like
the EM algorithm, kernel or Parzen window nonparametricsitgrestimates [1] also take
this form for Gaussian kernel functions. Products of Gaussnixtures naturally arise
whenever multiple sources of statistical information,heatwhich is individually mod-
eled by a mixture density, are combined. For example, givenihdependent observa-
tionsy, y» of an unknown variable, the joint likelihoodp(y: , y2|z) o p(y1|z)p(y2|z) is
equal to the product of the marginal likelihoods. In a relygptoposed nonparametric be-
lief propagation (NBP) [2, 3] inference algorithm for gragdl models, Gaussian mixture
products are the mechanism by which nodes fuse informatam flifferent parts of the
graph. Product densities also arise in the product of exgBdE) [4] framework, in which
complex densities are modeled as the product of many “lazad’traint densities.

The primary difficulty associated with products of Gaussiaxtures is computational. The
product ofd mixtures of N Gaussians is itself a Gaussian mixture wNi components.
In many practical applications, it is infeasible to exgliciconstruct these components,
and therefore intractable to build a smaller approximatitigture using the EM algorithm.
Mixture products are thus typically approximated by drayvgamples from the product
density. These samples can be used to either form a Monte Estimate of a desired
expectation [4], or construct a kernel density estimate@pmating the true product [2].



Although exact sampling requires exponential cost, Gilamsing algorithms may often
be used to produce good approximate samples [2, 4].

When accurate approximations are required, existing mestfaxdsampling from products
of Gaussian mixtures often require a large computationstl. cim particular, sampling is
the primary computational burden for both NBP and PoE. Thisep develops a pair of
new sampling algorithms which use multiscale, KD-Tree [Ejresentations to improve
accuracy and reduce computation. The first is a multiscalanzaof existing Gibbs sam-
plers [2, 4] with improved empirical convergence rate. Teeasid makes use of approx-
imate kernel density evaluation methods [6] to constru@saekexactsampler which, in
contrast with existing methods, is guaranteed to sampleptd within a tunable parame-
ter e of their true probability. Following our presentation oétalgorithms, we demonstrate
their performance on a set of computational examples ntetivay NBP and PoE.

2 Products of Gaussian Mixtures

Let{p1(z),...,ps(x)} denote a set of mixtures of N Gaussian densities, where
pi(e) =Y wi N (@, As) (1)
l;

Here,l; are a set of labels for thi mixture components ip;(x), w;, are the normalized
component weights, andl(x; i, A;) denotes a normalized Gaussian density with mean
w1, and diagonal covarianck;. For simplicity, we assume that all mixtures are of equal
size N, and that the variance¥; are uniform within each mixture, although the algorithms
which follow may be readily extended to problems where thigadt the case. Our goal is

to efficiently sample from thé&/¢ component mixture densipy(z) H‘f:l pi(z).

2.1 Exact Sampling

Sampling from the product density can be decomposed intatems: randomly select one

of the product density’sv¢ components, and then draw a sample from the corresponding
Gaussian. Let each product density component be labeléd=as|ly, ..., ], wherel;
labels one of theV components op;(z).> The relative weight of componeiitis given by

[T, wi, N (; pu,, As) I, » <
WL = TN : AP =STATY A =S A, (2
UL T N wi i, Ar) L ; ; PR ; T, (2)

whereur, Ar are the mean and variance of product compotieand this equation may be
evaluated at any (the valuer = p;, may be numerically convenient). To form the product
density, these weights are normalized bywesght partition functionZ = ", wy..

DeterminingZ exactly take€)(N?) time, and given this constant we can draixsamples
from the distribution inO(N4) time andO(N) storage. This is done by drawing and sort-
ing N uniform random variables on the interJal 1], and then computing the cumulative
distribution ofp(L) = wy,/Z to determine which, if any, samples are drawn from ech

2.2 Importance Sampling

Importance sampling is a Monte Carlo method for approxitgatempling from (or com-
puting expectations of) an intractable distributjgfx), using aproposal distribution ()
for which sampling is feasible [7]. To draW samples fronp(z), an importance sampler
drawsM > N samplese; ~ ¢(x), and assigns thé" sample weightv; o p(z;)/q(x;).
The weights are then normalized By= ), w;, andN samples are drawn (with replace-
ment) from the discrete distributigi{z;) = w;/Z.

Throughout this paper, we use lowercase lette)<d label input density components, and cap-
ital letters = [l4, . .., l4]) to label the corresponding product density components.
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Figure 1:Two possible Gibbs samplers for a product of 2 mixtures of 5 Gausstarmwvs show the
weights assigned to each lab@bp left: At each iteration, one label is sampled conditioned on the
other density’s current labeBottom left: Alternate between sampling a data paktconditioned on
the current labels, and resampling all labels in paraRgght: After « iterations, both Gibbs samplers
identify mixture labels corresponding to a single kernel (solid) in the mbdensity (dashed).

For products of Gaussian mixtures, we consider two diffepeoposal distributions. The
first, which we refer to amixture importance samplinglraws each sample by randomly
selecting one of the input mixtures, and sampling from if§ componentsq(x) = p;(x)).
The remainingd — 1 mixtures then provide the importance weight, (= H#i p;(xi)).
This is similar to the method used to combine density tred8]inAlternatively, we can
approximate each input mixturg (x) by a single Gaussian density(x), and choose
q(x) < I, ¢i(x). We call this procedur&aussian importance sampling

2.3 Gibbs Sampling

Sampling from Gaussian mixture products is difficult beeatie joint distribution over
product density labels, as defined by equation (2), is carag@d. However, conditioned
on the labels of all but one mixture, we can compute the cawdit distribution over the
remaining label irO (V) operations, and easily sample from it. Thus, we may use asGibb
sampler [9] to draw asymptotically unbiased samples, astitited in Figure 1. At each
iteration, the labelgl;},; for d — 1 of the input mixtures are fixed, and th@& label is
sampled from the corresponding conditional density. Thelynwehoseni; is then fixed,
and another label is updated. After a fixed number of itenatio a single sample is drawn
from the product mixture component identified by the finaklabTo drawN samples, the
Gibbs sampler require8(dxN?) operations; see [2] for further details.

The previously describesequential Gibbs samplefefines an iteration over the labels of
the input mixtures. Another possibility uses the fact tgaten a data point in the product
density space, the input mixture labels are conditionally independent [4].u§hone can
define garallel Gibbs samplewhich alternates between sampling a data point conditioned
on the current input mixture labels, and parallel samplifithe mixture labels given the
current data point (see Figure 1). The complexity of thisigamis alsoO(dxN?).

3 KD-Trees

A KD-tree is a hierarchical representation of a point setohldaches statistics of subsets
of the data, thereby making later computations more effidigln KD-trees are typically
binary trees constructed by successively splitting thea dédng cardinal axes, grouping
points by spatial location. We use the variable denote the label of a leaf node (the index
of a single point), andlto denote a set of leaf labels summarized at a node of the &®&-tr
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Figure 2: Two KD-tree representations of the same one-dim. point set. (a) Emtthmaintains a
bounding box (label setsare shown in braces). (b) Each node maintains mean and variancecstatis

Figure 2 illustrates one-dimensional KD-trees which catifferent sets of statistics. The
first (Figure 2(a)) maintains bounding boxes around the, ddlawing efficient computa-
tion of distances; similar trees are used in Section 4.20 Aloown in this figure are the
label setd for each node. The second (Figure 2(b)) precomputes meahngaiances of
point clusters, providing a multi-scale Gaussian mixteresentation used in Section 4.1.

3.1 Dual Tree Evaluation

Multiscale representations have been effectively
applied to kernel density estimation problems. oo -~~~ Wby haleta

Given a mixture ofV Gaussians with meadg:; }, AT A AT T
we would like to evaluate Dy o Dun
) = DN h) @ 56980 000

% . .
at a given set of\/ points{z;}. By representing Figure 3:Two KD-tree representations
the means,;} and evaluation point$z; } with tmhay be combined 1o eﬁ'g'em.'y. bound
two different KD-trees, it is possible to define a Y _”‘)a;(;?\‘fvge%“;;)ncaeg betwoen sub.
d_ual—treereculr5|on [6] which is much faste_r than ¢oie'of the summarized points (bold).
direct evaluation of allvV M kernel—point pairs.

The dual-tree algorithm uses bounding box statistics (&dare 2(a)) to approximately
evaluate subsets of the data. For any set of labels in thétglene® [, and location treé,,
one may use pairwise distance bounds (see Figure 3) to finet aopl lower bounds on

> wiN(zj;p,A)  forany jel, (4)
i€l,
When the distance bounds are sufficiently tight, the sum iratgu (4) may be approxi-
mated by a constant, asymptotically allowing evaluatio®{iV) operations [6].

4 Sampling using Multiscale Representations

4.1 Gibbs Sampling on KD-Trees

Although the pair of Gibbs samplers discussed in Sectioaiz ®ften effective, they some-
times require a very large number of iterations to produceiate samples. The most diffi-
cult densities are those for which there are multiple widelgarated modes, each of which
is associated with disjoint subsets of the input mixtureslgb In this case, conditioned
on a set of labels corresponding to one mode, it is very ulyliteat a label or data point
corresponding to a different mode will be sampled, leadingiéw convergence.

Similar problems have been observed with Gibbs samplers amkd random fields [9].
In these cases, convergence can often be accelerated byucting a series of “coarser



scale” approximate models in which the Gibbs sampler carerhetween modes more eas-
ily [10]. The primary challenge in developing these aldumis is to determine procedures
for constructing accurate coarse scale approximations. Gaussian mixture products,
KD-trees provide a simple, intuitive, and easily constedcset of coarser scale models.

As in Figure 2(b), each level of the KD-tree stores the meahvaniance (biased by kernel
size) of the summarized leaf nodes. We start at the sameecseaite for all input mixtures,
and perform standard Gibbs sampling on that scale’s sum@anssians. After several
iterations, we condition on a data sample (as in the par@ilehs sampler of Section 2.3)
to infer labels at the next finest scale. Intuitively, by graliy moving from coarse to fine
scales, multiscale sampling can better explore all of tbeyet density’s important modes.

As the number of sampling iterations approaches infinityltisaale samplers have the
same asymptotic properties as standard Gibbs samplerartUmdtely, there is no guar-
antee that multiscale sampling will improve performancewver, our simulation results
indicate that it is usually very effective (see Section 5).

4.2 Epsilon-Exact Sampling using KD-Trees

In this section, we use KD-trees to efficiently compute anraxmation to the partition
functionZ, in a manner similar to the dual tree evaluation algorithiitbfsee Section 3.1).
This leads to ar-exactsampler for which a label = [I;,...,[;], with true probability
pr, IS guaranteed to be sampled with some probahjilitye [pr. — €, pr. + €]. We denote
subsets of labels in the input densities with lowercases(r), and sets of labels in the
product density by = [; x--- x [4. The approximate sampling procedure is similar to
the exact sampler of Section 2.1. We first construct KD-teggasentations of each input
density (as in Figure 2(a)), and userallti-treerecursion to approximate the partition
function Z = > by, by summarizing sets of labeswhere possible. Then, we compute

the cumulative distribution of theetsof labels, giving each label sgtprobability i /Z.

4.2.1 Approximate Evaluation of the Weight Partition Function

We first note that the weight function (equation (2)) can heritéeen using terms which
involve only pairwise distances (the quotient is computedhentwise):
d AGA;
wy, = ( H wy) - [ N, Auyy) — where Ay ) = A—LJ (5)
j=1 (Lisli>4)
This equation may be divided into two parts: a weight contidn Hle wy,, and a distance
contribution (which we denote bl ;) expressed in terms of the pairwise distances between
kernel centers. We use the KD-trees’ distance bounds to etmtpmunds on each of these
pairwise distance terms for a collection of labg&ls= [; x- - - x [;. The product of the upper
(lower) pairwise bounds is itself an upper (lower) bound lemtbtal distance contribution
for any labelL within the set; denote these bounds]kij andK ., respectively.

By using the meak; = § (K{ + K ) to approximateK ,, we incur a maximum error
1 (K$ — Kg) for any labelL € £. If this error is less tharZé (which we ensure by
comparing to a running lower bouri,,;,, on Z), we treat it as constant over the geand
approximate the contribution t8 by

ZwL:KEZ(lez):KEH(th) (6)
Leg Leg i i Liel
This is easily calculated using cached statistics of thegkteiontained in each set. If the
error is larger thar?é, we need to refine at least one of the label sets; we use a tieuris
to make this choice. This procedure is summarized in Algoritl. Note that all of the

2\We can also use multipole methods such as the Fast Gauss Transfptmdfitiently compute
alternate, potentially tighter bounds on the pairwise values.



MultiTree([l1, - - ., l4])

1. For each pair of distributions, j > i), use their bounding boxes to compute
(@) K\ > maxy e, 1;et; N(x1, — 21530, A 5))
(b) K(l ) < mlnl Ely,l €l N(ml —:rl O A(Z ]>)

min

2. FindKomar = [T ;o0 K,&igz andKomin = [1(; 50 Kori)
3. If§ (Kmaz — Kmin) < Zmind, approximate this combination of label sets:
(@) we = 3 (Kmaz + Kmin) ([Tw,), wherew, = 21,1, Wi, is cached by the KD-tree
(b) me = Zmin + Kmin (H wlz)
(c) Z=2 + e
4. Otherwise, refine one of the label sets:
(a) Findarg max(; j Kf,ia];/K,(f”Q such thatange(l;) > range(l;).
(b) Call recursively:
i. MultiTree([l1,. .., Nearer(Left(l;), Right(l;), ;), ..., l])
ii. MultiTree([l1, ..., Farther(Left(l;), Right(l;), ;),. .., l4])
whereNearer(Farther) returns the nearer (farther) of the first two arguments to the third.

(4

Algorithm 1: Recursive multi-tree algorithm for approximately evaluating the partitiontfan Z
of the product ofd Gaussian mixture densities represented by KD-tré&s;,, denotes a running

lower bound on the partition function, whilé is the current estimate. Initializ&,,;, = Z = 0.

Given the final partition function estimaté, repeat Algorithm 1 with the following modifications:
3.(c) Ifé < Zuj < é+ g foranyj, drawL € £ by sampling; € [; with weightw;, /w,
3.(d) é=¢+ e

Algorithm 2: Recursive multi-tree algorithm for approximate sampliagienotes the cumulative
sum of weightsbg . Initialize by sortingV uniform [0, 1] samples{v; }, and setZ,.;, = é = 0.

guantities required by this algorithm may be stored withim KD—trees, avoiding searches
over the sets;. At the algorithm’s termination, the total error is boundsd

12— 21 <> jwp — | <3 (KE - Kg) [Jwn <283 [[w. <26 (@)
L L L

where the last inequality follows because each input m@suweights are normalized.
This guarantees that our estimatés within a fractional tolerancé of its true value.

4.2.2 Approximate Sampling from the Cumulative Distribution

To use the partition function estimatefor approximate sampling, we repeat the approx-
imation process in a manner similar to the exact samplew dvasorted uniform random
variables, and then locate these samples in the cumulasirébdtion. We do not explicitly
construct the cumulative distribution, but instead usestimae approximate partial weight
sums used to determiné (see equation (6)) to find the block of labels= [; x - - - x I
associated with each sample. Since all laliets £ within this block have approximately
equal distance contributioR ;, ~ K, we independently sample a laBgelvithin each set

[; proportionally to the weighi;, .

This procedure is shown in Algorithm 2. Note that, to be cstesit about when approxima-
tions are made and thus produce weightswhich still sum toZ, we repeat the procedure

for computingZ exactly, including recomputing the running lower boufigl,... This al-
gorithm is guaranteed to sample each labelith probabilityp;, € [pr. — €, pr + €:

L wrp, 20 A
_ - _— = 8
lpr —pL| = Z Z1=1-s ¢ ®)
Proof: From our bounds on the error &f5, | %% — x| = KL KLl T4y, < §([Tws,) < 6 and
SL o BL) = BL|] - | < L1 - 5 < 2L < j‘sé Thus, the estimated probability

Z/Z

1
Y D ly 26
of choosing IabeL has at most errqrﬂ A e A b e S O



5 Computational Examples
5.1 Products of One—Dimensional Gaussian Mixtures

In this section, we compare the sampling methods discusstids paper on three chal-

lenging one—dimensional examples, each involving pradotmixtures of 100 Gaussians
(see Figure 4). We measure performance by drawing 100 sajgaastructing a kernel

density estimate using likelihood cross—validation [Tid &alculating the KL divergence

from the true product density. We repeat this test 250 timesdch of a range of parameter
settings of each algorithm, and plot the average KL divergamrsus computation time.

For the product of three mixtures in Figure 4(a), the muitisdMS) Gibbs samplers dra-
matically outperform standard Gibbs sampling. In additiee see that sequential Gibbs
sampling is more accurate than parallel. Both of theserdiffees can be attributed to the
bimodal product density. However, the most effective dthar is thee—exact sampler,
which matches exact sampling’s performance in far less (D@ versus 2.75 seconds).
For a product of five densities (Figure 4(b)), the cost of esaenpling increases to 7.6
hours, but thee—exact sampler matches its performance in less than onetemiritven
faster, however, is the sequential MS Gibbs sampler, wiaikbg only 0.3 seconds.

For the previous two examples, mixture importance samgli8y is nearly as accurate
as the best multiscale methods (Gaussian IS seems ineffectlowever, in cases where
all of the input densities have little overlap with the protidensity, mixture IS performs
very poorly (see Figure 4(c)). In contrast, multiscale skemgpperform very well in such
situations, because they can discard large numbers of laghtveroduct density kernels.

5.2 Tracking an Object using Nonparametric Belief Propagaion

NBP [2] solves inference problems on non—Gaussian grapimiadels by propagating the

results of local sampling computations. Using our mulliscamplers, we applied NBP
to a simple tracking problem in which we observe a slowly mgwbject in a sea of ran-

domly shifting clutter. Figure 5 compares the posteriotritigtions of different samplers

two time steps after an observation containing only clutteexact sampling matches the
performance of exact sampling, but takes half as long. Irtrest) a standard particle
filter [7], allowed ten times more computation, loses traéls in the previous section,

multiscale Gibbs sampling is much more accurate than stdr@lisbs sampling.

6 Discussion

For products of a few mixtures, tleexact sampler is extremely fast, and is guaranteed to
give good performance. As the number of mixtures grevexact sampling may become
overly costly, but the sequential multiscale Gibbs samipieically produces accurate sam-
ples with only a few iterations. We are currently investiggtthe performance of these
algorithms on large—scale nonparametric belief propagatpplications.
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Figure 5:Object tracking using NBP. Plots show the posterior distributions two time sféegrsan
observation containing only clutter. The patrticle filter and Gibbs sampleraliawed equal compu-

tation. (a) Latest observations, and exact sampling posterioe—@xXact sampling is very accurate,
while a particle filter loses track. (c) Multiscale Gibbs sampling leads to imprpeeformance.



