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Abstract

We describe a three–dimensional geometric hand model suitable for vi-
sual tracking applications. The kinematic constraints implied by the
model’s joints have a probabilistic structure which is welldescribed by
a graphical model. Inference in this model is complicated bythe hand’s
many degrees of freedom, as well as multimodal likelihoods caused by
ambiguous image measurements. We use nonparametric beliefpropaga-
tion (NBP) to develop a tracking algorithm which exploits the graph’s
structure to control complexity, while avoiding costly discretization.
While kinematic constraints naturally have a local structure, self–
occlusions created by the imaging process lead to complex interpenden-
cies in color and edge–based likelihood functions. However, we show
that local structure may be recovered by introducing binaryhidden vari-
ables describing the occlusion state of each pixel. We augment the NBP
algorithm to infer these occlusion variables in a distributed fashion, and
then analytically marginalize over them to produce hand position esti-
mates which properly account for occlusion events. We provide simula-
tions showing that NBP may be used to refine inaccurate model initializa-
tions, as well as track hand motion through extended image sequences.

1 Introduction

Accurate visual detection and tracking of three–dimensional articulated objects is a chal-
lenging problem with applications in human–computer interfaces, motion capture, and
scene understanding [1]. In this paper, we develop a probabilistic method for tracking a
geometric hand model from monocular image sequences. Because articulated hand mod-
els have many (roughly 26) degrees of freedom, exact representation of the posterior dis-
tribution over model configurations is intractable. Trackers based on extended and un-
scented Kalman filters [2, 3] have difficulties with the multimodal uncertainties produced
by ambiguous image evidence. This has motived many researchers to consider nonparamet-
ric representations, including particle filters [4, 5] and deterministic multiscale discretiza-
tions [6]. However, the hand’s high dimensionality can cause these trackers to suffer catas-
trophic failures, requiring the use of models which limit the hand’s motion [4] or sophisti-
cated prior models of hand configurations and dynamics [5, 6].

An alternative way to address the high dimensionality of articulated tracking problems is



Figure 1: Projected edges (left block) and silhouettes (right block) for a configuration of the 3D
structural hand model matching the given image. To aid visualization, the model is also projected
following rotations by35◦ (center) and70◦ (right) about the vertical axis.

to describe the posterior distribution’s statistical structure using agraphical model. Graph-
ical models have been used to track view–based human body representations [7], con-
tour models of restricted hand configurations [8], view–based 2.5D “cardboard” models
of hands and people [9], and a full 3D kinematic human body model [10]. Because the
variables in these graphical models are continuous, and discretization is intractable for
three–dimensional models, most traditional graphical inference algorithms are inapplica-
ble. Instead, these trackers are based on recently proposedextensions of particle filters
to general graphs: mean field Monte Carlo in [9], andnonparametric belief propagation
(NBP) [11, 12] in [10].

In this paper, we show that NBP may be used to track a three–dimensional geometric model
of the hand. To derive a graphical model for the tracking problem, we consider a redun-
dant local representation in which each hand component is described byits own three–
dimensional position and orientation. We show that the model’s kinematic constraints,
including self–intersection constraints not captured by joint angle representations, take a
simple form in this local representation. We also provide a local decomposition of the
likelihood function which properly handles occlusion in a distributed fashion, a significant
improvement over our earlier tracking results [13]. We conclude with simulations demon-
strating our algorithm’s robustness to occlusions.

2 Geometric Hand Modeling

Structurally, the hand is composed of sixteen approximately rigid components: three pha-
langes or links for each finger and thumb, as well as the palm [1]. As proposed by [2, 3],
we model each rigid body by one or more truncated quadrics (ellipsoids, cones, and cylin-
ders) of fixed size. These geometric primitives are well matched to the true geometry of
the hand, allow tracking from arbitrary orientations (in contrast to 2.5D “cardboard” mod-
els [5, 9]), and permit efficient computation of projected boundaries and silhouettes [3].
Figure 1 shows the edges and silhouettes corresponding to a sample hand model configu-
ration. Note that only a coarse model of the hand’s geometry is necessary for tracking.

2.1 Kinematic Representation and Constraints

The kinematic constraints between different hand model components are well described
by revolute joints [1]. Figure 2(a) shows a graph describingthis kinematic structure, in
which nodes correspond to rigid bodies and edges to joints. The two joints connecting the
phalanges of each finger and thumb have a single rotational degree of freedom, while the
joints connecting the base of each finger to the palm have two degrees of freedom (cor-
responding to grasping and spreading motions). These twenty angles, combined with the
palm’s global position and orientation, provide 26 degreesof freedom. Forward kinematic
transformations may be used to determine the finger positions corresponding to a given set
of joint angles. While most model–based hand trackers use this joint angle parameteriza-
tion, we instead explore a redundant representation in which theith rigid body is described
by its positionqi and orientationri (a unit quaternion). Letxi = (qi, ri) denote thislocal
description of each component, andx = {x1, . . . , x16} the overall hand configuration.
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Figure 2: Graphs describing the hand model’s constraints. (a) Kinematic constraints (EK ) de-
rived from revolute joints. (b) Structural constraints (ES) preventing 3D component intersections.
(c) Dynamics relating two consecutive time steps. (d) Occlusion consistency constraints (EO).

Clearly, there are dependencies among the elements ofx implied by the kinematic con-
straints. LetEK be the set of all pairs of rigid bodies which are connected by joints, or
equivalently the edges in the kinematic graph of Fig. 2(a). For each joint(i, j) ∈ EK ,
define an indicator functionψK

i,j (xi, xj) which is equal to one if the pair(xi, xj) are valid
rigid body configurations associated withsomesetting of the angles of joint(i, j), and zero
otherwise. Viewing the component configurationsxi as random variables, the following
prior explicitly enforces all constraints implied by the original joint angle representation:

pK(x) ∝
∏

(i,j)∈EK

ψK
i,j (xi, xj) (1)

Equation (1) shows thatpK(x) is an undirected graphical model, whose Markov structure
is described by the graph representing the hand’s kinematicstructure (Fig. 2(a)).

2.2 Structural and Temporal Constraints

In reality, the hand’s joint angles are coupled because different fingers can never occupy
the same physical volume. This constraint is complex in a joint angle parameterization, but
simple in our local representation: the position and orientation of every pair of rigid bodies
must be such that their component quadric surfaces do not intersect.

We approximate this ideal constraint in two ways. First, we only explicitly constrain those
pairs of rigid bodies which are most likely to intersect, corresponding to the edgesES of the
graph in Fig. 2(b). Furthermore, because the relative orientations of each finger’s quadrics
are implicitly constrained by the kinematic priorpK(x), we may detect most intersections
based on the distance between object centroids. The structural prior is then given by

pS(x) ∝
∏

(i,j)∈ES

ψS
i,j (xi, xj) ψS

i,j (xi, xj) =

{

1 ||qi − qj || > δi,j

0 otherwise (2)

whereδi,j is determined from the quadrics composing rigid bodiesi andj. Empirically, we
find that this constraint helps prevent different fingers from tracking the same image data.

In order to track hand motion, we must model the hand’s dynamics. Letxt
i denote the

position and orientation of theith hand component at timet, andxt = {xt
1, . . . , x

t
16}. For

each component at timet, our dynamical model adds a Gaussian potential connecting it to
the corresponding component at the previous time step (see Fig. 2(c)):

pT

(

xt | xt−1
)

=

16
∏

i=1

N
(

xt
i − xt−1

i ; 0,Λi

)

(3)

Although this temporal model is factorized, the kinematic constraints at the following time
step implicitly couple the corresponding random walks. These dynamics can be justified as
the maximum entropy model given observations of the nodes’ marginal variancesΛi.



3 Observation Model

Skin colored pixels have predictable statistics, which we model using a histogram distribu-
tion pskin estimated from training patches [14]. Images without people were used to create
a histogram modelpbkgd of non–skin pixels. LetΩ(x) denote the silhouette of projected
hand configurationx. Then, assuming pixelsΥ are independent, an imagey has likelihood

pC(y | x) =
∏

u∈Ω(x)

pskin(u)
∏

v∈Υ\Ω(x)

pbkgd(v) ∝
∏

u∈Ω(x)

pskin(u)

pbkgd(u)
(4)

The final expression neglects the proportionality constant
∏

v∈Υ pbkgd(v), which is inde-
pendent ofx, and thereby limits computation to the silhouette region [8].

3.1 Distributed Occlusion Reasoning

In configurations where there is no self–occlusion,pC(y | x) decomposes as a product of
local likelihood terms involving the projectionsΩ(xi) of individual hand components [13].
To allow a similar decomposition (and hence distributed inference) when there is occlu-
sion, we augment the configurationxi of each node with a set of binary hidden variables
zi = {zi(u)}u∈Υ. Letting zi(u) = 0 if pixel u in the projection of rigid bodyi is occluded
by anyother body, and 1 otherwise, the color likelihood (eq. (4)) may be rewritten as

pC(y | x, z) =

16
∏

i=1

∏

u∈Ω(xi)

(

pskin(u)

pbkgd(u)

)zi(u)

=

16
∏

i=1

pC(y | xi, zi) (5)

Assuming they are set consistently with the hand configuration x, the hidden occlusion
variablesz ensure that the likelihood of each pixel inΩ(x) is counted exactly once.

We may enforce consistency of the occlusion variables usingthe following function:

η(xj , zi(u);xi) =

{

0 if xj occludesxi, u ∈ Ω(xj), andzi(u) = 1
1 otherwise (6)

Note that because our rigid bodies are convex and nonintersecting, they can never take
mutually occluding configurations. The constraintη(xj , zi(u);xi) is zero precisely when
pixel u in the projection ofxi should be occluded byxj , butzi(u) is in the unoccluded state.
The following potential encodes all of the occlusion relationships between nodesi andj:

ψO
i,j (xi, zi, xj , zj) =

∏

u∈Υ

η(xj , zi(u);xi) η(xi, zj(u);xj) (7)

xj

y

u ∈ϒ xk

zi(u) xi

Figure 3: Factor graph showing
p(y | xi, zi), and the occlusion con-
straints placed onxi by xj , xk. Dashed
lines denote weak dependencies. The
plate is replicated once per pixel.

These occlusion constraints exist between all pairs
of nodes. As with the structural prior, we enforce
only those pairsEO (see Fig. 2(d)) most prone to
occlusion:

pO(x, z) ∝
∏

(i,j)∈EO

ψO
i,j (xi, zi, xj , zj) (8)

Figure 3 shows a factor graph for the occlusion
relationships betweenxi and its neighbors, as
well as the observation potentialpC(y | xi, zi).
The occlusion potentialη(xj , zi(u);xi) has a very
weak dependence onxi, depending only on
whetherxi is behindxj relative to the camera.

3.2 Modeling Edge Filter Responses

Edges provide another important hand tracking
cue. Using boundaries labeled in training images,
we estimated a histogrampon of the response of a derivative of Gaussian filter steered to
the edge’s orientation [8, 10]. A similar histogrampoff was estimated for filter outputs at



randomly chosen locations. LetΠ(x) denote the oriented edges in the projection of model
configurationx. Then, again assuming pixel independence, imagey has edge likelihood

pE(y | x, z) ∝
∏

u∈Π(x)

pon(u)

poff(u)
=

16
∏

i=1

∏

u∈Π(xi)

(

pon(u)

poff(u)

)zi(u)

=

16
∏

i=1

pE(y | xi, zi) (9)

where we have used the same occlusion variablesz to allow a local decomposition.

4 Nonparametric Belief Propagation

Over the previous sections, we have shown that a redundant, local representation of the
geometric hand model’s configurationxt allowsp (xt | yt), the posterior distribution of the
hand model at timet given image observationsyt, to be written as

p
(

xt | yt
)

∝
∑

zt

pK(xt)pS(xt)pO(xt, zt)

[

16
∏

i=1

pC(yt | xt
i, z

t
i)pE(yt | xt

i, z
t
i)

]

(10)

The summation marginalizes over the hidden occlusion variableszt, which were needed to
locally decompose the edge and color likelihoods. Whenτ video frames are observed, the
overall posterior distribution is given by

p (x | y) ∝
τ

∏

t=1

p
(

xt | yt
)

pT (xt | xt−1) (11)

Excluding the potentials involving occlusion variables, which we discuss in detail in
Sec. 4.2, eq. (11) is an example of a pairwise Markov random field:

p (x | y) ∝
∏

(i,j)∈E

ψi,j (xi, xj)
∏

i∈V

ψi (xi, y) (12)

Hand tracking can thus be posed as inference in a graphical model, a problem we propose to
solve usingbelief propagation(BP) [15]. At each BP iteration, some nodei ∈ V calculates
a messagemij (xj) to be sent to a neighborj ∈ Γ(i) , {j | (i, j) ∈ E}:

mn
ij (xj) ∝

∫

xi

ψj,i (xj , xi) ψi (xi, y)
∏

k∈Γ(i)\j

mn−1
ki (xi) dxi (13)

At any iteration, each node can produce an approximationp̂(xi | y) to the marginal distri-
butionp (xi | y) by combining the incoming messages with the local observation:

p̂n(xi | y) ∝ ψi (xi, yi)
∏

j∈Γ(i)

mn
ji (xi) (14)

For tree–structured graphs, thebeliefs p̂n(xi | y) will converge to the true marginals
p (xi | y). On graphs with cycles, BP is approximate but often highly accurate [15].

4.1 Nonparametric Representations

For the hand tracking problem, the rigid body configurationsxi are six–dimensional con-
tinuous variables, making accurate discretization intractable. Instead, we employ nonpara-
metric, particle–based approximations to these messages using the nonparametric belief
propagation (NBP) algorithm [11, 12]. In NBP, each message is represented using either a
sample–based density estimate (a mixture of Gaussians) or an analytic function. Both types
of messages are needed for hand tracking, as we discuss below. Each NBP message update
involves two stages: sampling from the estimated marginal,followed by Monte Carlo ap-
proximation of the outgoing message. For the general form ofthese updates, see [11]; the
following sections focus on the details of the hand trackingimplementation.

The hand tracking application is complicated by the fact that the orientation componentri

of xi = (qi, ri) is an element of the rotation groupSO(3). Following [10], we represent



orientations as unit quaternions, and use a linearized approximation when constructing den-
sity estimates, projecting samples back to the unit sphere as necessary. This approximation
is most appropriate for densities with tightly concentrated rotational components.

4.2 Marginal Computation

BP’s estimate of the belief̂p(xi | y) is equal to the product of the incoming messages from
neighboring nodes with the local observation potential (see eq. (14)). NBP approximates
this product using importance sampling, as detailed in [13]for cases where there is no
self–occlusion. First,M samples are drawn from the product of the incoming kinematic
and temporal messages, which are Gaussian mixtures. We use arecently proposed multi-
scale Gibbs sampler [16] to efficiently draw accurate (albeit approximate) samples, while
avoiding the exponential cost associated with direct sampling (a product ofd M–Gaussian
mixtures containsMd Gaussians). Following normalization of the rotational component,
each sample is assigned a weight equal to the product of the color and edge likelihoods
with any structural messages. Finally, the computationally efficient “rule of thumb” heuris-
tic [17] is used to set the bandwidth of Gaussian kernels placed around each sample.

To derive BP updates for the occlusion maskszi, we first cluster(xi, zi) for each hand
component so thatp (xt, zt | yt) has a pairwise form (as in eq. (12)). In principle, NBP
could manage occlusion constraints by sampling candidate occlusion maskszi along with
rigid body configurationsxi. However, due to the exponentially large number of possible
occlusion masks, we employ a more efficient analytic approximation.

Consider the BP message sent fromxj to (zi, xi), calculated by applying eq. (13) to the
occlusion potential

∏

u η(xj , zi(u);xi). We assume that̂p(xj | y) is well separated from
any candidatexi, a situation typically ensured by the kinematic and structural constraints.
The occlusion constraint’s weak dependence onxi (see Fig. 3) then separates the message
computation into two cases. Ifxi lies in front of typicalxj configurations, the BP message
µj,i(u)(zi(u)) is uninformative. Ifxi is occluded, the message approximately equals

µj,i(u)(zi(u) = 0) = 1 µj,i(u)(zi(u) = 1) = 1 − Pr [u ∈ Ω(xj)] (15)
where we have neglected correlations among pixel occlusionstates, and where the prob-
ability is computed with respect tôp(xj | y). By taking the product of these messages
µk,i(u)(zi(u)) from all potential occludersxk and normalizing, we may determine an ap-
proximation to the marginal occlusion probabilityνi(u) , Pr[zi(u) = 0].

Because the color likelihoodpC(y | xi, zi) factorizes across pixelsu, the BP approximation
to pC(y | xi) may be written in terms of these marginal occlusion probabilites:

pC(y | xi) ∝
∏

u∈Ω(xi)

[

νi(u) + (1 − νi(u))

(

pskin(u)

pbkgd(u)

)]

(16)

Intuitively, this equation downweights the color evidenceat pixel u as the probability of
that pixel’s occlusion increases. The edge likelihoodpE(y | xi) averages overzi similarly.
The NBP estimate of̂p(xi | y) is determined by sampling configurations ofxi as before,
and reweighting them using these occlusion–sensitive likelihood functions.

4.3 Message Propagation

To derive the propagation rule for non–occlusion edges, as suggested by [18] we rewrite
the message update equation (13) in terms of the marginal distribution p̂(xi | y):

mn
ij (xj) = α

∫

xi

ψj,i (xj , xi)
p̂n−1(xi | y)

mn−1
ji (xi)

dxi (17)

Our explicit use of the current marginal estimatep̂n−1(xi | y) helps focus the Monte Carlo
approximation on the most important regions of the state space. Note that messages sent



1 2 1 2
Figure 4:Refinement of a coarse initialization following one and two NBP iterations, bothwithout
(left) and with (right) occlusion reasoning. Each plot shows the projectionof the five most significant
modes of the estimated marginal distributions. Note the difference in middle finger estimates.

along kinematic, structural, and temporal edges depend only on the belief̂p(xi | y) follow-
ing marginalization over occlusion variableszi.

Details and pseudocode for the message propagation step areprovided in [13]. For kine-
matic constraints, we sample uniformly among permissable joint angles, and then use
forward kinematics to propagate samples fromp̂n−1(xi | y) /mn−1

ji (xi) to hypothesized
configurations ofxj . Following [12], temporal messages are determined by adjusting the
bandwidths of the current marginal estimatep̂(xi | y) to match the temporal covarianceΛi.
Because structural potentials (eq. (2)) equal one for all state configurations outside some
ball, the ideal structural messages are not finitely integrable. We therefore approximate the
structural messagemij (xj) as an analytic function equal to the weights of all kernels in
p̂(xi | y) outside a ball centered atqj , the position ofxj .

5 Simulations

We now present a set of computational examples which investigate the performance of
our distributed occlusion reasoning; see [13] for additional simulations. In Fig. 4, we
use NBP to refine a coarse, user–supplied initialization into an accurate estimate of the
hand’s configuration in a single image. When occlusion constraints are neglected, the NBP
estimates associate the ring and middle fingers with the sameimage pixels, and miss the
true middle finger location. With proper occlusion reasoning, however, the correct hand
configuration is identified. UsingM = 200 particles, our Matlab implementation requires
about one minute for each NBP iteration (an update of all messages in the graph).

Video sequences demonstrating the NBP hand tracker are available at
http://ssg.mit.edu/nbp/. Selected frames from two of these sequences are
shown in Fig. 5, in which filtered estimates are computed by a single “forward” sequence
of temporal message updates. The initial frame was approximately initialized manually.
The first sequence shows successful tracking through a partial occlusion of the ring finger
by the middle finger, while the second shows a grasping motionin which the fingers
occlude each other. For both of these sequences, rough tracking (not shown) is possible
without occlusion reasoning, since all fingers are the same color and the background is
unambiguous. However, we find that stability improves when occlusion reasoning is used
to properly discount obscured edges and silhouettes.

6 Discussion

Sigal et. al. [10] developed a three–dimensional NBP persontracker which models the
conditional distribution of each linkage’s location, given its neighbor, via a Gaussian mix-
ture estimated from training data. In contrast, we have shown that an NBP tracker may
be built around the local structure of the true kinematic constraints. Conceptually, this has
the advantage of providing a clearly specified, globally consistent generative model whose
properties can be analyzed. Practically, our formulation avoids the need to explicitly ap-
proximate kinematic constraints, and allows us to build a functional tracker without the
need for precise, labelled training data.



Figure 5:Four frames from two different video sequences: a hand rotation containing finger occlu-
sion (top), and a grasping motion (bottom). We show the projections of NBP’s marginal estimates.

We have described the graphical structure underlying a kinematic model of the hand, and
used this model to build a tracking algorithm using nonparametric BP. By appropriately
augmenting the model’s state, we are able to perform occlusion reasoning in a distributed
fashion. The modular state representation and robust, local computations of NBP offer a
solution particularly well suited to visual tracking of articulated objects.
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