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Abstract

Variational methods are frequently used to approximateaemd the partition
or likelihood function of a Markov random field. Methods bdss mean field
theory are guaranteed to provide lower bounds, whereasitaypes of convex
relaxations provide upper bounds. In general, loopy beliepagation (BP) pro-
vides often accurate approximations, but not bounds. Weepttmat for a class of
attractive binary models, the so—called Bethe approxonatissociated with any
fixed point of loopy BP always lower bounds the true likelidooEmpirically,
this bound is much tighter than the naive mean field boundraqdires no fur-
ther work than running BP. We establish these lower bounitgywsloop series
expansion due to Chertkov and Chernyak, which we show carelieed as a
consequence of the tree reparameterization characteriz#tBP fixed points.

1 Introduction

Graphical models are widely used in many areas, includiatistical machine learning, computer
vision, bioinformatics, and communications. Such appiice typically require computationally
efficient methods for (approximately) solving various gesbs, including computing marginal dis-
tributions and likelihood functions. The variational frawork provides a suite of candidate meth-
ods, including mean field approximations [3, 9], the sumdpob orbelief propagation(BP) algo-
rithm [11, 14], Kikuchi and cluster variational methods [28nd related convex relaxations [21].

The likelihood or partition function of an undirected gragai model is of fundamental interest in
many contexts, including parameter estimation, error deun hypothesis testing, and combina-
torial enumeration. In rough terms, particular variatiomeethods can be understood as solving
optimization problems whose optima approximate the loditpar function. For mean field meth-
ods, this optimal value is desirably guaranteed to lowembdthe true likelihood [9]. For other
methods, including th®&ethe variational problenunderlying loopy BP [23], optima may either
over—estimate or under—estimate the truth. Although “egified” relaxations of the Bethe problem
yield upper bounds [21], to date the best known lower boumd$e partition function are based on
mean field theory. Recent work has studiedp series expansiorjg, 4] of the partition function,
which generate better approximations but not, in genecaints.

Several existing theoretical results show that loopy BBE,the corresponding Bethe approximation,
have desirable properties for graphical models with longjes/[15] or sufficiently weak depen-
dencies [6, 7, 12, 19]. However, these results do not expiearexcellent empirical performance
of BP in many graphs with short cycles, like the nearest-hi®g grids arising in spatial statistics
and low—level vision [3, 18, 22]. Such models often encodadsthness” priors, and thus have
attractiveinteractions which encourage connected variables to siwamnenon values. The first main
contribution of this paper is to demonstrate a family ofattive models for which the Bethe varia-
tional method always yields lower bounds on the true liladith. Although we focus on models with
binary variables (but arbitrary order of interactions), suspect that some ideas are more generally
applicable. For such models, these lower bounds are easitpated from any fixed point of loopy
BP, and empirically improve substantially on naive mearfieunds.



Our second main contribution lies in the route used to estalthe Bethe lower bounds. In partic-
ular, Sec. 3 uses the reparameterization characterizaftiBR fixed points [20] to provide a simple
derivation for the loop series expansion of Chertkov andr@fek [2]. The Bethe approximation
is the first term in this representation of the true partitionction. Sec. 4 then identifies attrac-
tive models for which all terms in this expansion are positithus establishing the Bethe lower
bound. We conclude with empirical results demonstratimgatcuracy of this bound, and discuss
implications for future analysis and applications of lodG#®.

2 Undirected Graphical Models

Given an undirected grapgh = (V, E), with edgeqs, t) € E connecting: verticess € V, a graph-
ical model associates each node with a random variahléaking valuesr, € X. For pairwise
Markov random field§MRFs) as in Fig. 1, the joint distribution of := {z, | s € V'} is specified
via a normalized product of locabmpatibility functions

p(z) = ﬁ H Vs (s) H Vst(Ts, 71) 1)

seV (s,t)eE
The partition functionZ(v) == >_ cxn [1s¥s(@s) [l ¥st(zs, 2¢), whose value depends on
the compatibilities), is defined so thai(z) is properly normalized. We also consider distributions

defined by hypergraph& = (V,C), where each hyperedgec C' connects some subset of the
vertices ¢ C V). Lettingz.. := {z; | s € ¢}, the corresponding joint distribution equals

1
nr) = ——% Ps(xs Pe(e (2)
@)= gy LLve) L vt
where as beforeZ(v)) = > n [I, ¥s(zs) [I.%e(zc). Such higher—order random fields are
conveniently described by the bipartfeector graphgq11] of Fig. 2.

In statistical physics, the partition function arises ie gtudy of how physical systems respond to
changes in external stimuli or temperature [23]. Altenelyi, when compatibility functions are
parameterized by exponential families [2RJg Z(v) is the family’'scumulant generating function
and thus intrinsically related to the model’s marginalistats. For directed Bayesian networks
(which can be factored as in eq. (2)(«) is the marginal likelihood of observed data, and plays a
central role in learning and model selection [9]. However,deneral graphs coupling discrete ran-
dom variables, the cost of exactly evaluatiiy)) grows exponentially witm [8]. Computationally
tractable families of bounds on the true partition functéoe thus of great practical interest.

2.1 Attractive Discrete Random Fields

In this paper, we focus on binary random vectors {0,1}". We say that a pairwise MRF, with
compatibility functionsy, : {0, 1}? — R™, hasattractiveinteractions if

’(/}st(07 0) ’(/}st(la 1) Z ’(/}st(oa 1) ’(/}st(la O) (3)
for each edgés, t) € E. Intuitively, this condition requires all potentials toapk greater weight
on configurations where neighboring variables take the saue. Our later analysis is based on
pairwise marginal distributions;; (x5, x;), which we parameterize as follows:
1- Ts — Tt + Tst Tt — Tst Ts - = ETst [XS] (4)

Ts — Tst Tst Tst = Er,, [Xs Xt

We letE, ,[-] denote expectation with respect 1o, (x5, x;), SO thatry is the probability that
X = X; = 1. This normalized matrix is attractive, satisfying eq. (8and only if 75; > 757;.

Tt (T, T¢) =

For binary variables, the pairwise MRF of eq. (1) provides oepresentation of a general, inho-
mogeneoudsing model In the statistical physics literature, Ising models angidglly expressed
by coupling random spins, € {—1, +1} with symmetric potential®g 1s:(zs, 2¢:) = 0s1252:. The
attractiveness condition of eq. (3) then becoifgs> 0, and the resulting model h&srromagnetic
interactions. Furthermore, pairwise MRFs satisfy tbgularity condition of [10], and thus allow
tractable MAP estimation via graph cuts [5], if and only ieyhare attractive. Even for attractive
models, however, calculation of the partition function onrplanar graphs is #P—complete [8].

To define families of higher—order attractive potentialg, fiest consider a probability distribution
7.(zc) ONk = |c| binary variables. Generalizing eq. (4), we parameterizh slistributions by the



following collection of2* — 1 mean parameters:

Ta ::ETC[HXS:l @#agc (5)
s€a
For example s (zs, 2, z,,) would be parameterized byrs, 7¢, 7w, Tst, Tsu, Teus Tstu }- FOr @ny
subset: C ¢, we then define the following central moment statistic:

Rq = IETC|:H(XS _Ts):| Q#a Cc (6)
s€a

Note thatx, = 0, while ks = Cov,. (X, X¢) = 75t — 7s7¢. The third—order central moment then

equals the cumulamt,;, = Tery — TstTu — TsuTt — TtuTs + 2TsTeTu.

Given these definitions, we say that a probability distitut.(x.) is attractive if the central mo-
ments associated with all subsets_ ¢ of binary variables are non—negative, (> 0). Similarly, a
compatibility functiomp.(x..) is attractive if the probability distribution attained bgmmalizing its
values has non—-negative central moments. For exampleolibeving potential is easily shown to
satisfy this condition for all degreés= |c|, and any scalaff. > 0:

96 x1:$2:"':xl€
log (@1, ..., axk) = {_9 otherwise @

2.2 Bedlief Propagation and the Bethe Variational Principle

Many applications of graphical models require estimatethefposterior marginal distributions of
individual variablesrs(z;) or factorst.(z.). Loopy belief propagation(BP) approximates these
marginals via a series ohessagepassed among nodes of the graphical model [14, 23] T'Let
denote the set of factors which dependXn or equivalently the neighbors of noden the corre-
sponding factor graph. The BP algorithm then iterates theviing message updates:

Mac(s) — hs(ws)  [[ mas(zs) Mes(25) ch ze) [ mec(z)  (8)
deT'(s)\c tec\s
The left—hand expression updates the messagér ;) passed from vanable noddo factorc. New
outgoing messages..;(x,) from factorc to eachs € ¢ are then determined by marginalizing the
incoming messages from other nodes. At any iteration, apja@ly normalized products of these
messages define estimates of the desired marginals:

TS(JCQ X 1/) xs H Mes 'Is Tc(xc) 08 77Dc(~rc) Hmtc(xt) (9)
cel'(s) tec
In tree—structured graphs, BP defines a dynamic programneicigrsion which converges to the
exact marginals after finitely many iterations [11, 14]. haghs with cycles, however, convergence
is not guaranteed, ambeudo—marginalsomputed via eg. (9) are (often good) approximations.

A wide range of inference algorithms can be derived via t@amal approximations [9] to the true
partition function. Loopy BP is implicitly associated withe following Bethe approximatian

IOgZB 1/}7 = ZZTS Ts 1Og1/)s ajs + ZZTC Te Ingc 550)

seV xs ceC xc
Te(xe)
_ g;n z,) log 7o () Cez;;n 1ogﬁ (10)

Fixed points of loopy BP correspond to stationary pointshig Bethe approximation [23], subject
to the local marginalization constraingmc\s Te(we) = Ts(xs).

3 Reparameterization and Loop Series Expansions

As discussed in Sec. 2.2, any BP fixed paoint is in one—to—on@spondence with a sét, 7.}
of pseudo—marginals associated with each of the graph'ssiod V and factorss € C. These
pseudo—marginals then lead to an aIternabia&ameterizatior{ZO] of the factor graph of eq. (2):

T QL'
Ts(xs) (Te) (12)
26y e W e
For pairwise MRFs, the reparameterlzed compatlblllty fioms equalrs: (s, ) /7s(x5) e (24).
The BP algorithm effectively searches for reparametddmatwhich aretree—consistentso that



7.(z.) is the exact marginal distribution of. for any tree (or forest) embedded in the original
graph [20]. In later sections, we take expectations witlpeestor.(z.) of functions f(z.) de-
fined over individual factors. Although these pseudo—nmegi will in general not equal thieue
marginalsp.(z.), BP fixed points ensure local consistency so thaff(X.)] is well-defined.

Using eq. (10), it is easily shown that the Bethe approxiomefis(7; ) = 1 for anyjoint distribu-
tion defined by reparameterized potentials as in eq. (1¥)sikRplicity, the remainder of this paper
focuses on reparameterized models of this form, and arafymperties of the corresponding exact
partition functionZ (7). The resulting expansions and bounds are then related aitfieal MRF's
partition function via the positive constai{vy)) /Z(7) = Z3(¢; 7) of eq. (10).

Recently, Chertkov and Chernyak proposed a filutg series expansiof2] of the partition func-
tion, whose first term coincides with the Bethe approxinratibhey provide two derivations: one
applies a trigonometric identity to Fourier representatiof binary variables, while the second em-
ploys a saddle point approximation obtained via an auyilieeld of complex variables. Thgauge
transformationsinderlying these derivations are a type of reparamet@izdtut their form is com-
plicated by auxiliary variables and extraneous degreeseefibm. In this section, we show that the
fixed point characterization of eq. (11) leads to a more dtigetd arguably simpler, derivation.

3.1 PairwiseL oop Series Expansions

We begin by developing a loop series expansion for pairwis Given an undirected graph
G = (V, E), and some subsét C F of the graph’s edges, lét (F') denote the degree (number of
neighbors) of node in the subgraph induced . As illustrated in Fig. 1, any subsétfor which
all nodess € V have degred(F') # 1 defines ageneralized loof2]. The partition function for
any binary, pairwise MRF can then be expanded via an assdcat oloop corrections

Proposition 1. Consider a pairwise MRF defined on an undirectee= (V, E), with reparameter-
ized potentials as in e11). The associated partition function then equals

2(r) =1+ Y Bp [ En [(X. - 7)= D] Bri= [[ B (12)
0#FCE sEV (s,t)eF
By 1= Tet — TsTt Cov,,, (X5, X4) (13)

7o(1 — 7)7(1 —7¢)  Var, (X,) Var,, (X;)

where only generalized loogds lead to non—zero terms in the sum of &), and
E. [(Xs — 7)) = (1 — 75) [(1 = 7)1 + (=14 (15)47] (14)

are central moments of the binary variables at individuadles.

Proof. To establish the expansion of eq. (12), we exploit the falhgapolynomial representation of
reparameterized pairwise compatibility functions:

Tst(xsa (Et)
Ts(xs)Tt(xt) - 1 + ﬁst(xs TS)(xt Tt) (15)
As verified in [17], this expression is satisfied for afw.,x;) € {0,1}? if 3, is defined as in
eq. (13). For attractive models satisfying eq. (), > 0 for all edges. UsingE;[-] to denote
expectation with respect to the fully factorized distribot7 (z) = [], 7s(x5), we then have
Tt (Ts, Tt)
2(r) Z . H 7s(s) H To(xs)Te(xe)
z€{0,1}" s€V (s,t)eE
= E.;|: H H 1+ ﬂst(Xs - Ts)(Xt - Tt):l (16)
(s,t)eE s,t)EE
Expanding this polynomial via the expectation operatdrigdrity, we recover one term for each
non—empty subsdt C E of the graph’s edges:

Z(r)=1+ > Ei [] Ba(Xs—r)(X:— Tt):| 17)
0#AFCE  “(sit)eF
The expression in eq. (12) then follows from the independestoucture ofr(z), and standard
formulas for the moments of Bernoulli random variables. Valeate these terms, note that if
ds(F) = 1, itfollows thatE,_[X — 75] = 0. There is thus one loop correction for each generalized
loop F', in which all connected nodes have degree at least two. O

Tst(XS7Xt) 1 _ -
TS(XS)Tt(Xt)_ _ET|:(
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Figure 1:A pairwise MRF coupling ten binary variables (left), and the nine genechlazmps in its loop series
expansion (right). For attractive potentials, two of the generalized loayshave negative signs (second &
third from right), while the core graph of Thm. 1 contains eight varialfesright).

Figure 1 illustrates the set of generalized loops assatiatth a particular pairwise MRF. These
loops effectively define corrections to the Bethe estiniéfe) ~ 1 of the partition function for
reparameterized models. Tree—structured graphs do ntdinany non-trivial generalized loops,
and the Bethe variational approximation is thus exact.

The loop expansion formulas of [2] can be precisely recalésetransforming binary variables to

a spin representation, and refactoring terms from the deraior of edge weightg,; to adjacent
vertices. Explicit computation of these loop correctiongigeneral intractable; for example, fully
connected graphs with > 5 nodes have more thaf generalized loops. In some cases, accounting
for a small set of significant loop corrections may lead torioved approximations t&@(v) [4], or
more accurate belief estimates for LDPC codes [1]. We ilsts@ the series expansion of Prop. 1
to establish analytic properties of BP fixed points.

3.2 Factor Graph Loop Series Expansions

We now extend the loop series expansion to higher—order Migffized on hypergrapls = (V, C).
Let E = {(s,c) | c € C,s € c} denote the set of edges in the factor graph representatitimisof
MRF. As illustrated in Fig. 2, we define a generalized loopaatsubset’ C F of edges such that
all connected factor and variable nodes have degree atVeast

Proposition 2. Consider any factor graplz = (V,C) with reparameterized potentials as in
eg.(11), and associated edgds The partition function then equals

Z(T) =1+ Z /6F H ETS |:(Xs - Ts)ds(F):| ,BF = H ﬁac(F) (18)
0£AFCE seV ceC
Ba = Fa _ Br, [loea(Xs —75)] (19)

HtEa Tt(l - Tt) HtEa Vath (Xt)
wherea.(F) := {s € ¢ | (s,c) € F} denotes the subset of variables linked to factor notg the
edges inF'. Only generalized loop8' lead to hon—zero terms in the sum of €B).

Proof. As before, we employ a polynomial representation of thenapaterized factors in eq. (11):

7o)
1 + 6(1 Ts — Ts (20)
[ice 7e(e0) aCLZa|>2 s];'E
For factor graphs with attractive reparameterized padésitihe constan, > 0 for all a« C c.
Note that this representation, which is derived in [17]ueg to that of eq. (15) when= {s, t}.
Single—variable subsets are excluded in eq. (20) becauseE [X; — 75] = 0.

Applying eq. (20) as in our earlier derivation for pairwisdRMs (see eg. (16)), we may express the
partition function of the reparameterized factor graphadiewvs:

R D1 i D | RO ORS | (CIEES| B

ceC HtEC Tt( t ceC 0#aCc  s€a

Note that3, = 0 for any subset wher| = 1. There is then a one—to—one correspondence between
variable node subsetsC ¢, and subset§(s, ¢) | s € a} of the factor graph’s edges. Expanding

this expression by’ C F, it follows that each factor € C contributes a term corresponding to the
chosen subset. (F) of its edges:

H=1+ ¥ E{Hﬁam I (Xs—m] (22)
0#AFCE ceC s€ac(F)

Note that3; = 1. Equation (18) then follows from the independence propsmif7(x). For a term
in this loop series to be non—zero, there must be no degregaviables, sinc&, [X, — 7] = 0.
In addition, the definition off, implies that there can be no degree one factor nodes. O
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Figure 2: A factor graph (left) with three binary variables (circles) and four facimdes (squares), and the
thirteen generalized loops in its loop series expansion (right, along with litgrdiph).

4 Lower Boundsin Attractive Binary Models

The Bethe approximation underlying loopy BP differs fromamdield methods [9], whictower
boundthe true log partition functioZ (¢), in two key ways. First, while the Bethe entropy (second
line of eq. (10)) is exact for tree—structured graphspproximateqrather than bounds) the true
entropy in graphs with cycles. Second, the marginalizatmmdition imposed by loopy BRelaxes
(rather than strengthens) the global constraints chaizictg valid distributions [21]. Neverthe-
less, we now show that for a large family of attractive graphmodels, the Bethe approximation
Zs(v; 7) of eq. (10) lower boundZ (). In contrast with mean field methods, these bounds hold
only at appropriate BP fixed pointsot for arbitrarily chosen pseudo—marginalgz..).

4.1 Partition Function Bounds for Pairwise Graphical Models

Consider a pairwise MRF defined @ = (V, E), as in eq. (1). Let/y C V denote the set of
nodes which either belong to some cyclegdnor lie on a path (sequence of edges) connecting two
cycles. We then define tteore graphH = (Viy, Fy) as the node—induced subgraph obtained by
discarding edges from nodes outsidg, so thatEy = {(s,t) € E'| s,t € Vi }. The unique core
graph H underlying any graplt; can be efficiently constructed by iteratively pruning degoae
nodes, or leaves, until all remaining nodes have two or meightrors. The following theorem
identifies conditions under which all terms in the loop seggpansion must be non—negative.

Theorem 1. Let H = (Vy, Ex) be the core graph for a pairwise binary MRF, with attractive
potentials satisfying eq3). Consider any BP fixed point for which all nodes Vy with three or
more neighbors i have marginals, < % (or equivalently,ry > %). The corresponding Bethe
variational approximationZz(z; 7) then lower bounds the true partition functicf{(v).

Proof. It is sufficient to show thaZ (7) > 1 for any reparameterized pairwise MRF, as in eq. (11).
From eq. (9), note that loopy BP estimates the pseudo—nargif(z,,x;) via the product of
Vs (xs, ) With message functions afingle variables. For this reason, attractive pairwise com-
patibilities always lead to BP fixed points with attractieepdo—marginals satisfying; > 757;.

Consider the pairwise loop series expansion of eq. (12). hssva by eq. (13), attractive models
lead to edge weight§,; > 0. It is thus sufficient to show thef[, E,, [(X, — 7,)% )] > 0 for
each generalized loop C E. Suppose first that the graph has a single cycle, and thugerae
non—zero generalized lodp. Because all connected nodes in this cycle have degreelte/bpund
follows becausé, [(Xs — 7‘9)2] > 0. More generally, we clearly havé(r) > 1 in graphs where
every generalized loop' associates an even number of neighkti(g") with each node.

Focusing on generalized loops containing nodes with oddeget) > 3, eq. (14) implies that
E,, [(Xs — 75)%] > 0 for marginals satisfying — 7, > .. For BP fixed points in which, < 1

for all nodes, we thus havg&(7) > 1. In particular, the symmetric fixed point = % leads to uni-
formly positive generalized loop corrections. More getigréhe marginals of nodes for which
ds(F) < 2 for every generalized loop’ do not influence the expansion’s positivity. Theorem 1
discards these nodes by examining the topology of the canghdi (see Fig. 1 for an example).
For fixed points where, > % for all nodes, we rewrite the polynomial in the loop expansid
eq. (15) ag1 + Bs:(7s — zs) (¢ — x¢)), and employ an analogous line of reasoning. O

In addition to establishing Thm. 1, our arguments show tiatrtue partition functiomonotonically
increases as additional edges, with attractive reparaizetepotentials as in eq. (11), are added to
a graph with fixed pseudo—marginats < % For such models, the accumulation of particular
loop corrections, as explored by [4], produces a sequenteasingly tight bounds o4 (). In
addition, we note that the conditions required by Thm. 1 arélar to those underlying classical



correlation inequalitieg[16] from the statistical physics literature. Indeed, theffiths—Kelly—
Sherman (GKS) inequality leads to an alternative proof sesavhere, = % for all nodes.

For attractive Ising models in which some nodes have masyina> % and others; < % the loop
series expansion may contain negative terms. For smalhgrige that in Fig. 1, it is possible to
useupperbounds on the edge weights;, which follow from 7, < min(7g, 7¢), to cancel negative
loop corrections with larger positive terms. As confirmedthy empirical results in Sec. 4.3, the
lower boundZ(vy)) > Z3(v; 7) thus continues to hold for many (perhaps all) attractivegsnodels
with less homogeneous marginal biases.

4.2 Partition Function Boundsfor Factor Graphs

Given a factor grapldr = (V, C) relating binary variables, define a core gragh= (Vy,Cp) by
excluding variable and factor nodes which are not membesayfieneralized loops. As in Sec. 2.2,
letT'(s) denote the set of factor nodes neighboring variable nddehe core grapii.

Theorem 2. Let H = (Vy,Cpy) be the core graph for a binary factor graph, and consider an
attractive BP fixed point for which one of the following cdratis holds:

(i) 75 < %for all nodess € Vi with |T'(s)| > 3, andk, > 0forall a C ¢, c € Ch.

(i) 7, > 1 forall nodess € Vi with |T(s)| > 3, and(—1)lelk, > 0foralla C ¢, c € Cp.
The Bethe approximatiofiz(1; 7) then lower bounds the true partition functiéf(s)).

For the case where, < % the proof of this theorem is a straightforward generalirabf the

arguments in Sec. 4.1. When > 1, we replace al(z, — 7,) terms by(r, — z,) in the expansion
of eq. (20), and again recover uniformly positive loop cofians.

For any given BP fixed point, the conditions of Thm. 2 are easyetify. For factor graphs, it is
more challenging to determine which compatibility funasal.(z.) necessarily lead to attractive
fixed points. For symmetric potentials as in eq. (7), howewre can show that the conditions on
Ka,a C c are necessarily satisfied whenever all variable neded’y; have the same bias.

4.3 Empirical Comparison of Mean Field and Bethe L ower Bounds

In this section, we compare the accuracy of the Bethe vanatibounds established by Thm. 1
to those produced by a naive, fully factored mean field agpration [3, 9]. Using the
spin representation, € {—1,+1}, we examine Ising models with attractive pairwise potéstia
log st (2s, 2t) = 01252, Of varying strengthd,, > 0. We first examine a 2D torus, with potentials
of uniform strengthd,, = 6 and no local observations. For such MRFs, the exact partitiac-
tion may be computed via Onsager’s classical eigenvecttiadeg13]. As shown in Fig. 3(a), for
moderatd the Bethe bounds(v; 7) is substantially tighter than mean field. For laggenly two
states (all spins “up” or “down”) have significant probatyiliso thatZ () ~ 2 exp(f|E|). In this
regime, loopy BP exhibits “symmetry breaking” [6], and cerges to one of these states at random
with corresponding bounds(y; 7) ~ exp(0|E|). As verified in Fig. 3(a), a8 — oo the difference
log Z(¢) — log Zg(1; ) =~ log 2 ~ 0.69 thus remains bounded.

We also consider a set of randafi x 10 nearest—neighbor grids, with inhomogeneous pairwise
potentials sampled according ;| ~ N(O, 92), and observation potentialsg 1s(zs) = 0525,
|0s] ~ N(O, 0.12). For each candidate we sampld 00 random MRFs, and plot the average differ-
encelog Zg(v; ) — log Z(1)) between the true partition function and the BP (or mean fiigte}d
point reached from a random initialization. Fig. 3(b) firsnsiders MRFs wher@, > 0 for all
nodes, so that the conditions of Thm. 1 are satisfied for alfi#l points. For these models, the
Bethe bound isxtremelyaccurate. In Fig. 3(c), we also consider MRFs where the ghten
potentialsd, are of mixed signs. Although this sometimes leads to BP fiadts with negative
associated loop corrections, the Bethe variational appration neverthelesalwayslower bounds
the true partition function in these examples. We hypotteetiiat this bound in fact holds for all
attractive, binary pairwise MRFs, regardless of the olzt@m potentials.

5 Discussion

We have provided an alternative, direct derivation of theifian function’s loop series expansion,
based on the reparameterization characterization of BB firents. We use this expansion to prove
that the Bethe approximation lower bounds the true pantfimction in a family of binary attractive
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models. These results have potential implications for thigaiility of loopy BP in approximate
parameter estimation [3], as well as its convergence dycgrie are currently exploring general-
izations of our results to other families of attractive, oeérly” attractive, graphical models.
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Appendix: Polynomial Representations of Compatibility Functions

In this appendix, we establish identities needed for thefgrof Props. 1 and 2. Consider a binary
pairwise marginal distributiony;(x, z;) parameterized by three mean paramefetsr;, 7s;} as
in eq. (4). Evaluating eachr, z;) € {0,1}2, the pairwise potential equals

1—7s—T+7s¢ Te—Tst Tst—TsTt _ Tst—TsTt
Tst(@sy %) | TEmaen) Goron | _ VT Tma-m - d5n
Ts—Tst Tst _ Tst—TsTt Tst—TsTt

TS(mS)Tt(xt> Ts(1—7¢) TsTt 1 Ts(1—7¢) I+ TsTt

Multiplying and dividing so that the right—hand terms shammmon denominator, we then imme-
diately recover the polynomial representation of eq. (15).

To establish the general result in eq. (20), we note thatetpsession equivalently implies that the
following relationship holds for any real-valued functiffi.) on k = |c| bits:

D relwe) flwe) =) (Hﬁ(%)) (1 + Y B [ - Ts))f(l“c)

@ aCc,lal>2  s€a

ET{: [f(Xc)] = ]Ef'|:f(Xc) + Z Ba f(Xc) H(Xs - Ts):| (23)
aCec,lal>2 s€a
Here,E:[-] denotes expectation with respecti@.) = [ [,.. 7:(«:). Because both sides of eq. (23)
depend ork binary variables, it is sufficient to show equality for tbfelinearly independent func-
tions fy(x.) := [[,c (2t — 7¢), b C c. For the constant functiofy (z.) = 1, eq. (23) becomes

1= 1[«:{1 + ) B []x - TS)} =1. (24)
aCe,lal>2 s€a
The last equality follows sincE: [[], ., (Xs — 75)] = Ez[fa(X.)] = 0 for anya # 0. For non—
constant functiong;, (z..), verifying eq. (23) is thus equivalent to showing that

E.h(X)]= 3 B.Es [n(xc) Iex. - m} (25)
aCc,lal>2 s€a
If a # b, the product functiorfy (x.) [ ], ., (zs —75) contains at least one degree—one térn-7;),
and thus has mean zero with respectfe.). Both sides of eq. (25) then vanish|tf = 1. For
higher—order subsets, the right—hand side of this expme$sis a single non—zero term:

B A0 = 1 Be| (X LK. = 7)

sEb
KRp

- v B I ] = (29)

seb
Applying the definition of the central moment from eq. (6), we have established that both sides
of eq. (23) are satisfied BF linearly independent constraints, thus proving egs. (h#)(&20).



