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Abstract

Many nonlinear dynamical phenomena can be effectively riealdey a system
that switches among a set of conditionally linear dynamimades. We con-
sider two such models: the switching linear dynamical sys{€LDS) and the
switching vector autoregressive (VAR) process. Our noamp@tric Bayesian ap-
proach utilizes a hierarchical Dirichlet process priorgarh an unknown number
of persistent, smooth dynamical modes. We develop a saghplgorithm that
combines a truncated approximation to the Dirichlet preceith efficient joint
sampling of the mode and state sequences. The utility antiflgxof our model
are demonstrated on synthetic data, sequences of dancirgy bees, and the
IBOVESPA stock index.

1 Introduction

Linear dynamical systems (LDSs) are useful in describingagdyical phenomena as diverse as hu-
man motion [9], financial time-series [4], maneuvering &sd6, 10], and the dance of honey bees
[8]. However, such phenomena often exhibit structural gesnover time and the LDS models
which describe them must also change. For example, a cgdslhistic missile makes an evasive
maneuver; a country experiences a recession, a centralftenkention, or some national or global
event; a honey bee changes fronvaggle to aturn right dance. Some of these changes will ap-
pear frequently, while others are only rarely observed. ddition, there is always the possibility
of a new, previously unseen dynamical behavior. These dersions motivate us to develop a
nonparametric Bayesian approach for learrgngiching LDS (SLDS) models. We also consider
a special case of the SLDS—the switching vector autoreygee$gAR) process—in which direct
observations of the underlying dynamical process are asg@available. Although a special case of
the general linear systems framework, autoregressive isbdee simplifying properties that often
make them a practical choice in applications.

One can view switching dynamical processes as an extensioidden Markov models (HMMSs)
in which each HMM state, amode, is associated with a dynamical process. Existing methods f
learning SLDSs and switching VAR processes rely on eithéndithe number of HMM modes,
such as in [8], or considering a change-point detection tdation where each inferred change is
to a new, previously unseen dynamical mode, such as in [thi$ paper we show how one can
remain agnostic about the number of dynamical modes whill@kdwing for returns to previously
exhibited dynamical behaviors.



Hierarchical Dirichlet processes (HDP) can be used as a priche parameters of HMMs with
unknown mode space cardinality [2, 12]. In this paper we mase of a variant of the HDP-
HMM—the sticky HDP-HMM of [5]—that provides improved control over the number of resd
inferred by the HDP-HMM; such control is crucial for the ptelms we examine. Although the
HDP-HMM and its sticky extension are very flexible time serimodels, they do make a strong
Markovian assumption that observations are conditionatlgpendent given the HMM mode. This
assumption is often insufficient for capturing the tempdegpendencies of the observations in real
data. Our nonparametric Bayesian approach for learningking dynamical processes extends the
sticky HDP-HMM formulation to learn an unknown number of gistent, smooth dynamical modes
and thereby capture a wider range of temporal dependencies.

2 Background: Switching Linear Dynamic Systems

A state space (SS) model provides a general framework fdyzng many dynamical phenomena.
The model consists of an underlying state,c R™, with linear dynamics observed vig € R%. A
linear time-invariant SS model, in which the dynamics dodegiend on time, is given by

T =Axi_ 1 +e;  y, = Cxy + wy, 1)

wheree; andw, are independent Gaussian noise processes with covarigrasesR, respectively.
An orderr VAR process, denoted by VARY, with observationg, € R?, can be defined as

Yy = Z Ay, i te e; ~N(0,%). (2)
i=1
Here, the observations depend linearly on the previasservation vectors. Every VAR(process
can be described in SS form by, for example, the followinggfarmation:

A Ay ... A, T
I o ... O 0

Te=|. : B y,=[1 0 ... O]a. (3)
0o ... I 0 0

Note that there are many such equivalemimal SS representations that result in the same input-
output relationship, where minimality implies that theed not exist a realization with lower state
dimension. On the other hand, not every SS model may be esqutes a VAR() process for finite

r [1]. We can thus conclude that considering a class of SS moigh state dimension - d and
arbitrary dynamic matrix4 subsumes the class of VAR (processes.

The dynamical phenomena we examine in this paper exhib#berfs better modeled as switches
between a set of linear dynamical models. Due to uncertairthe mode of the process, the overall
model is honlinear. We definesavitching linear dynamical system (SLDS) by

x, = AF) g, |+ e:(zt) y, = Cxy + wy. (4)

The first-order Markov process indexes the mode-specific LDS at timewhich is driven by
Gaussian noise; (z;) ~ N(0, X(3*)), We similarly define awitching VAR(r) process by

y =D ATy, tez)  eln) ~N(0,5E0). (5)
=1

Note that the underlying state dynamics of the SLDS are edpriv to a switching VARK) process.
3 Background: Dirichlet Processes and the Sticky HDP-HM M
A Dirichlet process (DP), denoted P (~, H), is a distribution on discrete measures

Go=) Bids, Ox~H (6)

k=1
on a parameter spaée The weights are generated viatack-breaking construction [11]:

k—1
B=6.[[1-5) B ~Betal,). (7)
=1
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Figure 1: For all graphs,3 ~ GEM(v) andf, ~ H(A). (@) DP mixture model in which; ~ 3 and
yi ~ f(y | 0:;). (b) HDP mixture model withr; ~ DP(«, §), zji ~ m;, andy;; ~ f(y | 6z;,)- (c)-(d)
Sticky HDP-HMM prior on switching VAR(2) and SLDS processeish the mode evolving as;+1 ~ ., for
7 ~ DP(a + K, (a8 + kdi) /(o + )). The dynamical processes are as in Eq. (13).

We denote this distribution by ~ GEM(y). The DP is commonly used as a prior on the parameters
of a mixture model, resulting in BP mixture model (see Fig.1(a)). To generate observations, we
choosed; ~ Gy andy; ~ F(0;). This sampling process is often described via a discreiahlar

z; ~ [ indicating which component generatgs~ F(6,,).

Thehierarchical Dirichlet process (HDP) [12] extends the DP to cases in which groups of data are
produced by related, yet distinct, generative processddang a hierarchical Bayesian approach, the
HDP draws, from a Dirichlet process priddP(~, H), and then draws group specific distributions
G; ~ DP(a, Gy). Here, the base measutg acts as an “average” distributioR'[G; | Go] = Go)
encoding the frequency of each shared, global parameter:

oo

Gj =) 7d5,  #;~GEM(a) (8)

~
Il
-

M

k00, m; ~DP(e, ). 9)
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Becausds is discrete, muItipIeéjt ~ Gy may take identical value,. Eq. (9) aggregates these
probabilities, allowing an observatigg; to be directly associated with the unique global parameters
via an indicator random variablg; ~ ;. See Fig. 1(b).

An alternative, non—constructive characterization of pl@sG, ~ DP(~, H) from a Dirichlet
process states that for every finite partitiof, ..., Ax } of 9,

(Go(Ar),...,Go(Ak)) ~ Dir(vH(Av), ..., vH(Ak)). (10)

Using this expression, it can be shown that the followinddirtiierarchical mixture model converges
in distribution to the HDP a& — oo [7, 12]:

B ~ Dir(y/L,...,v/L) mj ~ Dir(af,...,aBL). (11)
Thisweak limit approximation is used by the sampler of Sec. 4.2.

The HDP can be used to develop an HMM with a potentially infimtede space [2, 12]. For
this HDP-HMM, each HDP group-specific distributiory, is a mode-specific transition distribution
and, due to the infinite mode space, there are infinitely maoys. Letz, denote the mode of the
Markov chain at time. For discrete Markov processes~ ., ,, So thatz;_; indexes the group

to whichy; is assigned. The current HMM modegthen indexes the parametg; used to generate
observationy;. See Fig. 1(c), ignoring the direct correlation in the olagons.

By samplingw; ~ DP(«, 3), the HDP prior encourages modes to have similar transitistnid
butions E[m;r | 8] = Brx). However, it does not differentiate self-transitionsnfronoves be-
tween modes. When modeling dynamical processes with modéstence, the flexible nature of
the HDP-HMM prior allows for mode sequences with unrealalty fast dynamics to have large
posterior probability. Recently, it has been shown [5] thrad may mitigate this problem by instead
considering aticky HDP-HMM wherer; is distributed as follows:

Oéﬁ-i-/iéj)

a+ kK

m; ~ DP (a + K, (12)
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Here,(a3+ x4;) indicates that an amounrt> 0 is added to thg!” component ofv3. The measure
of 7; over a finite partitior(Z1, . . ., Zx) of the positive integer&. , as described by Eq. (10), adds
an amount only to the arbitrarily small partition containing corresponding to a self-transition.
Whenk = 0 the original HDP-HMM is recovered. We place a vague priorsoand learn the
self-transition bias from the data.

4 TheHDP-SLDSand HDP-AR-HMM Models

For greater modeling flexibility, we take a nonparametriprapch in defining the mode space of
our switching dynamical processes. Specifically, we dgvektensions of the sticky HDP-HMM
for both the SLDS and switching VAR models. For the SLDS, wesider conditionally-dependent
emissions of which only noisy observations are availal#e Gg. 1(d)). For this model, which we
refer to as th&dDP-SLDS, we place a prior on the parameters of the SLDS and infer gusiterior
from the data. We do, however, fix the measurement mattj¥or reasons of identifiability. Let
C € R¥", n > d, be the measurement matrix associated with a dynamicairaydefined byA,
and assumé’ has full row rank. Then, without loss of generality, we mapsiderC = [I 0] since
there exists an invertible transformati@hsuch that the pai€ = CT = [I 0] andA = T~ 'AT
defines an equivalent input-output system. The dimensiyrwli is determined by that of the data.
Our choice of the number of columns of zeros is, in essendeoize of model order.

The previous work of Fox et al. [6] considered a related, ymapter formulation for modeling a
maneuvering target as a fixed LDS driven by a switching exogerinput. Since the number of
maneuver modes was assumed unknown, the exogenous inptakeasto be the emissions of a
HDP-HMM. This work can be viewed as an extension of the worlCayon et. al. [3] in which
the exogenous input was an independent noise process tgghéam a DP mixture model. The
HDP-SLDS is a major departure from these works since themisparameters themselves change
with the mode and are learned from the data, providing a mumte expressive model.

The switching VAR() process can similarly be posed as an HDP-HMM in which theolagions
are modeled as conditionally VARY This model is referred to as th¢DP-AR-HMM and is de-
picted in Fig. 1(c). The generative processes for these tadats are summarized as follows:

HDP-AR-HMM HDP-SLDS
Mode dynamics 2t~ Moy, Zg ™~ Moy (13)
Observation dynamicsy, = >_;_, Agzt)yt,i +e(z) | o= A®x, 1+ e(z)
y, = Czy + wy

Here,r; is as defined in Sec. 3 and the additive noise processes as.if.Se
4.1 Posterior Inference of Dynamic Parameters

In this section we focus on developing a prior to regulatiegdéarning of different dynamical modes
conditioned on a fixed mode assignment-. For the SLDS, we analyze the posterior distribution of
the dynamic parameters given a fixed, known state sequengeMethods for learning the number
of modes and resampling the sequenceg andz;. are discussed in Sec. 4.2.

Conditioned on the mode sequence, one may partition thenaisgms intoK different linear re-

gression problems, whet€ = |{z1,...,2r}|. Thatis, for each modg, we may form a matrix
Y ®) with V;, columns consisting of the observatiapswith z; = k. Then,
Y® — ABYE L g (14)

where A(®) = (A% A®] ¥®) is a matrix of lagged observations, aiif*) the associated

noise vectors. LeD®*) = {Y(®) Y(*)1. The posterior distribution over the VAR(parameters
associated with the*” mode decomposes as follows:

p(A®) 2®) | DR = (AR | £®) DEYyn® | DK, (15)

We place a conjugateatrix-normal inverse-Wishart prior on the parametergA(¥) =(*)} [13],
providing a reasonable combination of flexibility and arialyi convenience. A matrid € R4x™
has a matrix-normal distributioMN (A; M,V , K) if

d Ty,—1
o) = KL s ((A-M)V T (A-M)K)
27V ]2 ’

(16)



where M is the mean matrix an® and K ~! are the covariances along the rows and columns,
respectively. A vectorization of the matrik results in

p(veqA)) = N(ved M), K" @ V), a7
where® denotes the Kronecker product The resulting posterioeiived as
- A(k) | 2 DR = MA(AR); 8B R 5=k glk)y (18)

with B~®) denoting(B*))~1 for a given matrixB, and
St — THY®" L K s — YROT®T L MK S — YOY®O" L MK MT.

We place an inverse-Wishart prior I\, 7o) on £(*). Then,

p(=* | DW) = IW<sy@+so,Nk +n0), (19)

whereS(TZ = S(k) Sé’f}sﬂ;k)s( )T. When A is simply a vector, the matrix-normal inverse-

Wishart prior reduces to the normal inverse-Wishart prith\wscale parametdk’.

For the HDP-SLDS, we additionally place an (Wb, ro) prior on the measurement noise covariance
R, which is shared between modes. The posterior distribugigiven by

p(R | yy.p,x1.7) = IW(SR + Ro, T + 10), (20)
with Sgp= Zt (y, — Czy)(y, — Cz¢)T. Further details are provided in supplemental Appendix I.

4.2 Gibbs Sampler

For the switching VAR() process, our sampler iterates between sampling the modeseez; .7,
and both the dynamic and sticky HDP-HMM parameters. The samfgr the SLDS is identical to
that of a switching VAR() process with the additional step of sampling the state esscpix;.7,
and conditioning on the state sequence when resamplingwgrarameters. The resulting Gibbs
sampler is described below and further elaborated upongplemental Appendix II.

Sampling Dynamic Parameters Conditioned on a sample of the mode sequenge, and the ob-
servationsy ., or state sequence;.r, we can sample the dynamic parametees {A %) ©(k)}
from the posterior density described in Sec. 4.1. For the {8DBS, we additionally sampl&.

Sampling z;.7 As shown in [5], the mixing rate of the Gibbs sampler for the FHEMM can
be dramatically improved by using a truncated approxinmtiothe HDP, such as the weak limit
approximation, and jointly sampling the mode sequenceguainariant of the forward-backward
algorithm. Specifically, we compute backward messaggs (z:) o« p(Y;1.7|26: Y pi1.4, 7, 6)
and then recursively sample eaghconditioned ore;_; from

p(Zt | thlayl:TvTrvo) O(p(zt | Tz 1) (yt | Yirit— 17A(Zt)vz(Zt))mtJrl,t(zt)v (21)

wherep(y; | ¥, .1, ACD,5E)) = N (ST, APy, . %)), Joint sampling of the mode se-
guence is especially important when the observations aeetty correlated via a dynamical process
since this correlation further slows the mixing rate of thect assignment sampler of [12]. Note
that the approximation of Eq. (11) retains the HDP’s nonpeataic nature by encouraging the use
of fewer than. components while allowing the generation of new componemger bounded by
L, as new data are observed.

Sampling «;.7 (HDP-SLDS only) Conditioned on the mode sequenger and the set of dy-
namic parameter®, our dynamical process simplifies to a time-varying linegnamical sys-
tem. We can then block sampig .1 by first running a backward filter to compute; 1 ;(x;)
P(Yp1.7|%e, 2e41:7, @) and then recursively sampling eaghconditioned on;_; from

(s | X1, Y1 211, 0) o plae | @1, A SCEDNp(y, | @, R)ymiyr (). (22)

The messages are given in information formby; 1 (x;—1) o N~ (x;—1;0;.4-1, Ar.1—1), where
the information parameters are recursively defined as

O i1 = A(Zt)TE_(Zt)(E_(Zt) +CTR™'C+ Apy1,0) "(CTR 'y, + 0141,) (23)
At,tfl — A(Zt)TE*(Zt)A zt) _ A(Zt (Zt)(zf(zt) 4 CTrR ¢ + At+1,t)7127(zt)A(zt)-
See supplemental Appendix Il for a more numerically stablesion of this recursion.
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Figure 2:(a) Observation sequence (blue, green, red) and assoaiatgel sequence (magenta) for a 5-mode
switching VAR(1) process (top), 3-mode switching AB(process (middle), and 3-mode SLDS (bottom). The
associated 10th, 50th, and 90th Hamming distance quantiesl00 trials are shown for the (b) HDP-VAR{
HMM, (c) HDP-VAR(2)-HMM, (d) HDP-SLDS withC' = I (top and bottom) and’ = [1 0] (middle), and
(e) sticky HDP-HMM using first difference observations.

5 Results

SyntheticData In Fig. 2, we compare the performance of the HDP-VAREIMM, HDP-VAR(2)-
HMM, HDP-SLDS, and a baseline sticky HDP-HMM on three settesf data (see Fig. 2(a)). The
Hamming distance error is calculated by first choosing thémag mapping of indices maximiz-
ing overlap between the true and estimated mode sequencesheHirst scenario, the data were
generated from a 5-mode switching VAR process. The three switching linear dynamical models
provide comparable performance since both the HDP-\2AR{MM and HDP-SLDS withC' = I
contain the class of HDP-VARJ-HMMSs. Note that the HDP-SLDS sampler is slower to mix since
the hidden, three-dimensional continuous state is alspleginin the second scenario, the data were
generated from a 3-mode switching ARRprocess. The HDP-ARJ-HMM has significantly better
performance than the HDP-AR(HMM while the performance of the HDP-SLDS with = [1 0]

is comparable after burn-in. As shown in Sec. 2, this HDP-Slrfiodel encompasses the class of
HDP-ARQ2)-HMMs. The data in the third scenario were generated fromnaoc8e SLDS model
with C' = I. Here, we clearly see that neither the HDP-VARHMM nor HDP-VAR(2)-HMM is
equivalent to the HDP-SLDS. Together, these results detraiadoth the differences between our
models as well as the models’ ability to learn switching psses with varying numbers of modes.
Finally, note that all of the switching models yielded sfgrant improvements relative to the base-
line sticky HDP-HMM, even when the latter was given first difnces of the observations. This
input representation, which is equivalent to an HDP-VARAMM with random walk dynamics
(A®) = T for all k), is more effective than using raw observations for HDP-HNslrning, but still
much less effective than richer models which switch amoagied LDS.

IBOVESPA Stock Index We test the HDP-SLDS model on the IBOVESPA stock index (Sao
Paulo Stock Exchange) over the period of 01/03/1997 to (G2008.. There are ten key world
events shown in Fig. 3 and cited in [4] as affecting the ermgr@irazilian market during this time
period. In [4], a 2-mode Markov switching stochastic volgtiiMSSV) model is used to identify
periods of higher volatility in the daily returns. The MSSssames that the log-volatilities follow an
AR(1) process with a Markov switching mean. This underlying pssis observed via conditionally
independent and normally distributed daily returns. TheP-ELDS is able to infer very similar
change points to those presented in [4]. InterestinglyHB&-SLDS consistently identifies three
regimes of volatility versus the assumed 2-mode model. In Fighe overall performance of the
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Figure 3:(a) IBOVESPA stock index daily returns from 01/03/1997 td1@12001. (b) Plot of the estimated
probability of a change point on each day using 3000 Gibbsssior the HDP-SLDS. The 10 key events are
indicated with red lines. (c) Similar plot for then-sticky HDP-SLDS with no bias towards self-transitions.
(d) ROC curves for the HDP-SLDS, non-sticky HDP-SLDS, HDR{&)-HMM, and HDP-ARQ)-HMM.

HDP-SLDS is compared to that of the HDP-ARHMM, HDP-AR(2)-HMM, and HDP-SLDS
with no bias for self-transitions (i.ex, = 0.) The ROC curves shown in Fig. 3(d) are calculated
by windowing the time axis and taking the maximum probapdita change point in each window.
These probabilities are then used as the confidence of a etpigt in that window. We clearly
see the advantage of using a SLDS model combined with theydiDP-HMM prior on the mode
sequence. Without the sticky extension, the HDP-SLDS segments the data and rapidly switches
between redundant states which leads to a dramaticallgdargmber of inferred change points.

Dancing Honey Bees We test the HDP-VARK)-HMM on a set of six dancing honey bee se-
guences, aiming to segment the sequences into the threesddisplayed in Fig. 4. (Note that we
did not see performance gains by considering the HDP-SLB®$esomit showing results for that
architecture.) The data consist of measuremgnts- [cos(6;) sin(6;) z; T, where(z,y;)
denotes the 2D coordinates of the bee’s body @nils head angle. We compare our results to
those of Xuan and Murphy [14], who used a change-point detet¢chnique for inference on this
dataset. As shown in Fig. 4(d)-(e), our model achieves argupgegmentation compared to the
change-point formulation in almost all cases, while alsnitfying modes which reoccur over time.

Oh et al. [8] also presented an analysis of the honey beewtstey an SLDS with a fixed number of
modes. Unfortunately, that analysis is not directly corapé to ours, because [8] used their SLDS
in a supervised formulation in which the ground truth lalfelsall but one of the sequences are
employed in the inference of the labels for the remainingmlt sequence, and in which the kernels
used in the MCMC procedure depend on the ground truth lalf€lse authors also considered a
“parameterized segmental SLDS (PS-SLDS),” which makesofisemmain knowledge specific to
honey bee dancing and requires additional supervisiomduhie learning process.) Nonetheless,
in Table 1 we report the performance of these methods as welleamedian performance (over
100 trials) of the unsupervised HDP-VAR{HMM to provide a sense of the level of performance
achievable without detailed, manual supervision. As sedalite 1, the HDP-VAR()-HMM yields
very good performance on sequences 4 to 6 in terms of theddaegmentation and number of
modes (see Fig. 4(a)-(c)); the performance approachesfttiag supervised method. For sequences
1 to 3—which are much less regular than sequences 4 to 6—tfermpance of the unsupervised
procedure is substantially worse. This motivated us to etstwider a partially supervised variant
of the HDP-VAR()-HMM in which we fix the ground truth mode sequences for fivé afusix of
the sequences, and jointly infer both a combined set of dymparameters and the left-out mode
sequence. As we see in Table 1, this considerably improvwddrpgance for these three sequences.

Not depicted in the plots in Fig. 4 is the extreme variatiohé&ad angle during the waggle dances
of sequences 1 to 3. This dramatically affects our perfomaaince we do not use domain-specific
information. Indeed, our learned segmentations condlgtielentify turn-right and turn-left modes,
but often create a new, sequence-specific waggle dance ilaaey.of our errors can be attributed to
creating multiple waggle dance modes within a sequencetrayieowever, we are able to achieve
reasonably good segmentations without having to manugllytidomain-specific knowledge.

6 Discussion

In this paper, we have addressed the problem of learninglsing linear dynamical models with
an unknown number of modes for describing complex dynanpicahomena. We presented a non-
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Figure 4: (top) Trajectories of the dancing honey bees for sequendess] colored bywaggle (red), turn
right (blue), andturn left (green) dances. (a)-(c) Estimated mode sequences repingstre median error for
sequences 4, 5, and 6 at the 200th Gibbs iteration, withsemadlicated in red. (d)-(e) ROC curves for the
unsupervised HDP-VAR-HMM, partially supervised HDP-VARVM, and change-point formulation of [14]
using the Viterbi sequence for segmenting datasets 1-3-@ndespectively.

| Sequence | 1 ] 2 ] 3] 415 1] 6 ]
HDP-VAR(1)-HMM unsupervised 46.5] 44.1]| 45.6| 83.2] 93.2] 88.7
HDP-VAR(1)-HMM partially supervised 65.9| 88.5| 79.2| 86.9| 92.3| 89.1
SLDS DD-MCMC 74.0] 86.1] 81.3]| 93.4] 90.2| 90.4
PS-SLDS DD-MCMC 75.9]924]83.1| 934|904 91.0

Table 1:Median label accuracy of the HDP-VAREHMM using unsupervised and partially supervised Gibbs
sampling, compared to accuracy of the supervised PS-SLBSEDS procedures, where the latter algorithms
were based on a supervised MCMC procedure (DD-MCMC) [8]

parametric Bayesian approach and demonstrated both fitg atid versatility of the developed
HDP-SLDS and HDP-AR-HMM on real applications. Using the sgparameter settings, in one
case we are able to learn changes in the volatility of the IBSWA stock exchange while in an-
other case we learn segmentations of dataveggle, turn-right, andturn-left honey bee dances.
An interesting direction for future research is learningdw®is of varying order for each mode.
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APPENDIX I
DYNAMIC PARAMETER POSTERIOR

In this appendix, we derive the posterior distribution over the dynamic parameters of a switching VAR(r) process
defined as follows:

T
Y = Z AEZt)yt—z‘ +ez) e ~N(0,55), ey
i=1
where z; indexes the mode-specific VAR(r) process at time ¢. Assume that the state sequence {z1, ..., zr} is known
and we wish to compute the posterior distribution of the k** mode’s VAR(r) parameters Aik fori=1,...,r and

»*) Let {t,...,tn,} = {t|z; = k}. Then, we may write

Y1,-1 Yt,-1 - Yty -1
Y1,—2 Yt,—2 - Yiy 2
[ytl Yy, - ytNJ = [Agk) A;k) Afff) . * + [etl e, ... etNk] .
ytl—r ytg*"" cee ytNkfr
2
We define the following notation for Eq. 2:
YR = ARy ®) L Bk 3)
Let D(*) = {Y(®) Y ()1 We place a matrix-normal inverse-Wishart prior on the dynamic parameters { A (%) $(¥)}

and show that the posterior remains matrix- normal inverse Wishart. The matrix-normal inverse-Wishart prior is
given by placing a matrix-normal prior MN (A ), M, x®) K ) on A given » k).
‘ K\d /2

p(AW | k) = =1

exp (—;tr((A —~ M)~k - M)K)> 4)

and an inverse-Wishart prior IW(Sg, n) on X():
|50‘n/2|§;(k)|—(d+n+1)/2
2nd/21 4 (n/2)

1
p(E®) = exp <—2t7“(2(k)50)> )
where T'g(n/2) is the multivariate gamma function and B~*) denotes (B*))~! for some matrix B.
We first analyze the likelihood of the data, D), given the k' mode’s dynamic parameters, {A(k),E(k)}.
Starting with the fact that each observation vector, y,, is conditionally Gaussian given the lag observations, ¥, =

[y -yl )", we have

1 1
*) pb)y— _ + ARG TRy, — ARG
p(DWAR) 5k = PRSI p( 25( p, — Ay ) BTy, — A yti,)>

b B (y® — AWF®)y®) _ AWFENT

mz(k ‘Nk/2exp< tr(2 ARYEYyE) - ARy )))
1 (k k)~ (EN\NT s —(k k k)~ (k

mzw RE exp< St Y — ARy ENT=(k) (y k) _ ARy k) T)

= MN(Y®); AWy ®) 5k 1), (6)

To derive the posterior of the dynamic parameters, it is useful to first compute
pMDH AF | F) = pD® | A 5E)pAF) | ). (7)
Using the fact that both the likelihood term p(D®) | A®) %:(k)) and the prior p(A*) | £(%)) are matrix-normally



distributed sharing a common parameter ©(*), we have
log p(D®, A% | £*)) 4 ¢
— —%tr((Y(k) — ARYENTs =) (y k) _ ABFEY L (AR — pnTs=F(AF) - MK)

— _ltr(z—(k){(y(k) — ARy Ry y®) _ ARFENT L (AF) — A K (AP — M)TY)
2

_ —(k k) (k) A (k)T (k) A (k)T k

= ——tr(% ( ){A( IQWF) A (K)T _ 9g (k) A (K) +Sg(,y)})

vy vy

1 _ _
= —5tr (= O{AD - 85, F)SEA® — sDs T 4 50y, 8)

vy Vg5 )¥y5 vy D7 yli

1 |K|d/2

for C'= —log ZAE [Nk T2 [Brs (P [7N /2 and S:E/]E = ng) _sg-hgh* using the definitions

yy S gy yy

k)

St —yWy® Lk s —yWY® L MKk SW = YRY®" L MEMT.

Conditioning on the noise covariance X(*), we see that the dynamic matrix posterior is given by:
1 k) e—(k _ k) a—(k k
p(A® | DO, 50) o exp (- prr((A© - SISO (AW - P55 )
B g k) v—(k) qk)
= MN(AR);sWg (M) si=(k) k), )

Marginalizing Eq. 8 over the dynamic matrix A(¥), we derive

p(DH | E)y = / p(DHF, AK) | 50 GA®)
A (k)

|Kd/2‘
/A(k) |25 (R) | Ne /2|2 (k) |7 Nie/2
exp <—1tr(2_(k) (A(k) _ S(k)sf(k))sglg)(A(k) B S(k)s(k))T)>
2

Yy Sy vy Yy =gy

exp <—;tr(2_(k)8%)) JA®)

_ K| L, (k) (k)
TS CIEE exp —itr(Z Sy‘g)

1 B, aB) (k) (k) () g A (k
/(k) WMN(A(),SWS@ SRCRGIFING
A® S|

/2
- K] T exp <—1tr(2—(k)s(ir))> 10)
|27T2(k)|Nk/2|S(gg)|d/2 2 |7

Using the above, the posterior of the covariance parameter is computed as
p(=® [ DW) o pDE | O)p(2)

/2
3 exp  —str(s~Mg®
2752 (0) | Ne /2|88 | d/2 2 ulg

1
o |SR)|~(dHENeAn+ /2 oy <_2tr(z—<k>(s;k; + 50)))

)> |E(k)‘—(d+n+1)/2 exp (—;tT(E_(k)So)>

= 1w (s®

y|g+So,Nk—|—n). (a1



APPENDIX II
MESSAGE PASSING

In this appendix, we explore the computation of the backwards message passing and forward sampling scheme
used for generating samples of the mode sequence z;.7 and state sequence xi.7.

A. Mode Sequence Message Passing

Consider a switching VAR(r) process. To derive the forward-backward procedure for jointly sampling the mode
sequence zi.7 given observations y;.r, plus 7 initial observations y;_,.;, we first note that the chain rule and
Markov structure allows us to decompose the joint distribution as follows:

p(ZI:T | yl—r:Taﬂ-ae) = p(ZT | ZT—layl—r:Taﬂ-ae)p(ZT—l | ZT—2ay17T:T77T>9)
o p(z2 | R Yl—py T, O)p(zl | Y117 T, 0)

Thus, we may first sample z; from p(z1 | y;_,.p, 7, @), then condition on this value to sample zo from p(z2 |
21,Y1_p1, ™, 0), and so on. The conditional distribution of z; is derived as:

p(21 ’ yl—r:T7ﬂ70) X p('zl)p(yl ‘ 9217y1—7‘:0) ZHP(Zt ‘ Wzt—l)p(yt ‘ gzmyt—r:t—l)
Z2.T7 t

o< p(20)pW1 | 0=, Y1-r0) D 0(22 | 72)p (Y | O Yoyt )Mz 2(22)

Z2

oc p(z1)p(yy | 025 Y1-r0)m21(21), (12)

where my;—1(z:—1) is the backward message passed from z; to z;_; and is recursively defined by:

zZ s (9 5 rt—1)T 2t), t S T7
mt,t—l(zt—l) o { 12’:,21 p( t ‘ Zt—l)p(yt ’ 2ty Yt—rit 1) t+17t( t) . T+ L (13)
The general conditional distribution of z; is:
p(zt | Zt—17yl—T:T77T70) X p(Zt ‘ Tthfl)p(yt ’ eztﬂyt—r:t—l)mt+17t(zt)' (14)
For the HDP-AR-HMM, these distributions are given by:
.
k
p(Zt =k ’ ZA-1LY1—r1> T, 0) X Tz (k)N(yt7 Z AE )yt—i7 Z(k))mt‘FLt(k) (15)
i=1
L r ) ‘
mirek) = D mON @Y A Y S mea e () (16)
j=1 i=1
mT_i_LT(k) =1 k= 1, e ,L. (17)

B. State Sequence Message Passing

A similar sampling scheme is used for generating samples of the state sequence x.7. Although we now have a
continuous state space, the computation of the backwards messages 7,1 () is still analytically feasible since we
are working with Gaussian densities. Assume, m¢1+(xt) o NN @3 04414, Ary14), where N 71(x;60, A) denotes
a Gaussian distribution on x in information form with mean p = A=10 and covariance ¥ = A~!. The backwards
messages for the HDP-SLDS can be recursively defined by

me—1 (1) OC/ (x| i1, 20)P(Ye | ) Mg () dacy.
L



For this model, the densities of Eq. 18 can be expressed as
1 _
p(xe|Ti—1,24) o GXP{—g(l‘t — A gy ) T8 (g — Az, )}

T r [ AT =) Al AT 5= () ] [ 1 ]}

1
xexp{=3 [ x, —x (0 A=) »=() T

1 _
p(yslee) o< exp{—i(yt—Cmt)TR 1(yt—cmt)}
~ ex {_1 Ty 1 "To 0 Ti-1 | | Bl 4 0 )
P 2 Ty 0 CTR 1C T T CTR_lyt
1
mt+1,t(il3t) X eXp{_iw;At+1,twt+w;0t+1,t)}

T T
1| @y 0 0 Ti 1 Ty 0
—= +
o expi 2 [ Ty } [O At+1,t:| [ Ty Ty Ot+1,t }
The product of these quadratics is given by:

(|1, 20)p(Yy| ) Mpg1 () X

ex {—1 L1 T A s=(04 — A=) g (=) Ti1
P 2 X 3y (E) A=)y (=) +CTR™1C + At+1,t Ty

T
+ L1 0 }
€ CTR_lyt + 0114
Using standard Gaussian marginalization identities we integrate over x; to get,
My —1(Te—1) ~ Nfl(a?t—l; Ori—1, At t—1),
where,
b1 = ARSI L OTRTC + Ar ) H(CTR My + 1)
Ay = AT = (20) g(20) _ A(Zz)TE—(Zt)(Z—(zt) +CTR 0 + Aey1 t)—lz—(zt)A(zt)
This backwards message passing recursion is initialized at time 7" with mp41 7 ~ N ~L(x7;0,0). Let,
Agt = CTR™'C 4 Apy1s
9%75 =CT"R ™y, + 0414

Then we can define the following recursion, which we note is equivalent to the backwards running Kalman filter
in information form,

A oy = CTRTIO+ AB S 460 — 460" 5=G0 (5760 4 CTRTLO + Agpy,) I~ E) A
— CTR_IC+ A(zt)TE_(Zt)A(Zt) _ A(Zt)TE—(Zt)(Z—(Zt) + Ai"t)—l —(Zt)A(Zt)
9?—1\t—1 = CTR 'y, + A 5~ GE)(5=G) L oTR-10 + A1) H(CTR My, + 01110)
= CTR*l?Jt—l + A(Zt)Tzi(Zt)(Ei(Zt) + Aglt)ilaflt
We initialize at time T with
Ajyp=CTR™'C
017)“|T =C"R 'yy



An equivalent, but more numerically stable recursion is summarized in Algorithm 1.

1) Initialize filter with
Ajpyp=CTR™'C
0y = CTR yr
2) Working backwards in time, for each t € {T'—1,...,1}:
a) Compute
j _ Ab (Ab + 27(2t+1))71
1 = P e 1\ e 11

Liy1=1— Jyp1.
b) Predict
Net1t = Azes)” (Lt+1Ag+1|t+1L?+1 + Jt+127(Zt+1)Jt7jrl)A(zt+1)
Orrre = AP Loty
c) Update

Afy = A+ CTRTIC
04, = Ory1:+C R 'y,

Algorithm 1: Numerically stable form of the backwards Kalman information filter.

After computing the messages m41 +(x:) backwards in time, we sample the state sequence x1.7 working forwards
in time. As with the discrete mode sequence, one can decompose the posterior distribution of the state sequence as

p(xrr | Y10 211,0) = plxr | Tr-1,Y1.7, 217, O)p(TT1 | T2, Y175 217, 6)
~op(x2 | 1, Y1, 211, 0)p(21 | Y11, 2175 6).
where
p(ae | Tio1, Y, 217, 0) o< play | o1, A, SENp(y, | @y, R)myga(@e). (18)
For the HDP-SLDS, the product of these distributions is equivalent to
p(iBt | Tt—1,Y1.1) 21T, 9) o8 N(a’t; A(Zt)fﬂt—l, Z(Zt))f\/‘(yt; Cxy, R)mt+1,t($t)
o N (i Ay SEON T (ay; 00, A)
- N_l(:vt; E—(zt)A(zt)mtil + 9?\757 y(z) 4 A115)|t)7 (19)

which is a simple Gaussian distribution so that the normalization constant is easily computed. Specifically, for each
te{l,...,T} we sample x; from

Ty ~ /\[(mt; (Zf(Zt) 4 Ag‘t)*l(E*(Zt)A(zt)xt_l + 67?|t)7 (Z*(Zt) 4 Afz't)fl). (20)




Given a previous set of mode-specific transition probabilities 7("~1), the global transition distribution 3("~1), the
dynamic parameters 61 and pseudo-observations g§”; b,
1) Set 7w = w1, {A®) £®} = (AW $®In-D) and G, . = g0,
2) Calculate messages m;—1(k) and the sample mode sequence z.7:
a) For each k € {1,..., L}, initialize messages to myy; 7(k) = 1.
b) Foreacht e {T,...,1} and k € {1,..., L}, compute

L r
mig1(k) =Y TN (@t; S aPg, ., zm) mei1,4(7)
j=1 i=1

c) Working sequentially forward in time, starting with transitions counts nj; = 0 for each (j, k):
i) For each k € {1,..., L}, compute the probability

Fi(@y) = 7o, (RN (.yt; S ag, 2<’“>> mip14(k)
=1

ii) Sample a mode assignment z; as follows and increment n,, ,,,:
L
zt ka(gt)5(2t,k)
k=1

3) If HDP-AR-HMM, set pseudo-observations Y., = Yy.7-
4) If HDP-SLDS, calculate messages mt7t_1(xt_1) and the sample state sequence xi.7:
a) Initialize messages to mri1 r(xr) = N ~1(xr;0,0).
b) For each t € {T,..., 1}, recursively compute {955’| b A§’| .} as in Algorithm 1.
¢) Working sequentially forward in time sample
T ~ N($t; (E—(Zt) + A?“)_l(z_(Zt)A(Zt)mt*l + 0?“)7 (Z_(Zf) + A?\t)_l)'
d) Set pseudo-observations ¥,.; = Z1.7.
5) For each k € {1,..., L}, compute sufficient statistics using pseudo-observations ¢,.7:

sg;) _YRy®T 4 i s;’g —YRYW LMK 8E = y®Y® L MR MT
6) Sample auxiliary variables m, w, and m and then hyperparameters «, vy, and « as in [5], [12].

7) Update the global transition distribution by sampling
B ~Dir(y/L+m,...,v/L+myr)
8) For each k € {1,..., L}, sample a new transition distribution and dynamic parameters based on the
sampled mode assignments and sufficient statistics of the pseudo-observations:
.~ Dir(af + ng1, ..., a0k + &+ ngky - ., B + nkr)

L
2® ~ IW(SSE + S0, ke + no)
(=1

k k k). (k) g=(k) s—(k) (k)
AW |2k~ MmN (AR 8k g I v giy,
If HDP-SLDS, also sample the measurement noise covariance

T

R~ IW(Z(% — Cay)(y; — Cxy)" + Ro, T +10).
t=1

9) Fix (" =7, 3" = 3, 6 = @, and 1]§”% =Yrr

Algorithm 2: HDP-SLDS and HDP-AR-HMM Gibbs sampler.




