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Abstract
Many nonlinear dynamical phenomena can be effectively modeled by a system
that switches among a set of conditionally linear dynamicalmodes. We con-
sider two such models: the switching linear dynamical system (SLDS) and the
switching vector autoregressive (VAR) process. Our nonparametric Bayesian ap-
proach utilizes a hierarchical Dirichlet process prior to learn an unknown number
of persistent, smooth dynamical modes. We develop a sampling algorithm that
combines a truncated approximation to the Dirichlet process with efficient joint
sampling of the mode and state sequences. The utility and flexibility of our model
are demonstrated on synthetic data, sequences of dancing honey bees, and the
IBOVESPA stock index.

1 Introduction

Linear dynamical systems (LDSs) are useful in describing dynamical phenomena as diverse as hu-
man motion [9], financial time-series [4], maneuvering targets [6, 10], and the dance of honey bees
[8]. However, such phenomena often exhibit structural changes over time and the LDS models
which describe them must also change. For example, a coasting ballistic missile makes an evasive
maneuver; a country experiences a recession, a central bankintervention, or some national or global
event; a honey bee changes from awaggle to a turn right dance. Some of these changes will ap-
pear frequently, while others are only rarely observed. In addition, there is always the possibility
of a new, previously unseen dynamical behavior. These considerations motivate us to develop a
nonparametric Bayesian approach for learningswitching LDS (SLDS) models. We also consider
a special case of the SLDS—the switching vector autoregressive (VAR) process—in which direct
observations of the underlying dynamical process are assumed available. Although a special case of
the general linear systems framework, autoregressive models have simplifying properties that often
make them a practical choice in applications.

One can view switching dynamical processes as an extension of hidden Markov models (HMMs)
in which each HMM state, ormode, is associated with a dynamical process. Existing methods for
learning SLDSs and switching VAR processes rely on either fixing the number of HMM modes,
such as in [8], or considering a change-point detection formulation where each inferred change is
to a new, previously unseen dynamical mode, such as in [14]. In this paper we show how one can
remain agnostic about the number of dynamical modes while still allowing for returns to previously
exhibited dynamical behaviors.
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Hierarchical Dirichlet processes (HDP) can be used as a prior on the parameters of HMMs with
unknown mode space cardinality [2, 12]. In this paper we makeuse of a variant of the HDP-
HMM—the sticky HDP-HMM of [5]—that provides improved control over the number of modes
inferred by the HDP-HMM; such control is crucial for the problems we examine. Although the
HDP-HMM and its sticky extension are very flexible time series models, they do make a strong
Markovian assumption that observations are conditionallyindependent given the HMM mode. This
assumption is often insufficient for capturing the temporaldependencies of the observations in real
data. Our nonparametric Bayesian approach for learning switching dynamical processes extends the
sticky HDP-HMM formulation to learn an unknown number of persistent, smooth dynamical modes
and thereby capture a wider range of temporal dependencies.

2 Background: Switching Linear Dynamic Systems

A state space (SS) model provides a general framework for analyzing many dynamical phenomena.
The model consists of an underlying state,xt ∈ R

n, with linear dynamics observed viayt ∈ R
d. A

linear time-invariant SS model, in which the dynamics do notdepend on time, is given by

xt = Axt−1 + et yt = Cxt + wt, (1)

whereet andwt are independent Gaussian noise processes with covariancesΣ andR, respectively.
An orderr VAR process, denoted by VAR(r), with observationsyt ∈ R

d, can be defined as

yt =

r
∑

i=1

Aiyt−i + et et ∼ N (0, Σ). (2)

Here, the observations depend linearly on the previousr observation vectors. Every VAR(r) process
can be described in SS form by, for example, the following transformation:
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







A1 A2 . . . Ar

I 0 . . . 0
...

. . .
...

...
0 . . . I 0









xt−1 +









I
0
...
0









et yt = [I 0 . . . 0] xt. (3)

Note that there are many such equivalentminimal SS representations that result in the same input-
output relationship, where minimality implies that there does not exist a realization with lower state
dimension. On the other hand, not every SS model may be expressed as a VAR(r) process for finite
r [1]. We can thus conclude that considering a class of SS models with state dimensionr · d and
arbitrary dynamic matrixA subsumes the class of VAR(r) processes.

The dynamical phenomena we examine in this paper exhibit behaviors better modeled as switches
between a set of linear dynamical models. Due to uncertaintyin the mode of the process, the overall
model is nonlinear. We define aswitching linear dynamical system (SLDS) by

xt = A(zt)xt−1 + et(zt) yt = Cxt + wt. (4)

The first-order Markov processzt indexes the mode-specific LDS at timet, which is driven by
Gaussian noiseet(zt) ∼ N (0, Σ(zt)). We similarly define aswitching VAR(r) process by

yt =
r

∑

i=1

A
(zt)
i yt−i + et(zt) et(zt) ∼ N (0, Σ(zt)). (5)

Note that the underlying state dynamics of the SLDS are equivalent to a switching VAR(1) process.

3 Background: Dirichlet Processes and the Sticky HDP-HMM

A Dirichlet process (DP), denoted byDP(γ, H), is a distribution on discrete measures

G0 =
∞
∑

k=1

βkδθk
θk ∼ H (6)

on a parameter spaceΘ. The weights are generated via astick-breaking construction [11]:

βk = β′
k

k−1
∏

ℓ=1

(1 − β′
ℓ) β′

k ∼ Beta(1, γ). (7)
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(a) (b) (c) (d)

Figure 1: For all graphs,β ∼ GEM(γ) and θk ∼ H(λ). (a) DP mixture model in whichzi ∼ β and
yi ∼ f(y | θzi

). (b) HDP mixture model withπj ∼ DP(α, β), zji ∼ πj , andyji ∼ f(y | θzji
). (c)-(d)

Sticky HDP-HMM prior on switching VAR(2) and SLDS processeswith the mode evolving aszt+1 ∼ πzt for
πk ∼ DP(α + κ, (αβ + κδk)/(α + κ)). The dynamical processes are as in Eq. (13).

We denote this distribution byβ ∼ GEM(γ). The DP is commonly used as a prior on the parameters
of a mixture model, resulting in aDP mixture model (see Fig.1(a)). To generate observations, we
choosēθi ∼ G0 andyi ∼ F (θ̄i). This sampling process is often described via a discrete variable
zi ∼ β indicating which component generatesyi ∼ F (θzi

).

Thehierarchical Dirichlet process (HDP) [12] extends the DP to cases in which groups of data are
produced by related, yet distinct, generative processes. Taking a hierarchical Bayesian approach, the
HDP drawsG0 from a Dirichlet process priorDP(γ, H), and then draws group specific distributions
Gj ∼ DP(α, G0). Here, the base measureG0 acts as an “average” distribution (E[Gj | G0] = G0)
encoding the frequency of each shared, global parameter:

Gj =

∞
∑

t=1

π̃jtδθ̃jt
π̃j ∼ GEM(α) (8)

=
∞
∑

k=1

πjkδθk
πj ∼ DP(α, β) . (9)

BecauseG0 is discrete, multiplẽθjt ∼ G0 may take identical valuesθk. Eq. (9) aggregates these
probabilities, allowing an observationyji to be directly associated with the unique global parameters
via an indicator random variablezji ∼ πj . See Fig. 1(b).

An alternative, non–constructive characterization of samples G0 ∼ DP(γ, H) from a Dirichlet
process states that for every finite partition{A1, . . . , AK} of Θ,

(G0(A1), . . . , G0(AK)) ∼ Dir(γH(A1), . . . , γH(AK)). (10)

Using this expression, it can be shown that the following finite, hierarchical mixture model converges
in distribution to the HDP asL → ∞ [7, 12]:

β ∼ Dir(γ/L, . . . , γ/L) πj ∼ Dir(αβ1, . . . , αβL). (11)

Thisweak limit approximation is used by the sampler of Sec. 4.2.

The HDP can be used to develop an HMM with a potentially infinitemode space [2, 12]. For
this HDP-HMM, each HDP group-specific distribution,πj , is a mode-specific transition distribution
and, due to the infinite mode space, there are infinitely many groups. Letzt denote the mode of the
Markov chain at timet. For discrete Markov processeszt ∼ πzt−1

, so thatzt−1 indexes the group
to whichyt is assigned. The current HMM modezt then indexes the parameterθzt

used to generate
observationyt. See Fig. 1(c), ignoring the direct correlation in the observations.

By samplingπj ∼ DP(α, β), the HDP prior encourages modes to have similar transition distri-
butions (E[πjk | β] = βk). However, it does not differentiate self–transitions from moves be-
tween modes. When modeling dynamical processes with mode persistence, the flexible nature of
the HDP-HMM prior allows for mode sequences with unrealistically fast dynamics to have large
posterior probability. Recently, it has been shown [5] thatone may mitigate this problem by instead
considering asticky HDP-HMM whereπj is distributed as follows:

πj ∼ DP

(

α + κ,
αβ + κδj

α + κ

)

. (12)
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Here,(αβ +κδj) indicates that an amountκ > 0 is added to thejth component ofαβ. The measure
of πj over a finite partition(Z1, . . . , ZK) of the positive integersZ+, as described by Eq. (10), adds
an amountκ only to the arbitrarily small partition containingj, corresponding to a self-transition.
Whenκ = 0 the original HDP-HMM is recovered. We place a vague prior onκ and learn the
self-transition bias from the data.

4 The HDP-SLDS and HDP-AR-HMM Models

For greater modeling flexibility, we take a nonparametric approach in defining the mode space of
our switching dynamical processes. Specifically, we develop extensions of the sticky HDP-HMM
for both the SLDS and switching VAR models. For the SLDS, we consider conditionally-dependent
emissions of which only noisy observations are available (see Fig. 1(d)). For this model, which we
refer to as theHDP-SLDS, we place a prior on the parameters of the SLDS and infer theirposterior
from the data. We do, however, fix the measurement matrix,C, for reasons of identifiability. Let
C̃ ∈ R

d×n, n ≥ d, be the measurement matrix associated with a dynamical system defined byÃ,
and assumẽC has full row rank. Then, without loss of generality, we may considerC = [I 0] since
there exists an invertible transformationT such that the pairC = C̃T = [I 0] andA = T−1ÃT
defines an equivalent input-output system. The dimensionality of I is determined by that of the data.
Our choice of the number of columns of zeros is, in essence, a choice of model order.

The previous work of Fox et al. [6] considered a related, yet simpler formulation for modeling a
maneuvering target as a fixed LDS driven by a switching exogenous input. Since the number of
maneuver modes was assumed unknown, the exogenous input wastaken to be the emissions of a
HDP-HMM. This work can be viewed as an extension of the work byCaron et. al. [3] in which
the exogenous input was an independent noise process generated from a DP mixture model. The
HDP-SLDS is a major departure from these works since the dynamic parameters themselves change
with the mode and are learned from the data, providing a much more expressive model.

The switching VAR(r) process can similarly be posed as an HDP-HMM in which the observations
are modeled as conditionally VAR(r). This model is referred to as theHDP-AR-HMM and is de-
picted in Fig. 1(c). The generative processes for these two models are summarized as follows:

HDP-AR-HMM HDP-SLDS
Mode dynamics zt ∼ πzt−1

zt ∼ πzt−1

Observation dynamicsyt =
∑r

i=1 A
(zt)
i yt−i + et(zt) xt = A(zt)xt−1 + et(zt)

yt = Cxt + wt

(13)

Here,πj is as defined in Sec. 3 and the additive noise processes as in Sec. 2.

4.1 Posterior Inference of Dynamic Parameters

In this section we focus on developing a prior to regularize the learning of different dynamical modes
conditioned on a fixed mode assignmentz1:T . For the SLDS, we analyze the posterior distribution of
the dynamic parameters given a fixed, known state sequencex1:T . Methods for learning the number
of modes and resampling the sequencesx1:T andz1:T are discussed in Sec. 4.2.

Conditioned on the mode sequence, one may partition the observations intoK different linear re-
gression problems, whereK = |{z1, . . . , zT }|. That is, for each modek, we may form a matrix
Y

(k) with Nk columns consisting of the observationsyt with zt = k. Then,

Y
(k) = A

(k)
Ȳ

(k) + E
(k), (14)

whereA
(k) = [A

(k)
1 . . . A

(k)
r ], Ȳ

(k) is a matrix of lagged observations, andE(k) the associated
noise vectors. LetD(k) = {Y(k), Ȳ(k)}. The posterior distribution over the VAR(r) parameters
associated with thekth mode decomposes as follows:

p(A(k), Σ(k) | D(k)) = p(A(k) | Σ(k),D(k))p(Σ(k) | D(k)). (15)

We place a conjugatematrix-normal inverse-Wishart prior on the parameters{A(k), Σ(k)} [13],
providing a reasonable combination of flexibility and analytical convenience. A matrixA ∈ R

d×m

has a matrix-normal distributionMN (A; M , V , K) if

p(A) =
|K|

d
2

|2πV |
m
2

e
− 1

2
tr

“

(A−M )
T V −1

(A−M)K
”

, (16)
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whereM is the mean matrix andV andK−1 are the covariances along the rows and columns,
respectively. A vectorization of the matrixA results in

p(vec(A)) = N (vec(M ), K−1 ⊗ V ), (17)

where⊗ denotes the Kronecker product. The resulting posterior is derived as

p(A(k) | Σ(k),D(k)) = MN (A(k);S
(k)
yȳ S

−(k)
ȳȳ , Σ−(k),S

(k)
ȳȳ ), (18)

with B−(k) denoting(B(k))−1 for a given matrixB, and

S
(k)
ȳȳ = Ȳ

(k)
Ȳ

(k)T

+ K S
(k)
yȳ = Y

(k)
Ȳ

(k)T

+ MK S
(k)
yy = Y

(k)
Y

(k)T

+ MKMT .

We place an inverse-Wishart prior IW(S0, n0) onΣ(k). Then,

p(Σ(k) | D(k)) = IW(S
(k)
y|ȳ + S0, Nk + n0), (19)

whereS
(k)
y|ȳ = S

(k)
yy − S

(k)
yȳ S

−(k)
ȳȳ S

(k)T

yȳ . WhenA is simply a vector, the matrix-normal inverse-
Wishart prior reduces to the normal inverse-Wishart prior with scale parameterK.

For the HDP-SLDS, we additionally place an IW(R0, r0) prior on the measurement noise covariance
R, which is shared between modes. The posterior distributionis given by

p(R | y1:T , x1:T ) = IW(SR + R0, T + r0), (20)

with SR=
∑T

t=1(yt −Cxt)(yt −Cxt)
T . Further details are provided in supplemental Appendix I.

4.2 Gibbs Sampler

For the switching VAR(r) process, our sampler iterates between sampling the mode sequence,z1:T ,
and both the dynamic and sticky HDP-HMM parameters. The sampler for the SLDS is identical to
that of a switching VAR(1) process with the additional step of sampling the state sequence,x1:T ,
and conditioning on the state sequence when resampling dynamic parameters. The resulting Gibbs
sampler is described below and further elaborated upon in supplemental Appendix II.

Sampling Dynamic Parameters Conditioned on a sample of the mode sequence,z1:T , and the ob-
servations,y1:T , or state sequence,x1:T , we can sample the dynamic parametersθ = {A(k), Σ(k)}
from the posterior density described in Sec. 4.1. For the HDP-SLDS, we additionally sampleR.

Sampling z1:T As shown in [5], the mixing rate of the Gibbs sampler for the HDP-HMM can
be dramatically improved by using a truncated approximation to the HDP, such as the weak limit
approximation, and jointly sampling the mode sequence using a variant of the forward-backward
algorithm. Specifically, we compute backward messagesmt+1,t(zt) ∝ p(yt+1:T |zt, yt−r+1:t, π, θ)
and then recursively sample eachzt conditioned onzt−1 from

p(zt | zt−1, y1:T , π, θ) ∝ p(zt | πzt−1
)p(yt | yt−r:t−1,A

(zt), Σ(zt))mt+1,t(zt), (21)

wherep(yt | yt−r:t−1,A
(zt), Σ(zt)) = N (

∑r

i=1 A
(zt)
i yt−i, Σ

(zt)). Joint sampling of the mode se-
quence is especially important when the observations are directly correlated via a dynamical process
since this correlation further slows the mixing rate of the direct assignment sampler of [12]. Note
that the approximation of Eq. (11) retains the HDP’s nonparametric nature by encouraging the use
of fewer thanL components while allowing the generation of new components, upper bounded by
L, as new data are observed.

Sampling x1:T (HDP-SLDS only) Conditioned on the mode sequencez1:T and the set of dy-
namic parametersθ, our dynamical process simplifies to a time-varying linear dynamical sys-
tem. We can then block samplex1:T by first running a backward filter to computemt+1,t(xt) ∝
p(yt+1:T |xt, zt+1:T , θ) and then recursively sampling eachxt conditioned onxt−1 from

p(xt | xt−1, y1:T , z1:T , θ) ∝ p(xt | xt−1, A
(zt), Σ(zt))p(yt | xt, R)mt+1,t(xt). (22)

The messages are given in information form bymt,t−1(xt−1) ∝ N−1(xt−1; θt,t−1, Λt,t−1), where
the information parameters are recursively defined as

θt,t−1 = A(zt)
T

Σ−(zt)(Σ−(zt) + CT R−1C + Λt+1,t)
−1(CT R−1yt + θt+1,t) (23)

Λt,t−1 = A(zt)
T

Σ−(zt)A(zt) − A(zt)
T

Σ−(zt)(Σ−(zt) + CT R−1C + Λt+1,t)
−1Σ−(zt)A(zt).

See supplemental Appendix II for a more numerically stable version of this recursion.
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(a) (b) (c) (d) (e)
Figure 2:(a) Observation sequence (blue, green, red) and associatedmode sequence (magenta) for a 5-mode
switching VAR(1) process (top), 3-mode switching AR(2) process (middle), and 3-mode SLDS (bottom). The
associated 10th, 50th, and 90th Hamming distance quantilesover 100 trials are shown for the (b) HDP-VAR(1)-
HMM, (c) HDP-VAR(2)-HMM, (d) HDP-SLDS withC = I (top and bottom) andC = [1 0] (middle), and
(e) sticky HDP-HMM using first difference observations.

5 Results

Synthetic Data In Fig. 2, we compare the performance of the HDP-VAR(1)-HMM, HDP-VAR(2)-
HMM, HDP-SLDS, and a baseline sticky HDP-HMM on three sets oftest data (see Fig. 2(a)). The
Hamming distance error is calculated by first choosing the optimal mapping of indices maximiz-
ing overlap between the true and estimated mode sequences. For the first scenario, the data were
generated from a 5-mode switching VAR(1) process. The three switching linear dynamical models
provide comparable performance since both the HDP-VAR(2)-HMM and HDP-SLDS withC = I
contain the class of HDP-VAR(1)-HMMs. Note that the HDP-SLDS sampler is slower to mix since
the hidden, three-dimensional continuous state is also sampled. In the second scenario, the data were
generated from a 3-mode switching AR(2) process. The HDP-AR(2)-HMM has significantly better
performance than the HDP-AR(1)-HMM while the performance of the HDP-SLDS withC = [1 0]
is comparable after burn-in. As shown in Sec. 2, this HDP-SLDS model encompasses the class of
HDP-AR(2)-HMMs. The data in the third scenario were generated from a 3-mode SLDS model
with C = I. Here, we clearly see that neither the HDP-VAR(1)-HMM nor HDP-VAR(2)-HMM is
equivalent to the HDP-SLDS. Together, these results demonstrate both the differences between our
models as well as the models’ ability to learn switching processes with varying numbers of modes.
Finally, note that all of the switching models yielded significant improvements relative to the base-
line sticky HDP-HMM, even when the latter was given first differences of the observations. This
input representation, which is equivalent to an HDP-VAR(1)-HMM with random walk dynamics
(A(k) = I for all k), is more effective than using raw observations for HDP-HMMlearning, but still
much less effective than richer models which switch among learned LDS.

IBOVESPA Stock Index We test the HDP-SLDS model on the IBOVESPA stock index (Sao
Paulo Stock Exchange) over the period of 01/03/1997 to 01/16/2001. There are ten key world
events shown in Fig. 3 and cited in [4] as affecting the emerging Brazilian market during this time
period. In [4], a 2-mode Markov switching stochastic volatility (MSSV) model is used to identify
periods of higher volatility in the daily returns. The MSSV assumes that the log-volatilities follow an
AR(1) process with a Markov switching mean. This underlying process is observed via conditionally
independent and normally distributed daily returns. The HDP-SLDS is able to infer very similar
change points to those presented in [4]. Interestingly, theHDP-SLDS consistently identifies three
regimes of volatility versus the assumed 2-mode model. In Fig. 3, the overall performance of the
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HDP−SLDS, non−sticky
HDP−AR(1)−HMM
HDP−AR(2)−HMM

(a) (b) (c) (d)
Figure 3:(a) IBOVESPA stock index daily returns from 01/03/1997 to 01/16/2001. (b) Plot of the estimated
probability of a change point on each day using 3000 Gibbs samples for the HDP-SLDS. The 10 key events are
indicated with red lines. (c) Similar plot for thenon-sticky HDP-SLDS with no bias towards self-transitions.
(d) ROC curves for the HDP-SLDS, non-sticky HDP-SLDS, HDP-AR(1)-HMM, and HDP-AR(2)-HMM.

HDP-SLDS is compared to that of the HDP-AR(1)-HMM, HDP-AR(2)-HMM, and HDP-SLDS
with no bias for self-transitions (i.e.,κ = 0.) The ROC curves shown in Fig. 3(d) are calculated
by windowing the time axis and taking the maximum probability of a change point in each window.
These probabilities are then used as the confidence of a change point in that window. We clearly
see the advantage of using a SLDS model combined with the sticky HDP-HMM prior on the mode
sequence. Without the sticky extension, the HDP-SLDS over-segments the data and rapidly switches
between redundant states which leads to a dramatically larger number of inferred change points.

Dancing Honey Bees We test the HDP-VAR(1)-HMM on a set of six dancing honey bee se-
quences, aiming to segment the sequences into the three dances displayed in Fig. 4. (Note that we
did not see performance gains by considering the HDP-SLDS, so we omit showing results for that
architecture.) The data consist of measurementsyt = [cos(θt) sin(θt) xt yt]

T , where(xt, yt)
denotes the 2D coordinates of the bee’s body andθt its head angle. We compare our results to
those of Xuan and Murphy [14], who used a change-point detection technique for inference on this
dataset. As shown in Fig. 4(d)-(e), our model achieves a superior segmentation compared to the
change-point formulation in almost all cases, while also identifying modes which reoccur over time.

Oh et al. [8] also presented an analysis of the honey bee data,using an SLDS with a fixed number of
modes. Unfortunately, that analysis is not directly comparable to ours, because [8] used their SLDS
in a supervised formulation in which the ground truth labelsfor all but one of the sequences are
employed in the inference of the labels for the remaining held-out sequence, and in which the kernels
used in the MCMC procedure depend on the ground truth labels.(The authors also considered a
“parameterized segmental SLDS (PS-SLDS),” which makes useof domain knowledge specific to
honey bee dancing and requires additional supervision during the learning process.) Nonetheless,
in Table 1 we report the performance of these methods as well as the median performance (over
100 trials) of the unsupervised HDP-VAR(1)-HMM to provide a sense of the level of performance
achievable without detailed, manual supervision. As seen inTable 1, the HDP-VAR(1)-HMM yields
very good performance on sequences 4 to 6 in terms of the learned segmentation and number of
modes (see Fig. 4(a)-(c)); the performance approaches thatof the supervised method. For sequences
1 to 3—which are much less regular than sequences 4 to 6—the performance of the unsupervised
procedure is substantially worse. This motivated us to alsoconsider a partially supervised variant
of the HDP-VAR(1)-HMM in which we fix the ground truth mode sequences for five out of six of
the sequences, and jointly infer both a combined set of dynamic parameters and the left-out mode
sequence. As we see in Table 1, this considerably improved performance for these three sequences.

Not depicted in the plots in Fig. 4 is the extreme variation inhead angle during the waggle dances
of sequences 1 to 3. This dramatically affects our performance since we do not use domain-specific
information. Indeed, our learned segmentations consistently identify turn-right and turn-left modes,
but often create a new, sequence-specific waggle dance mode.Many of our errors can be attributed to
creating multiple waggle dance modes within a sequence. Overall, however, we are able to achieve
reasonably good segmentations without having to manually input domain-specific knowledge.

6 Discussion

In this paper, we have addressed the problem of learning switching linear dynamical models with
an unknown number of modes for describing complex dynamicalphenomena. We presented a non-
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Figure 4: (top) Trajectories of the dancing honey bees for sequences 1to 6, colored bywaggle (red), turn
right (blue), andturn left (green) dances. (a)-(c) Estimated mode sequences representing the median error for
sequences 4, 5, and 6 at the 200th Gibbs iteration, with errors indicated in red. (d)-(e) ROC curves for the
unsupervised HDP-VAR-HMM, partially supervised HDP-VAR-HMM, and change-point formulation of [14]
using the Viterbi sequence for segmenting datasets 1-3 and 4-6, respectively.

Sequence 1 2 3 4 5 6
HDP-VAR(1)-HMM unsupervised 46.5 44.1 45.6 83.2 93.2 88.7

HDP-VAR(1)-HMM partially supervised 65.9 88.5 79.2 86.9 92.3 89.1
SLDS DD-MCMC 74.0 86.1 81.3 93.4 90.2 90.4

PS-SLDS DD-MCMC 75.9 92.4 83.1 93.4 90.4 91.0

Table 1:Median label accuracy of the HDP-VAR(1)-HMM using unsupervised and partially supervised Gibbs
sampling, compared to accuracy of the supervised PS-SLDS and SLDS procedures, where the latter algorithms
were based on a supervised MCMC procedure (DD-MCMC) [8].

parametric Bayesian approach and demonstrated both the utility and versatility of the developed
HDP-SLDS and HDP-AR-HMM on real applications. Using the same parameter settings, in one
case we are able to learn changes in the volatility of the IBOVESPA stock exchange while in an-
other case we learn segmentations of data intowaggle, turn-right, andturn-left honey bee dances.
An interesting direction for future research is learning models of varying order for each mode.
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APPENDIX I

DYNAMIC PARAMETER POSTERIOR

In this appendix, we derive the posterior distribution over the dynamic parameters of a switching VAR(r) process

defined as follows:

yt =
r
∑

i=1

A
(zt)
i yt−i + et(zt) et ∼ N (0,Σ(zt)), (1)

where zt indexes the mode-specific VAR(r) process at time t. Assume that the state sequence {z1, . . . , zT } is known

and we wish to compute the posterior distribution of the kth mode’s VAR(r) parameters A
(k)
i for i = 1, . . . , r and

Σ(k). Let {t1, . . . , tNk
} = {t|zt = k}. Then, we may write

[

yt1 yt2 . . . ytNk

]

=
[

A
(k)
1 A

(k)
2 . . . A

(k)
r

]











yt1−1 yt2−1 . . . ytNk
−1

yt1−2 yt2−2 . . . ytNk
−2

...

yt1−r yt2−r . . . ytNk
−r











+
[

et1 et2 . . . etNk

]

.

(2)

We define the following notation for Eq. 2:

Y
(k) = A

(k)
Ȳ

(k) + E
(k). (3)

Let D
(k) = {Y(k), Ȳ(k)}. We place a matrix-normal inverse-Wishart prior on the dynamic parameters {A(k),Σ(k)}

and show that the posterior remains matrix-normal inverse Wishart. The matrix-normal inverse-Wishart prior is

given by placing a matrix-normal prior MN (A(k);M ,Σ(k),K) on A
(k) given Σ(k):

p(A(k) | Σ(k)) =
|K|d/2

|2πΣ(k)|m/2
exp

(

−
1

2
tr((A − M)T Σ−(k)(A − M)K)

)

(4)

and an inverse-Wishart prior IW(S0, n) on Σ(k):

p(Σ(k)) =
|S0|

n/2|Σ(k)|−(d+n+1)/2

2nd/2Γd(n/2)
exp

(

−
1

2
tr(Σ−(k)S0)

)

(5)

where Γd(n/2) is the multivariate gamma function and B−(k) denotes (B(k))−1 for some matrix B.

We first analyze the likelihood of the data, D
(k), given the kth mode’s dynamic parameters, {A(k),Σ(k)}.

Starting with the fact that each observation vector, yt, is conditionally Gaussian given the lag observations, ȳt =
[yT

t−1 . . .yT
t−r]

T , we have

p(D(k)|A(k), Σ(k)) =
1

|2πΣ(k)|Nk/2
exp

(

−
1

2

∑

i

(yti
− A

(k)ȳti
)T Σ−(k)(yti

− A
(k)ȳti

)

)

=
1

|2πΣ(k)|Nk/2
exp

(

−
1

2
tr(Σ−(k)(Y(k) − A

(k)
Ȳ

(k))(Y(k) − A
(k)

Ȳ
(k))T )

)

=
1

|2πΣ(k)|Nk/2
exp

(

−
1

2
tr((Y(k) − A

(k)
Ȳ

(k))T Σ−(k)(Y(k) − A
(k)

Ȳ
(k))I)

)

= MN (Y(k);A(k)
Ȳ

(k),Σ(k), I). (6)

To derive the posterior of the dynamic parameters, it is useful to first compute

p(D(k),A(k) | Σ(k)) = p(D(k) | A(k),Σ(k))p(A(k) | Σ(k)). (7)

Using the fact that both the likelihood term p(D(k) | A(k),Σ(k)) and the prior p(A(k) | Σ(k)) are matrix-normally



distributed sharing a common parameter Σ(k), we have

log p(D(k),A(k) | Σ(k)) + C

= −
1

2
tr((Y(k) − A

(k)
Ȳ

(k))T Σ−(k)(Y(k) − A
(k)

Ȳ
(k)) + (A(k) − M)T Σ−(k)(A(k) − M)K)

= −
1

2
tr(Σ−(k){(Y(k) − A

(k)
Ȳ

(k))(Y(k) − A
(k)

Ȳ
(k))T + (A(k) − M)K(A(k) − M)T })

= −
1

2
tr(Σ−(k){A(k)

S
(k)
ȳȳ A

(k)T

− 2S
(k)
yȳ A

(k)T

+ S
(k)
yy })

= −
1

2
tr(Σ−(k){(A(k) − S

(k)
yȳ S

−(k)
ȳȳ )S

(k)
ȳȳ (A(k) − S

(k)
yȳ S

−(k)
ȳȳ )T + S

(k)
y|ȳ}), (8)

for C = − log 1
|2πΣ(k)|Nk/2

|K |d/2

|2πΣ(k)|rNk/2 and S
(k)
y|ȳ = S

(k)
yy − S

(k)
yȳ S

−(k)
ȳȳ S

(k)T

yȳ using the definitions

S
(k)
ȳȳ = Ȳ

(k)
Ȳ

(k)T

+ K S
(k)
yȳ = Y

(k)
Ȳ

(k)T

+ MK S
(k)
yy = Y

(k)
Y

(k)T

+ MKMT .

Conditioning on the noise covariance Σ(k), we see that the dynamic matrix posterior is given by:

p(A(k) | D(k),Σ(k)) ∝ exp

(

−
1

2
tr((A(k) − S

(k)
yȳ S

−(k)
ȳȳ )T Σ−(k)(A(k) − S

(k)
yȳ S

−(k)
ȳȳ )S

(k)
ȳȳ )

)

= MN (A(k);S
(k)
yȳ S

−(k)
ȳȳ ,Σ−(k),S

(k)
ȳȳ ). (9)

Marginalizing Eq. 8 over the dynamic matrix A
(k), we derive

p(D(k) | Σ(k)) =

∫

A(k)

p(D(k),A(k) | Σ(k))dA(k)

=

∫

A(k)

|Kd/2|

|2πΣ(k)|Nk/2|2πΣ(k)|rNk/2

exp

(

−
1

2
tr(Σ−(k)(A(k) − S

(k)
yȳ S

−(k)
ȳȳ )S

(k)
ȳȳ (A(k) − S

(k)
yȳ S

−(k)
ȳȳ )T )

)

exp

(

−
1

2
tr(Σ−(k)

S
(k)
y|ȳ)

)

dA(k)

=
|K|d/2

|2πΣ(k)|Nk/2
exp

(

−
1

2
tr(Σ−(k)

S
(k)
y|ȳ)

)

∫

A(k)

1

|S
(k)
ȳȳ |

d/2
MN (A(k);S

(k)
yȳ S

−(k)
ȳȳ ,Σ−(k),S

(k)
ȳȳ )dA(k)

=
|K|d/2

|2πΣ(k)|Nk/2|S
(k)
ȳȳ |

d/2
exp

(

−
1

2
tr(Σ−(k)

S
(k)
y|ȳ)

)

(10)

Using the above, the posterior of the covariance parameter is computed as

p(Σ(k) | D(k)) ∝ p(D(k) | Σ(k))p(Σ(k))

∝
|K|d/2

|2πΣ(k)|Nk/2|S
(k)
ȳȳ |

d/2
exp

(

−
1

2
tr(Σ−(k)

S
(k)
y|ȳ)

)

|Σ(k)|−(d+n+1)/2 exp

(

−
1

2
tr(Σ−(k)S0)

)

∝ |Σ(k)|−(d+Nk+n+1)/2 exp

(

−
1

2
tr(Σ−(k)(S

(k)
y|ȳ + S0))

)

= IW(S
(k)
y|ȳ + S0, Nk + n). (11)



APPENDIX II

MESSAGE PASSING

In this appendix, we explore the computation of the backwards message passing and forward sampling scheme

used for generating samples of the mode sequence z1:T and state sequence x1:T .

A. Mode Sequence Message Passing

Consider a switching VAR(r) process. To derive the forward-backward procedure for jointly sampling the mode

sequence z1:T given observations y1:T , plus r initial observations y1−r:0, we first note that the chain rule and

Markov structure allows us to decompose the joint distribution as follows:

p(z1:T | y1−r:T ,π, θ) = p(zT | zT−1,y1−r:T ,π,θ)p(zT−1 | zT−2,y1−r:T , π, θ)

· · · p(z2 | z1,y1−r:T ,π,θ)p(z1 | y1−r:T ,π,θ).

Thus, we may first sample z1 from p(z1 | y1−r:T ,π,θ), then condition on this value to sample z2 from p(z2 |
z1,y1−r:T ,π,θ), and so on. The conditional distribution of z1 is derived as:

p(z1 | y1−r:T ,π,θ) ∝ p(z1)p(y1 | θz1
,y1−r:0)

∑

z2:T

∏

t

p(zt | πzt−1
)p(yt | θzt

,yt−r:t−1)

∝ p(z1)p(y1 | θz1
, y1−r:0)

∑

z2

p(z2 | πz1
)p(y2 | θz2

,y2−r:1)m3,2(z2)

∝ p(z1)p(y1 | θz1
, y1−r:0)m2,1(z1), (12)

where mt,t−1(zt−1) is the backward message passed from zt to zt−1 and is recursively defined by:

mt,t−1(zt−1) ∝

{ ∑

zt
p(zt | πzt−1

)p(yt | θzt
,yt−r:t−1)mt+1,t(zt), t ≤ T ;

1, t = T + 1.
(13)

The general conditional distribution of zt is:

p(zt | zt−1,y1−r:T ,π,θ) ∝ p(zt | πzt−1
)p(yt | θzt

, yt−r:t−1)mt+1,t(zt). (14)

For the HDP-AR-HMM, these distributions are given by:

p(zt = k | zt−1, y1−r:T ,π, θ) ∝ πzt−1
(k)N (yt;

r
∑

i=1

A
(k)
i yt−i,Σ

(k))mt+1,t(k) (15)

mt+1,t(k) =

L
∑

j=1

πk(j)N (yt+1;

r
∑

i=1

A
(j)
i yt−i, Σ

(j))mt+2,t+1(j) (16)

mT+1,T (k) = 1 k = 1, . . . , L. (17)

B. State Sequence Message Passing

A similar sampling scheme is used for generating samples of the state sequence x1:T . Although we now have a

continuous state space, the computation of the backwards messages mt+1,t(xt) is still analytically feasible since we

are working with Gaussian densities. Assume, mt+1,t(xt) ∝ N−1(xt; θt+1,t, Λt+1,t), where N−1(x; θ, Λ) denotes

a Gaussian distribution on x in information form with mean µ = Λ−1θ and covariance Σ = Λ−1. The backwards

messages for the HDP-SLDS can be recursively defined by

mt,t−1(xt−1) ∝

∫

xt

p(xt|xt−1, zt)p(yt|xt)mt+1,t(xt)dxt.



For this model, the densities of Eq. 18 can be expressed as

p(xt|xt−1, zt) ∝ exp{−
1

2
(xt − A(zt)xt−1)

T Σ−(zt)(xt − A(zt)xt−1)}

∝ exp{−
1

2

[

xt−1

xt

]T [
A(zt)T

Σ−(zt)A(zt) −A(zt)T

Σ−(zt)

−Σ−(zt)A(zt) Σ−(zt)

] [

xt−1

xt

]

}

p(yt|xt) ∝ exp{−
1

2
(yt − Cxt)

T R−1(yt − Cxt)}

∝ exp{−
1

2

[

xt−1

xt

]T [
0 0
0 CT R−1C

] [

xt−1

xt

]

+

[

xt−1

xt

]T [
0

CT R−1yt

]

}

mt+1,t(xt) ∝ exp{−
1

2
xT

t Λt+1,txt + xT
t θt+1,t)}

∝ exp{−
1

2

[

xt−1

xt

]T [
0 0
0 Λt+1,t

] [

xt−1

xt

]

+

[

xt−1

xt

]T [
0

θt+1,t

]

}

The product of these quadratics is given by:

p(xt|xt−1, zt)p(yt|xt)mt+1,t(xt) ∝

exp{−
1

2

[

xt−1

xt

]T [
A(zt)T

Σ−(zt)A −A(zt)T

Σ−(zt)

−Σ−(zt)A(zt) Σ−(zt) + CT R−1C + Λt+1,t

] [

xt−1

xt

]

+

[

xt−1

xt

]T [
0

CT R−1yt + θt+1,t

]

}

Using standard Gaussian marginalization identities we integrate over xt to get,

mt,t−1(xt−1) ∼ N−1(xt−1; θt,t−1,Λt,t−1),

where,

θt,t−1 = A(zt)T

Σ−(zt)(Σ−(zt) + CT R−1C + Λt+1,t)
−1(CT R−1yt + θt+1,t)

Λt,t−1 = A(zt)T

Σ−(zt)A(zt) − A(zt)T

Σ−(zt)(Σ−(zt) + CT R−1C + Λt+1,t)
−1Σ−(zt)A(zt)

This backwards message passing recursion is initialized at time T with mT+1,T ∼ N−1(xT ; 0, 0). Let,

Λb
t|t = CT R−1C + Λt+1,t

θb
t|t = CT R−1yt + θt+1,t

Then we can define the following recursion, which we note is equivalent to the backwards running Kalman filter

in information form,

Λb
t−1|t−1 = CT R−1C + A(zt)T

Σ−(zt)A(zt) − A(zt)T

Σ−(zt)(Σ−(zt) + CT R−1C + Λt+1,t)
−1Σ−(zt)A(zt)

= CT R−1C + A(zt)T

Σ−(zt)A(zt) − A(zt)T

Σ−(zt)(Σ−(zt) + Λb
t|t)

−1Σ−(zt)A(zt)

θb
t−1|t−1 = CT R−1yt−1 + A(zt)T

Σ−(zt)(Σ−(zt) + CT R−1C + Λt+1,t)
−1(CT R−1yt + θt+1,t)

= CT R−1yt−1 + A(zt)T

Σ−(zt)(Σ−(zt) + Λb
t|t)

−1θb
t|t

We initialize at time T with

Λb
T |T = CT R−1C

θb
T |T = CT R−1yT



An equivalent, but more numerically stable recursion is summarized in Algorithm 1.

1) Initialize filter with

Λb
T |T = CT R−1C

θb
T |T = CT R−1yT

2) Working backwards in time, for each t ∈ {T − 1, . . . , 1}:

a) Compute

J̃t+1 = Λb
t+1|t+1(Λ

b
t+1|t+1 + Σ−(zt+1))−1

L̃t+1 = I − J̃t+1.

b) Predict

Λt+1,t = A(zt+1)T

(L̃t+1Λ
b
t+1|t+1L̃

T
t+1 + J̃t+1Σ

−(zt+1)J̃T
t+1)A

(zt+1)

θt+1,t = A(zt+1)T

L̃t+1θ
b
t+1|t+1

c) Update

Λb
t|t = Λt+1,t + CT R−1C

θb
t|t = θt+1,t + CT R−1yt

Algorithm 1: Numerically stable form of the backwards Kalman information filter.

After computing the messages mt+1,t(xt) backwards in time, we sample the state sequence x1:T working forwards

in time. As with the discrete mode sequence, one can decompose the posterior distribution of the state sequence as

p(x1:T | y1:T , z1:T ,θ) = p(xT | xT−1, y1:T , z1:T ,θ)p(xT−1 | xT−2,y1:T , z1:T ,θ)

· · · p(x2 | x1,y1:T , z1:T ,θ)p(x1 | y1:T , z1:T ,θ).

where

p(xt | xt−1,y1:T , z1:T ,θ) ∝ p(xt | xt−1, A
(zt),Σ(zt))p(yt | xt, R)mt+1,t(xt). (18)

For the HDP-SLDS, the product of these distributions is equivalent to

p(xt | xt−1,y1:T , z1:T ,θ) ∝ N (xt;A
(zt)xt−1, Σ

(zt))N (yt; Cxt, R)mt+1,t(xt)

∝ N (xt;A
(zt)xt−1,Σ

(zt))N−1(xt; θ
b
t|t,Λ

b
t|t)

∝ N−1(xt; Σ
−(zt)A(zt)xt−1 + θb

t|t,Σ
−(zt) + Λb

t|t), (19)

which is a simple Gaussian distribution so that the normalization constant is easily computed. Specifically, for each

t ∈ {1, . . . , T} we sample xt from

xt ∼ N (xt; (Σ
−(zt) + Λb

t|t)
−1(Σ−(zt)A(zt)xt−1 + θb

t|t), (Σ
−(zt) + Λb

t|t)
−1). (20)



Given a previous set of mode-specific transition probabilities π(n−1), the global transition distribution β(n−1), the

dynamic parameters θ(n−1), and pseudo-observations ỹ
(n−1)
1:T :

1) Set π = π(n−1), {A(k),Σ(k)} = {A(k),Σ(k)}(n−1), and ỹ1:T = ỹ
(n−1)
1:T .

2) Calculate messages mt,t−1(k) and the sample mode sequence z1:T :

a) For each k ∈ {1, . . . , L}, initialize messages to mT+1,T (k) = 1.

b) For each t ∈ {T, . . . , 1} and k ∈ {1, . . . , L}, compute

mt,t−1(k) =

L
∑

j=1

πk(j)N

(

ỹt;

r
∑

i=1

A
(j)
i ỹt−i, Σ

(j)

)

mt+1,t(j)

c) Working sequentially forward in time, starting with transitions counts njk = 0 for each (j, k):
i) For each k ∈ {1, . . . , L}, compute the probability

fk(ỹt) = πzt−1
(k)N

(

yt;
r
∑

i=1

A
(k)
i ỹt−i, Σ

(k)

)

mt+1,t(k)

ii) Sample a mode assignment zt as follows and increment nzt−1zt
:

zt ∼
L
∑

k=1

fk(ỹt)δ(zt, k)

3) If HDP-AR-HMM, set pseudo-observations ỹ1:T = y1:T .

4) If HDP-SLDS, calculate messages mt,t−1(xt−1) and the sample state sequence x1:T :

a) Initialize messages to mT+1,T (xT ) = N−1(xT ; 0, 0).
b) For each t ∈ {T, . . . , 1}, recursively compute {θb

t|t, Λ
b
t|t} as in Algorithm 1.

c) Working sequentially forward in time sample

xt ∼ N (xt; (Σ
−(zt) + Λb

t|t)
−1(Σ−(zt)A(zt)xt−1 + θb

t|t), (Σ
−(zt) + Λb

t|t)
−1).

d) Set pseudo-observations ỹ1:T = x1:T .

5) For each k ∈ {1, . . . , L}, compute sufficient statistics using pseudo-observations ỹ1:T :

S
(k)
ȳȳ = Ȳ

(k)
Ȳ

(k)T

+ K S
(k)
yȳ = Y

(k)
Ȳ

(k)T

+ MK S
(k)
yy = Y

(k)
Y

(k)T

+ MKMT .

6) Sample auxiliary variables m, w, and m̄ and then hyperparameters α, γ, and κ as in [5], [12].

7) Update the global transition distribution by sampling

β ∼ Dir(γ/L + m̄.1, . . . , γ/L + m̄.L)

8) For each k ∈ {1, . . . , L}, sample a new transition distribution and dynamic parameters based on the

sampled mode assignments and sufficient statistics of the pseudo-observations:

πk ∼ Dir(αβ1 + nk1, . . . , αβk + κ + nkk, . . . , αβL + nkL)

Σ(k) ∼ IW(S
(k)
yȳ + S0,

L
∑

ℓ=1

nkℓ + n0)

A
(k) | Σ(k) ∼ MN (A(k);S(k)

yy S
−(k)
ȳȳ ,Σ−(k),S

(k)
ȳȳ ).

If HDP-SLDS, also sample the measurement noise covariance

R ∼ IW(
T
∑

t=1

(yt − Cxt)(yt − Cxt)
T + R0, T + r0).

9) Fix π(n) = π, β(n) = β, θ(n) = θ, and ỹ
(n)
1:T = ỹ1:T .

Algorithm 2: HDP-SLDS and HDP-AR-HMM Gibbs sampler.


