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Abstract

Stochastic block models characterize observed network relationships via latent
community memberships. In large social networks, we expect entities to partic-
ipate in multiple communities, and the number of communities to grow with the
network size. We introduce a new model for these phenomena, the hierarchical
Dirichlet process relational model, which allows nodes to have mixed membership
in an unbounded set of communities. To allow scalable learning, we derive an on-
line stochastic variational inference algorithm. Focusing on assortative models of
undirected networks, we also propose an efficient structured mean field variational
bound, and online methods for automatically pruning unused communities. Com-
pared to state-of-the-art online learning methods for parametric relational models,
we show significantly improved perplexity and link prediction accuracy for sparse
networks with tens of thousands of nodes. We also showcase an analysis of Little-
Sis, a large network of who-knows-who at the heights of business and government.

1 Introduction

A wide range of statistical models have been proposed for the discovery of hidden communities
within observed networks. The simplest stochastic block models [20] create communities by clus-
tering nodes, aiming to identify demographic similarities in social networks, or proteins with related
functional interactions. The mixed-membership stochastic blockmodel (MMSB) [1] allows nodes
to be members of multiple communities; this generalization substantially improves predictive accu-
racy in real-world networks. These models are practically limited by the need to externally specify
the number of latent communities. We propose a novel hierarchical Dirichlet process relational

(HDPR) model, which allows mixed membership in an unbounded collection of latent communities.
By adapting the HDP [18], we allow data-driven inference of the number of communities underlying
a given network, and growth in the community structure as additional nodes are observed.

The infinite relational model (IRM) [10] previously adapted the Dirichlet process to define a non-
parametric relational model, but restrictively associates each node with only one community. The
more flexible nonparametric latent feature model (NLFM) [14] uses an Indian buffet process
(IBP) [7] to associate nodes with a subset of latent communities. The infinite multiple member-

ship relational model (IMRM) [15] also uses an IBP to allow multiple memberships, but uses a
non-conjugate observation model to allow more scalable inference for sparse networks. The non-

parametric metadata dependent relational (NMDR) model [11] employs a logistic stick-breaking
prior on the node-specific community frequencies, and thereby models relationships between com-
munities and metadata. All of these previous nonparametric relational models employed MCMC
learning algorithms. In contrast, the conditionally conjugate structure of our HDPR model allows us
to easily develop a stochastic variational inference algorithm [17, 2, 9]. Its online structure, which
incrementally updates global community parameters based on random subsets of the full graph, is
highly scalable; our experiments consider social networks with tens of thousands of nodes.
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While the HDPR is more broadly applicable, our focus in this paper is on assortative models for
undirected networks, which assume that the probability of linking distinct communities is small.
This modeling choice is appropriate for the clustered relationships found in friendship and collab-
oration networks. Our work builds on stochastic variational inference methods developed for the
assortative MMSB (aMMSB) [6], but makes three key technical innovations. First, adapting work
on HDP topic models [19], we develop a nested family of variational bounds which assign posi-
tive probability to dynamically varying subsets of the unbounded collection of global communities.
Second, we use these nested bounds to dynamically prune unused communities, improving compu-
tational speed, predictive accuracy, and model interpretability. Finally, we derive a structured mean
field variational bound which models dependence among the pair of community assignments associ-
ated with each edge. Crucially, this avoids the expensive and inaccurate local optimizations required
by naive mean field approximations [1, 6], while maintaining computation and storage requirements
that scale linearly (rather than quadratically) with the number of hypothesized communities.

In this paper, we use our assortative HDPR (aHDPR) model to recover latent communities in so-
cial networks previously examined with the aMMSB [6], and demonstrate substantially improved
perplexity scores and link prediction accuracy. We also use our learned community structure to
visualize business and governmental relationships extracted from the LittleSis database [13].

2 Assortative Hierarchical Dirichlet Process Relational Models

We introduce the assortative HDP relational (aHDPR) model, a nonparametric generalization of the
aMMSB for discovering shared memberships in an unbounded collection of latent communities.
We focus on undirected binary graphs with N nodes and E = N(N � 1)/2 possible edges, and let
y

ij

= y
ji

= 1 if there is an edge between nodes i and j. For some experiments, we assume the y
ij

variables are only partially observed to compare the predictive performance of different models.

As summarized in the graphical models of Fig. 1, we begin by defining a global Dirichlet process to
capture the parameters associated with each community. Letting �

k

denote the expected frequency
of community k, and � > 0 the concentration, we define a stick-breaking representation of �:

�
k

= v
k

k�1Y

`=1

(1 � v
`

), v
k

⇠ Beta(1, �), k = 1, 2, . . . (1)

Adapting a two-layer hierarchical DP [18], the mixed community memberships for each node i are
then drawn from DP with base measure �, ⇡

i

⇠ DP(↵�). Here, E[⇡
i

| ↵,�] = �, and small
precisions ↵ encourage nodes to place most of their mass on a sparse subset of communities.

To generate a possible edge y
ij

between nodes i and j, we first sample a pair of indicator variables
from their corresponding community membership distributions, s

ij

⇠ Cat(⇡
i

), r
ij

⇠ Cat(⇡
j

). We
then determine edge presence as follows:

p(y
ij

= 1 | s
ij

= r
ij

= k) = w
k

, p(y
ij

= 1 | s
ij

6= r
ij

) = ✏. (2)

For our assortative aHDPR model, each community has its own self-connection probability
w

k

⇠ Beta(⌧
a

, ⌧
b

). To capture the sparsity of real networks, we fix a very small probability of
between-community connection, ✏ = 10

�30. Our HDPR model could easily be generalized to more
flexible likelihoods in which each pair of communities k, ` have their own interaction probability [1],
but motivated by work on the aMMSB [6], we do not pursue this generalization here.

3 Scalable Variational Inference

Previous applications of the MMSB associate a pair of community assignments, s
ij

and r
ij

, with
each potential edge y

ij

. In assortative models these variables are strongly dependent, since present
edges only have non-negligible probability for consistent community assignments. To improve ac-
curacy and reduce local optima, we thus develop a structured variational method based on joint
configurations of these assignment pairs, which we denote by e

ij

= (s
ij

, r
ij

). See Figure 1.

Given this alternative representation, we aim to approximate the joint distribution of the observed
edges y, local community assignments e, and global community parameters ⇡, w,� given fixed
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Figure 1: Alternative graphical representations of the aHDPR model, in which each of N nodes has mixed
membership ⇡

i

in an unbounded set of latent communities, w
k

are the community self-connection probabilities,
and y

ij

indicates whether an edge is observed between nodes i and j. Left: Conventional representation,
in which source s

ij

and receiver r
ij

community assignments are independently sampled. Right: Blocked
representation in which e

ij

= (s
ij

, r
ij

) denotes the pair of community assignments underlying y
ij

.

hyperparameters ⌧,↵, �. Mean field variational methods minimize the KL divergence between a
family of approximating distributions q(e,⇡, w,�) and the true posterior, or equivalently maximize
the following evidence lower bound (ELBO) on the marginal likelihood of the observed edges y:

L(q) , E
q

[log p(y, e,⇡, w,� | ⌧,↵, �)] � E
q

[log q(e,⇡, w,�)]. (3)
For the nonparametric aHDPR model, the number of latent community parameters w

k

,�
k

, and the
dimensions of the community membership distributions ⇡

i

, are both infinite. Care must thus be
taken to define a tractably factorized, and finitely parameterized, variational bound.

3.1 Variational Bounds via Nested Truncations

We begin by defining categorical edge assignment distributions q(e
ij

| �
ij

) = Cat(e
ij

| �
ij

),
where �

ijk`

= q(e
ij

= (k, `)) = q(s
ij

= k, r
ij

= `). For some truncation level K, which will be
dynamically varied by our inference algorithms, we constrain �

ijk`

= 0 if k > K or ` > K.
Given this restriction, all observed interactions are explained by one of the first (and under the
stick-breaking prior, most probable) K communities. The resulting variational distribution has K2

parameters. This truncation approach extends prior work for HDP topic models [19, 5].

For the global community parameters, we define an untruncated factorized variational distribution:

q(�, w | v⇤,�) =

1Y

k=1

�
v

⇤
k
(v

k

)Beta(w
k

| �
ka

,�
kb

), �
k

(v⇤
) = v⇤

k

k�1Y

`=1

(1 � v⇤
`

). (4)

Our later derivations show that for communities k > K above the truncation level, the optimal
variational parameters equal the prior: �

ka

= ⌧
a

,�
kb

= ⌧
b

. These distributions thus need not be
explicitly represented. Similarly, the objective only depends on v⇤

k

for k  K, defining K + 1

probabilities: the frequencies of the first K communities, and the aggregate frequency of all others.
Matched to this, we associate a (K + 1)-dimensional community membership distribution ⇡

i

to
each node, where the final component contains the sum of all mass not assigned to the first K.
Exploiting the fact that the Dirichlet process induces a Dirichlet distribution on any finite partition,
we let q(⇡

i

| ✓
i

) = Dir(⇡
i

| ✓
i

), ✓
i

2 RK+1. The overall variational objective is then
L(q) =

P
k

E
q

[log p(w
k

| ⌧
a

, ⌧
b

)] � E
q

[log q(w
k

| �
ka

,�
kb

)] + E
q

[log p(v⇤
k

| �)] (5)
+

P
i

E
q

[log p(⇡
i

| ↵,�(v⇤
))] � E

q

[log q(⇡
i

| ✓
i

)]

+

P
ij

E
q

[log p(y
ij

|w, e
ij

)] + E
q

[log p(e
ij

|⇡
i

,⇡
j

)] � E
q

[log q(e
ij

|�
ij

)].

Unlike truncations of the global stick-breaking process [4], our variational bounds are nested, so that
lower-order approximations are special cases of higher-order ones with some zeroed parameters.

3.2 Structured Variational Inference with Linear Time and Storage Complexity

Conventional, coordinate ascent variational inference algorithms iteratively optimize each parameter
given fixed values for all others. Community membership and interaction parameters are updated as

�
ka

= ⌧
a

+

P
E

ij

P
K

k=1 �ijkk

y
ij

, �
kb

= ⌧
b

+

P
E

ij

P
K

k=1 �ijkk

(1 � y
ij

), (6)

✓
ik

= ↵�
k

+

P
(i,j)2E

P
K

`=1 �ijk`

. (7)
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Here, the final summation is over all potential edges (i, j) linked to node i. Updates for assignment
distributions depend on expectations of log community assignment probabilities:

E
q

[log(w
k

)] =  (�
ka

) �  (�
ka

+ �
kb

), E
q

[log(1 � w
k

)] =  (�
kb

) �  (�
ka

+ �
kb

), (8)

⇡̃
ik

, exp{E
q

[log(⇡
ik

)]} = exp{ (✓
ik

) �  (

P
K+1
`=1 ✓

i`

)}, ⇡̃
i

, P
K

k=1 ⇡̃ik

. (9)

Given these sufficient statistics, the assignment distributions can be updated as follows:

�
ijkk

/ ⇡̃
ik

⇡̃
jk

f(w
k

, y
ij

), (10)
�

ijk`

/ ⇡̃
ik

⇡̃
j`

f(✏, y
ij

), ` 6= k. (11)

Here, f(w
k

, y
ij

) = exp{y
ij

E
q

[log(w
k

)] + (1� y
ij

)E
q

[log(1�w
k

)]}. More detailed derivations of
related updates have been developed for the MMSB [1].

A naive implementation of these updates would require O(K2
) computation and storage for each

assignment distribution q(e
ij

| �
ij

). Note, however, that the updates for q(w
k

| �
k

) in Eq. (6)
depend only on the K probabilities �

ijkk

that nodes select the same community. Using the updates
for �

ijk`

from Eq. (11), the update of q(⇡
i

| ✓
i

) in Eq. (7) can be expanded as follows:

✓
ik

= ↵�
k

+

P
(i,j)2E

�
ijkk

+

1
Zij

P
` 6=k

⇡̃
ik

⇡̃
j`

f(✏, y
ij

) (12)

= ↵�
k

+

P
(i,j)2E

�
ijkk

+

1
Zij

⇡̃
ik

f(✏, y
ij

)(⇡̃
j

� ⇡̃
jk

).

Note that ⇡̃
j

need only be computed once, in O(K) operations. The normalization constant Z
ij

,
which is defined so that �

ij

is a valid categorical distribution, can also be computed in linear time:

Z
ij

= ⇡̃
i

⇡̃
j

f(✏, y
ij

) +

P
K

k=1 ⇡̃ik

⇡̃
jk

(f(w
k

, y
ij

) � f(✏, y
ij

)). (13)

Finally, to evaluate our variational bound and assess algorithm convergence, we still need to calculate
the likelihood and entropy terms dependent on �

ijk`

. However, we can compute part of our bound
by caching our partition function Z

ij

in linear time. See ‡A.2 for details regarding the full derivation
of this ELBO and its extensions.

3.3 Stochastic Variational Inference

Standard variational batch updates become computationally intractable when N becomes very large.
Recent advancements in applying stochastic optimization techniques within variational inference [8]
showed that if our variational mean-field family of distributions are members of the exponential
family, we can derive a simple stochastic natural gradient update for our global parameters �, ✓, v.
These gradients can be calculated from only a subset of the data and are noisy approximations of the
true natural gradient for the variational objective, but represent an unbiased estimate of that gradient.

To accomplish this, we define a new variational objective with respect to our current set of obser-
vations. This function, in expectation, is equivalent to our true ELBO. By taking natural gradients
with respect to our new variational objective for our global variables �, ✓, we have

r�⇤
ka

=

1
g(i,j)�ijkk

y
ij

+ ⌧
a

� �
ka

; (14)

r✓⇤
ik

=

1
g(i,j)

P
(i,j)2E

P
K

`=1 �ijk`

+ ↵�
k

� ✓
ik

, (15)

where the natural gradient for r�⇤
kb

is symmetric to r�⇤
ka

and where y
ij

in Eq. (14) is replaced by
(1 � y

ij

). Note that
P

(i,j)2E

P
K

`=1 �ijk`

was shown in the previous section to be computable in
O(K). The scaling term g(i, j) is needed for an unbiased update to our expectation. If g(i, j) =

2/N(N � 1), then this would represent a uniform distribution over possible edge selections in our
undirected graphs. In general, g(i, j) can be an arbitrary distribution over possible edge selections
such as a distribution over sets of edges as long as the expectation with respect to this distribution is
equivalent to the original ELBO [6]. When referring to the scaling constant associated with sets, we
consider the notation of h(T ) instead of g(i, j).

We optimize this ELBO with a Robbins-Monro algorithm which iteratively steps along the direction
of this noisy gradient. We specify a learning rate ⇢

t

, (µ0 + t)� at time t where  2 (.5, 1] and
µ0 � 0 downweights the influence of earlier updates. With the requirement that

P
t

⇢2
t

< 1 and
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P
t

⇢
t

= 1, we will provably converge to a local optimum. For our global variational parameters
{�, ✓}, the updates at iteration t are now

�t

ka

= �t�1
ka

+ ⇢
t

(r�⇤
ka

) = (1 � ⇢
t

)�t�1
ka

+ ⇢
t

(

1
g(i,j)�ijkk

y
ij

+ ⌧
a

); (16)

✓t

ik

= ✓t�1
ik

+ ⇢
t

(r✓⇤
ik

) = (1 � ⇢
t

)✓t�1
ik

+ ⇢
t

(

1
g(i,j)

P
(i,j)2E

P
K

`=1 �ijk`

+ ↵�
k

); (17)

vt

k

= (1 � ⇢
t

)vt�1
k

+ ⇢
t

(v⇤
k

), (18)

where v⇤
k

is obtained via a constrained optimization task using the gradients derived in ‡A.3. Defin-
ing an update on our global parameters given a single edge observation can result in very poor local
optima. In practice, we specify a mini-batch T , a set of unique observations in determining a noisy
gradient that is more informative. This results in a simple summation over the sufficient statistics
associated with the set of observations as well as a change to g(i, j) to reflect the necessary scaling
of our gradients when we can no longer assume our samples are uniformly chosen from our dataset.

3.4 Restricted Stratified Node Sampling

Stochastic variational inference provides us with the ability to choose a sampling scheme that al-
lows us to better exploit the sparsity of real world networks. Given the success of stratified node
sampling [6], we consider this technique for all our experiments. Briefly, stratified node-sampling
randomly selects a single node i and either chooses its associated links or a set of edges from
m equally sized non-link edge sets. For this mini-batch strategy, h(T ) = 1/N for link sets and
h(T ) = 1/Nm for a partitioned non-link set. In [6], all nodes in ⇡ were considered global param-
eters and updated after each mini-batch. For our model, we also treat ⇡ similarly, but maintain a
separate learning rate ⇢

i

for each node. This allows us to focus on updating only nodes that are rele-
vant to our mini-batch as well as limit the computational costs associated with this global update. To
ensure that our Robbins-Monro conditions are still satisfied, we set the learning rate for nodes that
are not part of our mini-batch to be 0. When a new minibatch contains this particular node, we look
to the most previous learning rate and assume this value as the previous learning rate. This modified
subsequence of learning rates maintains our convergence criterion so that the

P
t

⇢2
it

< 1 and thatP
t

⇢
it

= 1. We show how performing this simple modification results in significant improvements
in both perplexity and link prediction scores.

3.5 Pruning Moves

Our nested truncation requires setting an initial number of communities K. A large truncation lets
the posterior find the best number of communities, but can be computationally costly. A truncation
set too small may not be expressive enough to capture the best approximate posterior. To remedy
this, we define a set of pruning moves aimed at improving inference by removing communities that
have very small posterior mass. Pruning moves provide the model with a more parsimonious and
interpretable latent structure, and may also significantly reduce the computational cost of subsequent
iterations. Figure 2 provides an example illustrating how pruning occurs in our model.

To determine communities which are good candidates for pruning, for each community k we first
compute ⇥

k

= (

P
N

i=1 ✓ik

)/(

P
N

i=1

P
K

k=1 ✓ik

). Any community for which ⇥

k

< (log K)/N for
t⇤ = N/2 consecutive iterations is then evaluated in more depth. We scale t⇤ with the number of
nodes N within the graph to ensure that a broad set of observations are accounted for. To estimate
an approximate but still informative ELBO for the pruned model, we must associate a set of relevant
observations to each pruning candidate. In particular, we approximate the pruned ELBO L(qprune

) by
considering observations y

ij

among pairs of nodes with significant mass in the pruned community.
We also calculate L(qold

) from these same observations, but with the old model parameters. We
then compare these two values to accept or reject the pruning of the low-weight community.

4 Experiments

In this section we perform experiments that compare the performance of the aHDPR model to the
aMMSB. We show significant gains in AUC and perplexity scores by using the restricted form of
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⇥

k

= (

P
N

i=1 ✓
ik

)/(

P
N

i=1

P
K

k=1 ✓
ik

)

✓⇤
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operation for other latent 
variables. 

⇥

k
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graph (red box) to generate a new 
ELBO: L(qprune) 

If  L(qprune)  >   L(qold), accept 
or else reject and continue 
inference with old model 
 

Y
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v⇤, �⇤, �⇤

✓⇤, �⇤
ij2S
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v, �, �

✓,�
ij2S

Figure 2: Pruning extraneous communities. Suppose that community k = 3 is considered for removal.
We specify a new model by redistributing its mass

P
N

i=1 ✓i3 uniformly across the remaining communities
✓
i`

, ` 6= 3. An analogous operation is used to generate {v⇤,�⇤,�⇤
a

,�⇤
b

, ✓⇤}. To accurately estimate the true
change in ELBO for this pruning, we select the n⇤ = 10 nodes with greatest participation ✓

i3 in community 3.
Let S denote the set of all pairs of these nodes, and y

ij2S

their observed relationships. From these observations
we can estimate �⇤

ij2S

for a model in which community k = 3 is pruned, and a corresponding ELBO L(qprune).
Using the data from the same sub-graph, but the old un-pruned model parameters, we estimate an alternative
ELBO L(qold). We accept if L(qprune) > L(qold), and reject otherwise. Because our structured mean-field
approach provides simple direct updates for �⇤

ij2S

, the calculation of L(qold) and L(qprune) is efficient.

stratified node sampling, a quick K-means initialization1 for ✓, and our efficient structured mean-
field approach combined with pruning moves. We perform a detailed comparison on a synthetic toy
dataset, as well as the real-world relativity collaboration network, using a variety of metrics to show
the benefits of each contribution. We then show significant improvements over the baseline aMMSB
model in both AUC and perplexity metrics on several real-world datasets previously analyzed by [6].
Finally, we perform a qualitative analysis on the LittleSis network and demonstrate the usefulness
of using our learned latent community structure to create visualizations of large networks. For
additional details on the parameters used in these experiments, please see ‡A.1.

4.1 Synthetic and Collaboration Networks

The synthetic network we use for testing is generated from the standards and software outlined
in [12] to produce realistic synthetic networks with overlapping communities and power-law degree
distributions. For these purposes, we set the number of nodes N = 1000, with the minimum degree
per node set to 10 and its maximum to 60. On this network the true number of latent communities
was found to be K = 56. Our real world networks include 5 undirected networks originally ranging
from N = 5, 242 to N = 27, 770. These raw networks, however, contain several disconnected com-
ponents. Both the aMMSB and aHDPR achieve highest posterior probability by assigning each con-
nected component distinct, non-overlapping communities; effectively, they analyze each connected
sub-graph independently. To focus on the more challenging problem of identifying overlapping
community structure, we take the largest connected component of each graph for analysis.

Initialization and Node-Specific Learning Rates. The upper-left panels in Fig. 3 compare differ-
ent aHDPR inference algorithms, and the perplexity scores achieved on various networks. Here we
demonstrate the benefits of initializing ✓ via K-means, and our restricted stratified node sampling
procedure. For our random initializations, we initalized ✓ in the same fashion as the aMMSB. Using
a combination of both modifications, we achieve the best perplexity scores on these datasets. The
node-specific learning rates intuitively restrict updates for ✓ to batches containing relevant observa-
tions, while our K-means initialization quickly provides a reasonable single-membership partition
as a starting point for inference.

Naive Mean-Field vs. Structured Mean-Field. The naive mean-field approach is the aHDPR
model where the community indicator assignments are split into s

ij

and r
ij

. This can result in
severe local optima due to their coupling as seen in some experiments in Fig. 4. The aMMSB in some

1Our K-means initialization views the rows of the adjacency matrix as distinct data points and produces a
single community assignment z

i

for each node. To initialize community membership distributions based on
these assignments, we set ✓

izi = N � 1 and ✓
i\zi = ↵.
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Figure 3: The upper left shows benefits of a restricted update and a K-means initialization for stratified node
sampling on both synthetic and relativity networks. The upper right shows the sensitivity of the aMMSB as
K varies versus the aHDPR. The lower left shows various perplexity scores for the synthetic and relativity
networks with the best performing model (aHDPR-Pruning) scoring an average AUC of 0.9675± .0017 on the
synthetic network and 0.9466± .0062 on the relativity network. The lower right shows the pruning process for
the toy data and the final K communities discovered on our real-world networks.

instances performs better than the naive mean-field approach, but this can be due to differences in our
initialization procedures. However, by changing our inference procedure to an efficient structured
mean-field approach, we see significant improvements across all datasets.

Benefits of Pruning Moves. Pruning moves were applied every N/2 iterations with a maximum
of K/10 communities removed per move. If the number of prune candidates was greater than
K/10, then K/10 communities with the lowest mass were chosen. The lower right portion of Fig. 3
shows that our pruning moves can learn close to the true underlying number of clusters (K=56) on a
synthetic network even when significantly altering its initial K. Across several real world networks,
there was low variance between runs with respect to the final K communities discovered, suggesting
a degree of robustness. Furthermore, pruning moves improved perplexity and AUC scores across
every dataset as well as reducing computational costs during inference.
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Figure 4: Analysis of four real-world collaboration networks. The figures above show that the aHDPR with
pruning moves has the best performance, in terms of both perplexity (top) and AUC (bottom) scores.

4.2 The LittleSis Network

The LittleSis network was extracted from the website (http://littlesis.org), which is an organization
that acts as a watchdog network to connect the dots between the world’s most powerful people
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Figure 5: The LittleSis Network. Near the center in violet we have prominent government figures such as
Larry H. Summers (71st US Treasury Secretary) and Robert E. Rubin (70th US Treasury Secretary) with ties
to several distinct communities, representative of their high posterior bridgness. Conversely, within the beige
colored community, individuals with small posterior bridgness such as Wendy Neu can reflect a career that was
highly focused in one organization. A quick internet search shows that she is currently the CEO of Hugo Neu,
a green-technology firm where she has worked for over 30 years. An analysis on this type of network might
provide insights into the structures of power that shape our world and the key individuals that define them.

and organizations. Our final graph contained 18,831 nodes and 626,881 edges, which represents
a relatively sparse graph with edge density of 0.35% (for details on how this dataset was pro-
cessed see ‡A.3). For this analysis, we ran the aHDPR with pruning on the entire dataset using
the same settings from our previous experiments. We then took the top 200 degree nodes and gen-
erated weighted edges based off of a variational distance between their learned expected variational
posteriors such that d

ij

= 1 � |Eq [⇡i]�Eq [⇡j ]|
2 . This weighted edge was then included in our visual-

ization software [3] if d
ij

> 0.5. Node sizes were determined by posterior bridgness [16] where
b
i

= 1 �
p

K/(K � 1)
P

K

k=1(Eq

[⇡
ik

] � 1
K

)2and measures the extent to which a node is involved
with multiple communities. Larger nodes have greater posterior bridgeness while node colors rep-
resent its dominant community membership. Our learned latent communities can drive these types
of visualizations that otherwise might not have been possible given the raw subgraph (see ‡A.4).

5 Discussion

Our model represents the first Bayesian nonparametric relational model to use a stochastic varia-
tional approach for efficient inference. Our pruning moves allow us to save computation and im-
prove inference in a principled manner while our efficient structured mean-field inference procedure
helps us escape local optima. Future extensions of interest could entail advanced split-merge moves
that can grow the number of communities as well as extending these scalable inference algorithms
to more sophisticated relational models.
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A Supplementary Material

A.1 Experimental Settings

For all our experiments, we fix the variance across node community memberships ↵ = 1 and set our
hyperparameters for wk to ⌧a = 10 and ⌧b = 1 across communities. We set an agressive learning
rate so that µ0 = 1 and  = .5. We use a restricted stratified node-sampling technique for all our
experiments with the non-link partition set m = 10, unless stated otherwise. All experiments were
run for 250,000 iterations from 5 random initializations with 10% of the links randomly held out
along with an equal amount of non-links for testing. For the aMMSB, we used the same settings.
The aMMSB uses a random initialization for ✓ik ⇠ Gam(100, .01) with hyperparameters over wk

set to the expected number of link/non-links across K uniformly distributed communities. The
learning rate was set to µ0 = 1024 and  = .5. We found these settings gave the best advantage for
the aMMSB on these datasets that were optimized for its original experiments, with the exception of
changing the Dirichlet prior to be uniform over its mixed-membership distributions (↵ = 1), which
we found to improve convergence for the aMMSB across our experiments.

A.2 aHDPR ELBO

A more detailed representation of our ELBO for the aHDPR model can be seen here. Note that since
we do not estimate �ijk`, the ELBO needs to be computed in a more efficient manner:

L(q) =
EX

ij

KX

k=1

"
�ijkk log f(wk, yij)

#
+

EX

ij

"
1� (

KX
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#
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KX
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where �k = vk
Qk�1

`=1

(1� v`) and �K+

= 1�
PK

k=1

�k. Since we no longer estimate �ijk` directly, we can
show how our ELBO is modified with this optimized inference procedure. In particular, we focus on equations
21, and 24:
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For an efficient calculation of our ELBO the terms that we need to simplify arePK
k=1 Eq[log(⇡ik)]

PK
`=1 �ijk` and

PK
`=1 Eq[log(⇡j`)]

PK
k=1 �ijk`. From Equation 12, note that
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Note the similarity of this expression with part of the updates in Equation 12. By caching the
necessary statistics needed to update ✓, we can calculate our ELBO in an efficient manner.

A.3 Updates for the global stick-breaking weights �

The global stick breaking weights � is not conjugate to node membership weights ⇡. In order to
obtain point estimates for � we perform a two-metric constrained optimization using its first order
gradients. We can write the objective for � w.r.t to our ELBO in the following manner:

L(�) =
PK

k=1(� � 1) log(1� vk)�N
PK

k=1 log�(↵�k) +
PK

k=1(↵�k � 1)

PN
i=1 Eq[log ⇡ik]

(9)

Since �k = vk
Qk�1

`=1 (1 � v`) and �K+ = 1 �
PK

k=1 �k, we redefine the prior over � as a sum
over independently distributed beta variables v. We can obtain point estimates for v without having
to worry about the constrained optimization task for � which is significantly more costly then the
two-metric constrained optimization over v. We now take the derivatives for � with this in mind:

dL(�)
dvm

=

�(��1)
(1�vm) � ↵N

PK
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d�k

dvm
 (↵�k) + ↵

PK
k=1

d�k

dvm

PN
i=1 Eq[log ⇡ik] (10)

where the derivative d�k

dvm
will change depending on the value of k. When m > k, then d�k

dvm
= 0.

When m = k, then d�k

dvm
=

�k

vm
. Finally, when m < k, then d�k

dvm
=

��k

(1�vm) .

Our constrained optimization provides us with updates for v⇤ at iteration t which we can then use
in our stochastic variational approach by setting vtk = (1 � ⇢t)v

t�1
k + ⇢t(v⇤k). From this we can

determine a new set of values for �t by setting �t
k = vtk

Qk�1
`=1 (1� vt`).
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A.4 LittleSis Network Degree-based Visualization
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Figure 1: The same raw graph of the top 200 degree nodes is displayed using Gephi and the force atlas
layout algorithm. Node sizes were determined by its degree and the raw graph represents a cluttered and un-
informative view of its underlying structure. We extracted the original graph from its open source database
(http://littlesis.org), which was originally a bipartite graph between individuals and the organizations they were
involved in. Other types of relationships such as campaign contributions or shared education can also be ex-
tracted, but for this study we focused on whether an individual was a member of that organization. We removed
individuals and organizations that appeared only once and to generate an undirected network, we assumed an
edge existed between people who held positions within the same organization. The largest connected compo-
nent was found to contain 18,831 nodes and 626,881 edges which we used as our final graph for analysis.
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