Visual Learning via Topics, Transformations, and Trees

Erik Sudderth

Department of Computer Science
Brown University

Joint work on

Transformations: Antonio Torralba, Bill Freeman, Alan Willsky

Trees: Jyri Kivinen, Michael Jordan

Low-level Image Analysis

Noise Removal

Deblurring

Inpainting & Restoration

What are the statistical properties of natural images?

Natural Scene Categorization

How do semantic labels affect these properties?

Scenes, Objects, and Parts

Outline

Topics

- Bag of feature image representations
- Hierarchical Bayesian modeling

Transformations

- Sharing parts among object categories
- Spatial models for visual scenes

Trees

- Multiscale nonparametric Markov models
- Image denoising and scene categorization

Learning with Topic Models

Framework for unsupervised discovery of *low-dimensional* latent structure from *bag of word* representations

- > pLSA: Probabilistic Latent Semantic Analysis (Hofmann 2001)
- LDA: Latent Dirichlet Allocation (Blei, Ng, & Jordan 2003)
- > HDP: Hierarchical Dirichlet Processes (Teh, Jordan, Beal, & Blei 2006)

Local Visual Features: Superpixels

Inspired by the successes of *topic models* for text data, some have proposed learning from *local image features*

- Partition image into ~1,000 superpixels
- Goal: Reduce dimensionality, aggregate information spatially – hopefully not across object boundaries!

Local Visual Features: Interest Regions

- Some invariance to lighting & pose variations
- Dense, multiscale over-segmentation of image

A Discrete Feature Vocabulary

SIFT Descriptors

- Normalized histograms of orientation energy
- Compute ~1,000 word dictionary via K-means
- Map each feature to nearest visual word

The World as a Bag of Visual Words

Topics as *visual themes* composing a known set of scene categories

Sivic, Russell, Efros, Zisserman, & Freeman, ICCV 2005

Topics as *visual object classes* within a (carefully chosen) image collection

Images as more than Bags of Features

- How do I know this is ocean beneath a clear sky?
- How many bicycles and tricycles am I looking at?

Why are we trying to squeeze images into topic models?

My work explores the larger space of nonparametric and hierarchical Bayesian models.

Dirichlet Process Mixtures

$$p(x_{ti} \mid \beta, \Lambda_1, \Lambda_2, \ldots) = \sum_{k=1}^{\infty} \beta_k \mathcal{N}(x_{ti}; 0, \Lambda_k)$$

Stick-breaking prior for mixture weights controls complexity:

$$\beta_k = \beta_k' \prod_{\ell=1}^{k-1} (1 - \beta_\ell')$$

$$\beta'_{\ell} \sim \text{Beta}(1, \gamma)$$

 $\gamma \longrightarrow$ Concentration parameter

Why the Dirichlet Process?

$$p(x) = \sum_{k=1}^{\infty} \beta_k f(x \mid \Lambda_k)$$
$$\beta \sim \text{Stick}(\gamma)$$
$$\Lambda_k \sim H$$

- Attractive *asymptotic guarantees*
- Leads to simple, effective variational and MCMC computational methods

Outline

Topics

- Bag of feature image representations
- Hierarchical Bayesian modeling

Transformations

- Sharing parts among object categories
- Spatial models for visual scenes

Trees

- Multiscale nonparametric Markov models
- Image denoising and scene categorization

Visual Object Categorization

- GOAL: Visually recognize and localize object categories
- Robustly *learn* appearance models from few examples

Generative Model for Objects

For each image: Sample a reference position

For each feature:

- Randomly choose one part
- Sample from that part's feature distribution

Objects as Distributions

 Parts are defined by parameters, which encode distributions on visual features:

$$\theta_k = \{\eta_k, \mu_k, \Lambda_k\}$$

 Objects are defined by distributions on the infinitely many potential part parameters:

$$G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta, \theta_k)$$
 $\pi \sim \text{Stick}(\alpha)$

A Nonparmametric Part-Based Model

Generalizing Across Categories

Can we transfer knowledge from one object category to another?

Learning Shared Parts

- Objects are often locally similar in appearance
- Discover parts shared across categories
 - How many total parts should we share?
 - How many parts should each category use?

Hierarchical DP Object Model

Hierarchical DP Object Model

Sharing Parts: 16 Categories

- Caltech 101 Dataset (Li & Perona)
- Horses (Borenstein & Ullman)
- Cat & dog faces (Vidal-Naquet & Ullman)
- Bikes from Graz-02 (Opelt & Pinz)
- Google...

Visualization of Part Densities

Detection Task

Detection Results

6 Training Images per Category (ROC Curves)

Detection Results

6 Training Images per Category (ROC Curves)

Detection vs. Training Set Size (Area Under ROC)

Sharing Simplifies Models

Scenes, Objects, and Parts

Contextual Transfer Learning

Object vs. Visual Categories

- Assume training data contains object category labels
- Discover underlying visual categories automatically

Multiple Object Scenes

- How many cars are there?
- Where are those cars in the scene?

Standard dependent Dirichlet process models (Gelfand et. al., 2005) inappropriate

Spatial Transformations

- Let global DP clusters model objects in a canonical coordinate frame
- Generate images via a random set of transformations:

Parameterized family of transformations

Shift cluster from canonical coordinate frame to object location in a given image

Layered Motion Models (Darrell & Pentland 1991, Wang & Adelson 1994, Jojic & Frey 2001)
Nonparametric Transformation Densities (Learned-Miller & Viola 2000)

A Toy World: Bars & Blobs

Transformed Dirichlet Process

Importance of Transformations

TDP

Counting & Locating Objects

- How many cars are there?
- Where are those cars in the scene?

Dirichlet Processes

Transformations

Visual Scene TDP

Global Density

Object category
Part size & shape
Transformation prior

Transformed Densities

Object category
Part size & shape
Instance locations

2D Image Features

Appearance Location

Street Scene Visual Categories

Street Scene Segmentations

Segmentation Performance

Multiple Part TDP

Single Part TDP

- - Appearance Only

8.0

Multiple Part TDP

Single Part TDP

- - Appearance Only

8.0

False Alarm Rate

False Alarm Rate

Outline

Topics

- Bag of feature image representations
- Hierarchical Bayesian modeling

Transformations

- Sharing parts among object categories
- Spatial models for visual scenes

Trees

- Multiscale nonparametric Markov models
- Image denoising and scene categorization

Low-level Image Analysis

Noise Removal

Deblurring

Inpainting & Restoration

Goals:

- Accurately model the statistics of natural images
- Exploit the availability of large digital *image collections*

Wavelet Decompositions

 Bandpass decomposition of images into multiple scales & orientations

 Multiscale dependencies captured via latent quadtree structure

Wavelets: Marginal Statistics

Gaussian Mixture Models

$$x_i = v_i u_i$$
 $x_i \sim \pi \mathcal{N}(0, \Lambda_0)$
 $v_i \ge 0$ $u_i \sim \mathcal{N}(0, \Lambda)$ $+ (1 - \pi)\mathcal{N}(0, \Lambda_1)$

Gaussian Scale Mixture (GSM)

Wainwright & Simoncelli, 2000

$$x_i \sim \pi \mathcal{N}(0, \Lambda_0)$$

 $+ (1 - \pi)\mathcal{N}(0, \Lambda_1)$

Binary Gaussian Mixture

Computational advantages...

Wavelets: Joint Statistics

Pairwise Joint Histograms:

Pairwise Conditional Histograms:

Large magnitude wavelet coefficients...

- Persist across multiple scales
- Cluster at adjacent spatial locations

Binary Hidden Markov Trees

Crouse, Nowak, & Baraniuk, 1998

- Coefficients marginally distributed as mixtures of two Gaussians
- Markov dependencies between hidden states capture persistence of image contours across locations and scales
- Each orientation is modeled independently

Validation: Image Denoising

Original

Corrupted by Additive White Gaussian Noise (PSNR = 24.61 dB)

Denoising with Binary HMTs

Noisy Input

Denoised (EM algorithm)

- Is two states per scale sufficient? How many is enough?
- Should states be shared the same way for all images, or for all wavelet decompositions?

Hierarchical Dirichlet Process Hidden Markov Trees

 $z_{ti} \longrightarrow \text{indexes } \underbrace{\textit{infinite}}_{\textit{of hidden states}}$

$$z_{ti} \in \{1, 2, 3, \ldots\}$$

 $x_{ti} \longrightarrow \text{observed } vector \text{ of}$ wavelet coefficients

 π_k \longrightarrow infinite set of state transition distributions $z_{ti} \sim \pi^{d_{ti}}_{z_{\mathrm{Pa(ti)}}}$

 Λ_k \longrightarrow state-specific *emission* covariances $x_{ti} \sim \mathcal{N}\left(0, \Lambda_{z_{ti}}\right)$ $\Lambda_k \sim H$

Why a Hierarchical DP? (Teh et. al. 2004)

- Hierarchical DP prior allows us to learn a potentially infinite set of appearance patterns from natural images
- Hierarchical coupling ensures, with high probability, that a common set of *child* states are reachable from each *parent*

$$\pi_k^{d_{ti}}(\ell) = \Pr\left[z_{ti} = \ell \,|\, z_{\Pr(ti)}
ight]$$

Denoising: Input

24.61 dB

Denoising: Binary HMT

29.35 dB

Denoising: HDP-HMT

32.10 dB

Denoising: Local GSM

31.84 dB

Estimating Clean Images

Empirical Bayesian approach estimates model parameters from the noisy image

Transfer denoising approach reuses multiscale hidden state patterns of clean images for making robust predictions

HDP-HMT for noisy data

 $x_{ti} \longrightarrow \text{unobserved vector of } \frac{clean}{coefficients}$

 $w_{ti} \longrightarrow \text{observed vector of } \textit{noisy} \text{ wavelet coefficients}$

 $\sum_n \longrightarrow$ noise variance

 $w_{ti} \sim \mathcal{N}\left(x_{ti}, \Sigma_n\right)$

... and for clean data as well

Denoising Einstein

Noisy 10.60 dB, 0.057

Original

HDP-HMT (Emp. Bayes) 25.64 dB, 0.564

BLS-GSM 26.38 dB, 0.647

HDP-HMT (Transfer) 26.80 dB, 0.664

BM3D 26.49 dB, 0.659

Natural Scene Denoising

Noisy 8.14 dB, 0.033

HDP-HMT (Transfer) 26.50 dB, 0.794

Original

BLS-GSM 25.59 dB, 0.726

BM3D 25.74 dB, 0.751

Natural Scene Denoising

Noisy 8.14 dB, 0.177

Original

HDP-HMT (Emp. Bayes) 18.55 dB, 0.484

BLS-GSM 18.59 dB, 0.454

HDP-HMT (Transfer) 18.77 dB, 0.486

BM3D 18.65 dB, 0.470

Natural Scene Categorization

Goals:

- Visually *recognize* natural scene categories
- Accurately model the statistics of natural scene categories

HDP-HMT Scene Model

• Hidden states z_{ti} generate vectors of clean wavelet coefficients x_{ti} at multiple orientations, or dense multiscale SIFT descriptors

... versus baseline HDP-BOF

HDP-HMT

HDP-BOF

Nonparametric Bayesian extension of LDA scene models (Fei-Fei & Perona, 2005) which ignore spatial locations of locally extracted image features

Number of States

SIFT

Samples given MAP states

Markov Tree

HDP Bag of Features HDP Hidden

Categorizing Natural Scenes

Wavelet (sfp7)

SIFT

coast
forest
highway
inside city
mountain
open country
street
tall building

HDP-HMT [86.5 %]

Conclusions

Why move beyond topic models?

- Even with huge datasets, parametric (and nonparametric) models are constrained by their parameterizations
- Geometry and spatial relationships are more than entries in a feature vector

Lots to be done...

- Other geometric relationships: context, occlusion, composition, ...
- > Efficient, robust inference algorithms
- ➤ How should we balance design and learning of transferred representations?

