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Low-level Image Analysis
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Noise Removal Deblurring Inpainting & Restoration
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What are the statistical properties of natural images?



Natural Scene Categorization

Open Country Street

How do semantic labels affect these properties?



Scenes, Objects, and Parts

Scene

Objects

l

Parts

!

Features



Outline

Topics

e Bag of feature image representations

e Hierarchical Bayesian modeling

Transformations

e Sharing parts among object categories

e Spatial models for visual scenes

Trees
e Multiscale nonparametric Markov models

e Image denoising and scene categorization




Learning with Topic Models

Framework for unsupervised discovery of low-dimensional
latent structure from bag of word representations

model
neural
stochastic
recognition 1: J | Algorithms
nonparametric ¥ ’J‘ Neuroscience
gradi er t Statistics
dynamical Pr{topic | doc] Vision
Bayesian
W =~ ]_O’ 000 Prlword | doc] Pr{word | topic] K ~ 100

» PLSA: Probabilistic Latent Semantic Analysis (Hofmann 2001)

» LDA: Latent Dirichlet Allocation (Blei, Ng, & Jordan 2003)
» HDP: Hierarchical Dirichlet Processes (Teh, Jordan, Beal, & Blei 2006)



Local Visual Features: Superpixels

Inspired by the successes of topic models for text data,
some have proposed learning from /ocal image features
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 Partition image into ~1,000 superpixels

» (Goal: Reduce dimensionality, aggregate
information spatially — hopefully not
across object boundaries!




Local Visual Features: Interest Regions
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Affinely Adapted Maximally Stable Linked Sequences
Harris Corners Extremal Regions of Canny Edges
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* Some invariance to lighting & pose variations
* Dense, multiscale over-segmentation of image



A Discrete Feature Vocabulary

SIFT Descriptors

 Normalized histograms of
orientation energy

* Compute ~1,000 word
dictionary via K-means

 Map each feature to
nearest visual word
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Lowe, IJCV 2004
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The World as a Bag of Vlsual Words
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Fei-Fei & Perona, CVPR 2005

Topics as visual themes composing a
known set of scene categories

Sivic, Russell, Efros, Zisserman, & Freeman, ICCV 2005

Topics as visual object classes within a
(carefully chosen) image collection



Images as more than Bags of Features

* How do | know this is ocean beneath a clear sky?
* How many bicycles and tricycles am | looking at?

Why are we trying to squeeze images into topic models?

My work explores the larger space of nonparametric and
hierarchical Bayesian models.



Dirichlet Process Mixtures
plzei | B, A1, g, .) =D BN (2430, Ay,)
k=1

Stick-breaking prior for mixture weights controls complexity:

k1
B =6 | [(1—6)
(=1

By ~ Beta(1,7)

Y — Concentration parameter

AN
-~ =0
Sa)
S
=

1
9

0
o :




Why the Dirichlet Process ?

p(z) =) Bef(z|Ax)
k=1 .

B ~ Stick(7y)

VA
Ay~ H &

e Basis for nonparametric models whose

complexity grows as data is observed

e Attractive asymptotic guarantees

e Leads to simple, effective variational
and MCMC computational methods




Outline

Topics
e Bag of feature image representations @ d'>29
e Hierarchical Bayesian modeling ::
Gy
4
Transformations @ - QO «
e Sharing parts among object categories 99 @t : :
e 0 GI G3

e Spatial models for visual scenes

Trees
e Multiscale nonparametric Markov models

e Image denoising and scene categorization




Visual Object Categorization

« GOAL.: Visually recognize and localize object categories

* Robustly /learn appearance models from few examples



Generative Model for Objects
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. & For each feature:

» Randomly choose one part
» Sample from that part’s feature distribution
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For each image: Sample a reference position
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Objects as Distributions

p(wji, vjilpi) = D meng(wii) N (vji; pr + pj, Ak

k=1 ] — —
I ‘ Pr(part) 1 1
Feature  Feature Pr(appearance | part) Pr(position | part)

appearance  position

» Parts are defined by parameters, which
encode distributions on visual features:

Or. = { Mk, 1., \.}

* Objects are defined by distributions on the
infinitely many potential part parameters:

GO) = > mp6(0,0;) 7 ~ Stick(a)
k=1



A Nonparmametrlc Part-Based Model

# images |
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Generalizing Across Categories
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Can we transfer knowledge from one object category to another?



Learning Shared Parts

* Objects are often locally similar in appearance
* Discover parts shared across categories

— How many total parts should we share?
— How many parts should each category use?




Hierarchical DP Object Model




Hierarchical DP Object Model

Discrete Data:
Teh et. al., 2004




Sharing Parts: 16 Categories
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« Caltech 101 Dataset (Li & Perona) » Bikes from Graz-02 (Opelt & Pinz)
* Horses (Borenstein & Ullman) « Google...
» Cat & dog faces (Vidal-Naquet & Uliman)



Visualization of Part Densities

Wheelchair
Llama Body
Horse Face
Llama Face
Cow Face
Dog Face
Leopard Face
Cougar Face
Cat Face
Cannon
Bicycle
Motorbike
Leopard Body
Horse Body
Rhino Body
Elephant Body

Hierarchical Clustering of Pr(part | object)
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Detection Rate
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0.2 = Position & Appearance, HDP
- Position & Appearance, DP
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- = = Appearance Only, DP
0
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Detection Results

False Alarm Rate

6 Training Images per Category
(ROC Curves)

0.4

<= Shared Parts

more accurate than
Unshared Parts

Modeling feature positions
improves shared detection, but
hurts unshared detection



Detection Rate

Detection Results
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Number of Global Parts

Sharing Simplifies Models

500 — |

450

400

350

300

- Position & Appearance, HDP
2501 Position & Appearance, DP
| = = = Appearance Only, HDP

200

150

100

o0~

0 | | |
Number of Training Images

5 10 15 20 25 30



Scenes, Objects, and Parts

Scene

Objects

l

Parts

!

Features



Contextual Transfer Learning
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Object vs. Visual Categories

Supervised

Unsupervised

* Assume training data contains object category labels
* Discover underlying visual categories automatically



 How many cars are there?

* Where are those cars in the scene”?
Standard dependent Dirichlet process models (Gelfand et. al., 2005) inappropriate



Spatial Transformations

» Let global DP clusters model objects
In @ canonical coordinate frame

* Generate images via a random
set of transformations:

T((, N);p) = (1 + p, \)

1

1

Parameterized family  Shift cluster from canonical
of transformations coordinate frame to object
location in a given image

Layered Motion Models (Darrell & Pentland 1991, Wang & Adelson 1994, Jojic & Frey 2001)
Nonparametric Transformation Densities (Learned-Miller & Viola 2000)



A Toy World: Bars & Blobs




Transformed Dirichlet Process




Importance of Transformations




Counting & Locating Objects

 How many cars are there? Dirichlet Processes
* Where are those cars in the scene? Transformations



Global
Density
Object category

Part size & shape
Transformation prior

Transformed
Densities

Object category
Part size & shape

Instance locations

2D Image
Features

Appearance
Location

Visual Scene TDP
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Street Scene Visual Categories
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Segmentation Performance

Detection Rate

Detection Rate
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Outline

Topics
e Bag of feature image representations @ d'>29
e Hierarchical Bayesian modeling ::
Gy
4
Transformations @ - QO «
e Sharing parts among object categories 99 ©e¢ : :
e 0 GI G3

e Spatial models for visual scenes

Trees
e Multiscale nonparametric Markov models

e Image denoising and scene categorization




Low-level Image Analysis
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Noise Removal Deblurring Inpainting & Restoration
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Goals:

e Accurately model the statistics of natural images

e Exploit the availability of large digital image collections



Wavelet Decompositions

A

« Bandpass decomposition
of images into multiple
scales & orientations

* Multiscale dependencies
captured via latent
quadtree structure




Log Probability
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Wavelet Coefficient

Wavelets: Marginal Statistics




Gaussian Mixture Models

Log Probability

Wavelet Coefficient
Tj = ViU
vi>O UZNN(O,/\)

Gaussian Scale Mixture (GSM)
Wainwright & Simoncelli, 2000

Log Probability

1
k)

Wéveiet éoeﬁiciént
Tj ~ ™ N(0,Ag)
_l_ (1 T W)N(Oa /\1)

Binary Gaussian Mixture
Computational advantages...



Wavelets: Joint Statistics

Pairwise Joint Histograms:

Vertical

Orientation Scale

Pairwise Conditional Histograms:

Orientation Scale Vertical Horizontal

Large magnitude wavelet coefficients...

» Persist across multiple scales
« Cluster at adjacent spatial locations



Binary Hidden Markov Trees

Crouse, Nowak, & Baraniuk, 1998
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2-scales 25

Zt3

Zt3
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Zt4

Zt2 »

T

orientationy

T, — State transition
distributions
“ti ™ T zpa(ta)

A, — state-specific
emission covariances
Ltg ° N (0, AZm’)

2,; — hidden state or cluster
assignment
Zti ~ {O, 1}

Ti; — Observed wavelet
coefficient

Coefficients marginally distributed as mixtures of two Gaussians

Markov dependencies between hidden states capture persistence
of image contours across locations and scales

Each orientation is modeled independently



Valldatlon Image Denmsmg

W,

//

Original Corrupted by Additive
White Gaussian Noise
(PSNR = 24.61 dB)



Ii.*-lr-_*:‘r-_ . I_- el E = b
Noisy Input Denoised (EM algorithm)

e |stwo states per scale sufficient? How many is enough?

e Should states be shared the same way for all images,
or for all wavelet decompositions?



Hierarchical Dirichlet Process Hidden Markov Trees

Tt1

AN

Zt4

Zt2

Zt3
Ttq

/
O
N

L5

T3

. T
Z+; —  indexes infinite set T — infinite set of state
of hidden states transition distributions
2z €11,2,3,...} “ti ™ 7Tg”ll?;f%(ti)
Xt; —  observed vector of A .. — state-specific emission covariances
wavelet coefficients Ty ~ N (0, Azm)

A~ H



Parent state

Why a Hierarchical DP ? (rehet. al 2004

Hierarchical DP prior allows us to learn a potentially infinite set of
appearance patterns from natural images

Hierarchical coupling ensures, with high probability, that a common
set of child states are reachable from each parent

T () = Pr [z = €] 2paqii)] B ~ Stick(y)

Average state frequencies

Global classes
77,? ~ DP(«, )
Transition distributions
d
E|m| =0

Sparsity & variability of
transition distributions

Probabilities

Child state o —



Denoising: Input
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Denoising: Binary HMT

m
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29.35 dB

Crouse, Nowak, & Baraniuk, 1998



Denoising: HDP-HMT

R e e J

32.10dB



Denoising: Local GSM

¥ N L e

31.84 dB
Portilla et. al., 2003



Estimating Clean Images

Empirical Bayesian
approach estimates
model parameters from
the noisy image

N

Transfer denoising
approach reuses multiscale
hidden state patterns of
clean images for making
robust predictions




HDP-HMT for noisy data
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\ t3, T
Xt; —  unobserved vector of c/lean wavelet Y — noise variance
. . n
coefficients
W¢; —  Observed vector of noisy wavelet Wi ™~ N (a:ti, Zn)

coefficients



... and for clean data as well
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Denoising Einstein

HDP-HMT HDP-HMT
Noisy (Emp. Bayes) (Transfer)
10.60 dB, 0.057 25.64 dB, 0.564 26.80 dB, 0.664

BLS-GSM BM3D

Original 26.38 dB, 0.647 26.49 dB, 0.659




Natural Scene Denoising

HDP-HMT HDP-HMT
Noisy (Emp. Bayes) (Transfer)

8.14 dB, 0.033 24.24 dB, 0.519 26.50 dB, 0.794

- BLS-GSM BM3D
Original 25.59 dB, 0.726 25.74 dB, 0.751




Natural Scene Denoising

HDP-HMT HDP-HMT
Noisy (Emp. Bayes) (Transfer)
8.14dB, 0.177 18.55 dB, 0.484 18.77 dB, 0.486

i‘(l o

N BLS-GSM | BM3D
Original 18.59 dB, 0.454 18.65 dB, 0.470




Coast Open Country Street

Goals:
e Visually recognize natural scene categories

e Accurately model the statistics of natural scene categories



HDP-HMT Scene Model

e Hidden states <£¢; generate vectors of clean wavelet coefficients L¢;
at multiple orientations, or dense multiscale SIFT descriptors



... versus baseline HDP-BOF

HDP-HMT HDP-BOF

o0

O
Y

27

e,

® ©

Nonparametric Bayesian extension of LDA scene models (Fei-Fei & Perona, 2005)
which ignore spatial locations of locally extracted image features



Posterior Mean Number of States

200

150

100

50

Number of States

Wavelet (sp5)

L HDP-HMT (coast)

= HDP-BOW (coast)
= = = HDP-BOW (tallbuilding)

HDP-HMT (tallbuilding)
= Truncation Level

0 10 20 30 40 50 60 70 80 90 100

Number of Training Images

Posterior Mean Number of States

200

150

100

50

SIFT

= HDP-BOW (coast)

= = =HDP-BOW (tallbuilding)
HDP-HMT (coast)
HDP-HMT (tallbuilding)

= Truncation Level

30 40 50 60 70 80 90 100
Number of Training Images



Samples given MAP states

Input Image HDP Hidden HDP Bag of Features
Markov Tree



coast

forest
highway
inside city
mountain
open country
street

tall building

coast

forest
highway
inside city
mountain
open country
street

tall building

Categorizing Natural Scenes
Wavelet (sfp7) SIFT

0.6 10.0 0.0 06 106 06 0.0 00 19 62

0.0 0.0 00 55 08 23 00

0.0 0 00 78 47

CRCINONG 0.0 10.0 10.0 1.7 0.0

6.7 0.0 1.7 1.7 50

09 09 28 00 3.7 93 46 00 00 19 0.0 0.0

0.6 138 46 0.69.2 8.0 0.0 1.1 0.6 06 0.0 5.7

86 10.0 3.3 05 11.0 48 0.0 11.0 19 1.0 00 57

00 11 54 22 76 0.0 2.2 00 00 43 22 22 00

00 00 26 135 06 06 8.3 00 00 0.0 90 06 0.0 45

HDP-BOF [75.3 %]

44 00 1.9
08 0.0 86
00 6.7

5.6 0.9

29 00

25 0.0 00

3.1 23 00

00 33 17

09 102 46

11 1.7 0.0

33 1.0 13.3 05 00

87 11 76

1.9 122 0.0

0.0 1.1

0.0 38

HDP-HMT [80.7 %]

0.0

6.7

0.0

0.6

1.2 44 00

0.0 00

0.0 1.7

09 37

40 34 00

11.0 52 29 00

0.0

0.0

00 65 22

00 06 7.1

HDP-BOF [82.4 %]

75 0.0 00

3.1 08 00

6.7 6.7 00

09 102 1.9

80 23 06

7.6 05 00

1.1

1.3 0.0

0.0 1.1

10.3

HDP-HMT [86.5 %]

coast

forest
highway
inside city
mountain
open country
street

tall building

coast

forest
highway
inside city
mountain
open country
street

tall building



Conclusions

Why move beyond topic models?

» Even with huge datasets, parametric @ ©'.
(and nonparametric) models are
constrained by their parameterizations

» Geometry and spatial relationships are @ @ <
more than entries in a feature vector 90 O @ OJC
G, 99 ¢,

Lots to be done...

» Other geometric relationships:
context, occlusion, composition, ...

» Efficient, robust inference algorithms

» How should we balance design and
learning of transferred representations?




