Spatial Bayesian Nonparametrics for Natural Image Segmentation

Erik Sudderth Brown University

Parsing Visual Scenes

Region Classification with Markov Field Aspect Models

Verbeek & Triggs, CVPR 2007

Human Image Segmentation

Berkeley Segmentation Database & Boundary Detection Benchmark

BNP Image Segmentation

Segmentation as Partitioning

- How many regions does this image contain?
- What are the sizes of these regions?

Why Bayesian Nonparametrics?

- Huge variability in segmentations across images
- Want multiple interpretations, ranked by probability

The Infinite Hype

- Infinite Gaussian Mixture Models
- Infinite Hidden Markov Models
- Infinite Mixtures of Gaussian Process Experts
- Infinite Latent Feature Models
- Infinite Independent Components Analysis
- Infinite Hidden Markov Trees
- Infinite Markov Models
- Infinite Switching Linear Dynamical Systems
- Infinite Factorial Hidden Markov Models
- Infinite Probabilistic Context Free Grammars
- Infinite Hierarchical Hidden Markov Models
- Infinite Partially Observable Markov Decision Processes

• ...

Some Hope: BNP Segmentation

Model

- Dependent Pitman-Yor processes
- Spatial coupling via Gaussian processes

Inference

Stochastic search & expectation propagation

Learning

Conditional covariance calibration

Results

Multiple segmentations of natural images

Pitman-Yor Processes

The *Pitman-Yor process* defines a distribution on infinite discrete measures, or *partitions*

$$\pi_k = v_k \left(1 - \sum_{\ell=1}^{k-1} \pi_\ell \right) = v_k \prod_{\ell=1}^{k-1} (1 - v_\ell)$$

$$v_k \sim \text{Beta}(1-a,b+ka)$$

Dirichlet process:

$$a = 0$$

Pitman-Yor Stick-Breaking

$$v_k \sim \text{Beta}(1-a,b+ka)$$

$$v_k \sim \text{Beta}(1-a, b+ka)$$
 $E[v_k] = \frac{1-a}{1-a+b+ka}$

$$k=1$$
 —

$$k = 10$$

$$k = 20$$
 —

Human Image Segmentations

Statistics of Human Segments

Labels for more than 29,000 segments in 2,688 images of natural scenes

Why Pitman-Yor?

Generalizing the Dirichlet Process

- Distribution on partitions leads to a generalized Chinese restaurant process
- Special cases of interest in probability: Markov chains, Brownian motion, ...

Power Law Distributions DP

PY

Number of unique clusters in N observations

 $\mathcal{O}(b \log N)$ $\mathcal{O}(bN^a)$

Heaps' Law:

Size of sorted cluster weight
$$k$$
 $\mathcal{O}\left(\alpha_b\left(\frac{1+b}{b}\right)^{-k}\right)$ $\mathcal{O}\left(\alpha_{ab}k^{-\frac{1}{a}}\right)$

Zipf's Law:

Natural Language **Statistics**

Goldwater, Griffiths, & Johnson, 2005 Teh. 2006

Jim Pitman

Marc Yor

Feature Extraction

- Partition image into ~1,000 superpixels
- Compute *texture* and *color* features: *Texton Histograms* (VQ 13-channel filter bank) *Hue-Saturation-Value* (HSV) Color Histograms
- Around 100 bins for each histogram

Pitman-Yor Mixture Model

Dependent DP&PY Mixtures

Example: Logistic of Gaussians

 Pass set of Gaussian processes through softmax to get probabilities of independent segment assignments

Fernandez & Green, 2002 Figueiredo et. al., 2005, 2007 Woolrich & Behrens, 2006 Blei & Lafferty, 2006

Nonparametric analogs have similar properties

Discrete Markov Random Fields

Ising and Potts Models

$$p(z) = \frac{1}{Z(\beta)} \prod_{(s,t) \in E} \psi_{st}(z_s, z_t)$$

$$\log \psi_{st}(z_s, z_t) = \begin{cases} \beta_{st} > 0 & z_s = z_t \\ 0 & \text{otherwise} \end{cases}$$

Previous Applications

- Interactive foreground segmentation
- Supervised training for known categories

...but learning is challenging, and little success at unsupervised segmentation.

GrabCut: Rother, Kolmogorov, & Blake 2004

Verbeek & Triggs, 2007

Phase Transitions in Action

Potts samples, 10 states sorted by size: largest in blue, smallest in red

Product of Potts and DP?

Orbanz & Buhmann 2006

$$p(z) = \frac{1}{Z(\beta, \pi)} \prod_{(s,t) \in E} \psi_{st}(z_s, z_t) \prod_{s \in V} \pi(z_s)$$

$$Potts \ Potentials \qquad DP \ Bias: \qquad \pi \sim \operatorname{Stick}(\alpha)$$

- Cut random surfaces
 (samples from a GP)
 with thresholds
 (as in Level Set Methods)
- Assign each pixel to the *first* surface which exceeds threshold (as in Layered Models)
- Retains Pitman-Yor marginals while jointly modeling rich spatial dependencies (as in Copula Models)

Samples from PY Spatial Prior

Comparison: Potts Markov Random Field

Outline

Model

- Dependent Pitman-Yor processes
- Spatial coupling via Gaussian processes

Inference

Stochastic search & expectation propagation

Learning

Conditional covariance calibration

Results

Multiple segmentations of natural images

Mean Field for Dependent PY

Factorized Gaussian Posteriors

$$q(\mathbf{u}) = \prod_{k=1}^{K} \prod_{i=1}^{N} \mathcal{N}(u_{ki} \mid \mu_{ki}, \lambda_{ki})$$

$$q(\bar{\mathbf{v}}) = \prod_{k=1}^{K} \mathcal{N}(\bar{v}_k \mid \nu_k, \delta_k)$$

Sufficient Statistics

$$z_i = \min\{k \mid u_{ik} < \bar{v}_k\}$$

Allows closed form update of $\,q(heta_k)\,$ via

$$\mathbb{P}_q[u_{ki} < \bar{v}_k] = \Phi\left(\frac{\nu_k - \mu_{ki}}{\sqrt{\delta_k + \lambda_{ki}}}\right)$$

ors
$$u_{k1}$$
 u_{k2} u_{k3} u_{k4} u_{k4}

$$\log p(\mathbf{x} \mid \alpha, \rho) \ge H(q) + \mathbb{E}_q[\log p(\mathbf{u}, \bar{\mathbf{v}}, \boldsymbol{\theta} \mid \alpha, \rho)]$$

Robustness and Initialization

Log-likelihood bounds versus iteration, for many random initializations of mean field variational inference on a single image.

Alternative: Inference by Search

No need for a finite, conservative model truncation!

Discrete Search Moves

Stochastic proposals, accepted if and only if they improve our EP estimate of marginal likelihood:

- Merge: Combine a pair of regions into a single region
- Split: Break a single region into a pair of regions (for diversity, a few proposals)
- Shift: Sequentially move single superpixels to the most probable region
- Permute: Swap the position of two layers in the order

Marginalization of continuous variables simplifies these moves...

Inference Across Initializations

BSDS: Spatial PY Inference

Spatial PY (EP)

Spatial PY (MF)

Outline

Model

- Dependent Pitman-Yor processes
- Spatial coupling via Gaussian processes

Inference

Stochastic search & expectation propagation

Learning

Conditional covariance calibration

Results

Multiple segmentations of natural images

Covariance Kernels

- Thresholds determine segment size: Pitman-Yor
- Covariance determines segment shape:

$$C(y_i,y_j) \iff$$
 probability that features at locations (y_i,y_j) are in the same segment

Roughly Independent Image Cues:

- Color and texture histograms within each region: Model generatively via multinomial likelihood (Dirichlet prior)
- Pixel locations and intervening contour cues: Model conditionally via GP covariance function

Berkeley Pb (probability of boundary) detector

Learning from Human Segments

- Data unavailable to learn models of all the categories we're interested in: We want to discover new categories!
- Use logistic regression, and basis expansion of image cues, to learn binary "are we in the same segment" predictors:
 - Generative: Distance only
 - ➤ Conditional: Distance, intervening contours, ...

From Probability to Correlation

$$q_{-}^{k}(\alpha,\rho) = \int_{-\infty}^{\infty} \int_{-\infty}^{\delta_{k}} \int_{-\infty}^{\delta_{k}} \mathcal{N}\left(\begin{bmatrix} u_{i} \\ u_{j} \end{bmatrix} \middle| \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}\right) p(\delta_{k}|\alpha) du_{i} du_{j} d\delta_{k}$$

$$q_{+}^{k}(\alpha,\rho) = \int_{-\infty}^{\infty} \int_{\delta_{k}}^{\infty} \int_{\delta_{k}}^{\infty} \mathcal{N}\left(\begin{bmatrix} u_{i} \\ u_{j} \end{bmatrix} \middle| \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}\right) p(\delta_{k}|\alpha) du_{i} du_{j} d\delta_{k}$$

$$p_{ij} = q_{-}^{1}(\alpha,\rho) + q_{-}^{2}(\alpha,\rho) q_{+}^{1}(\alpha,\rho) + q_{-}^{3}(\alpha,\rho) q_{+}^{1}(\alpha,\rho) q_{+}^{2}(\alpha,\rho) + \dots$$

There is an injective mapping between covariance and the probability that two superpixels are in the same segment.

Low-Rank Covariance Projection

- ➤ The pseudo-covariance constructed by considering each superpixel pair independently may not be positive definite
- Projected gradient method finds low rank (factor analysis), unit diagonal covariance close to target estimates

Prediction of Test Partitions

Heuristic versus Learned Image Partition Probabilities

Learned Probability versus
Rand index measure
of partition overlap

Comparing Spatial PY Models

Outline

Model

- Dependent Pitman-Yor processes
- Spatial coupling via Gaussian processes

Inference

Stochastic search & expectation propagation

Learning

Conditional covariance calibration

Results

Multiple segmentations of natural images

Other Segmentation Methods

Quantitative Comparisons

Algorithms	PRI	VI	SegCover
Ncuts	0.74	2.5	0.38
MS	0.77	2.5	0.44
FH	0.77	2.1	0.52
gPb	0.81	2.0	0.58
PYdist	0.72	2.1	0.51
PYall	0.76	2.1	0.52

gPb	0.74	2.1	0.53
PYall	0.73	1.9	0.55

Berkeley Segmentation

LabelMe Scenes

- On BSDS, similar or better than all methods except gPb
- On LabelMe, performance of Spatial PY is better than gPb

Room for Improvement:

- Implementation efficiency and search run-time
- Histogram likelihoods discard too much information
- Most probable segmentation does not minimize Bayes risk

Multiple Spatial PY Modes

Most Probable

Multiple Spatial PY Modes

Most Probable

Spatial PY Segmentations

Conclusions

Successful BNP modeling requires...

- careful study of how model assumptions match data statistics & model comparisons
- reliable, consistent (general-purpose?)
 inference algorithms, carefully validated
- methods for *learning* hyperparameters from data, often with partial supervision

