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Bayesian Nonparametric Clustering
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BNP Mixture Models

Cluster Frequency Graph
 Cluster Assignment Graph
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Stick-breaking prior on cluster frequencies:
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Dirichlet Process:


Pitman-Yor Process:


Also finite Dirichlet, …




BNP Admixture (Topic) Models

Cluster Frequency Graph
 Cluster Assignment Graph


π0

π1 π2 πJ· · ·

zdn

D Nd

d

documents tokens

There are reasons to believe that the 
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legislation that can protect our future 
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Hierarchical DP (Teh et al., 2006) prior  
on group-specific cluster frequencies,  
or doc-specific topic frequencies:
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BNP Hidden Markov Models

Cluster Frequency Graph
 Cluster Assignment Graph
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BNP Hidden Markov Trees

Cluster Frequency Graph
 Cluster Assignment Graph
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the number of times the state sequence z occurred
as the children of state j. For the Markov chil-
dren model we need the count variable n̂jik which
is the number of observations for a node with state
k whose parent’s state is j and whose previous sib-
ling’s state is i. In all cases we represent marginal
counts using dot-notation, e.g., n·k is the total num-
ber of nodes with state k, regardless of parent.
Our procedure alternates between three distinct

sampling stages: (1) sampling the state assignments
z, (2) sampling the counts mjk, and (3) sampling
the global stick �. The only modification of the pro-
cedure that is required for the different tree mod-
els is the method for computing the probability
of the child state sequence given the parent state
P((zt�)t��c(t)|zt), defined separately for each model.

Sampling z. In this stage we sample a state for
each tree node. The probability of node t being as-
signed state k is given by:
P(zt = k|z�t,�) � P(zt = k, (zt�)t��s(t)|zp(t))

· P((zt�)t��c(t)|zt = k) · f�xt
k (xt)

where s(t) denotes the set of siblings of t, f�xt
k (xt)

denotes the posterior probability of observation xt

given all other observations assigned to state k, and
z�t denotes all state assignments except zt. In other
words, the probability is proportional to the product
of three terms: the probability of the states of t and
its siblings given its parent zp(t), the probability of
the states of the children c(t) given zt, and the pos-
terior probability of observation xt given zt. Note
that if we sample zt to be a previously unseen state,
we will need to extend � as discussed in Section 3.2.
Now we give the equations for P((zt�)t��c(t)|zt)

for each of the models. In the independent child
model the probability of generating each child is:

Pind(zci(t) = k|zt = j) =
njk + �0�k

nj· + �0

Pind((zt�)t��c(t)|zt = j) =
�

t��c(t)
Pind(zt� |zt = j)

For the simultaneous child model, the probability of
generating a sequence of children, z, takes into ac-
count how many times that sequence has been gen-
erated, along with the likelihood of regenerating it:

Psim((zt�)t��c(t) = z|zt = j) =
njz + �Pind(z|zt = j)

nj· + �

Recall that � denotes the concentration parameter
for the sequence generating DP. Lastly, we have the

DT NN IN DT NN VBD PRP$ NN TO VB NN EOS
The man in the corner taught his dachshund to play golf EOS

Figure 6: An example of a syntactic dependency tree
where the dependencies are between tags (hidden
states), and each tag generates a word (observation).

Markov child model:

Pm(zci(t) = k|zci�1(t) = i, zt = j) =
n̂jik + �0�k

n̂ji· + �0

Pm((zt�)t��c(t)|zt) =
�|c(t)|

i=1
Pm(zci(t)|zci�1(t), zt)

Finally, we give the posterior probability of an ob-
servation, given that F (�k) is Multinomial(�k), and
that H is Dirichlet(�, . . . , �). Let N be the vocab-
ulary size and ṅk be the number of observations x
with state k. Then:

f�xt
k (xt) =

ṅxtk + �

ṅ·k + N�

Sampling m. We use the following procedure,
which slightly modifies one from (Y. W. Teh, 2006,
p.c.), to sample eachmjk:
SAMPLEM(j, k)
1 if njk = 0
2 thenmjk = 0
3 else mjk = 1
4 for i� 2 to njk

5 do if rand() < �0
�0+i�1

6 thenmjk = mjk + 1
7 returnmjk

Sampling �. Lastly, we sample � using the Di-
richlet distribution:

(�1, . . . ,�K ,�u) � Dirichlet(m·1, . . . ,m·K ,�0)

6 Experiments
We demonstrate infinite tree models on two dis-
tinct syntax learning tasks: unsupervised POS learn-
ing conditioned on untagged dependency trees and
learning a split of an existing tagset, which improves
the accuracy of an automatic syntactic parser.
For both tasks, we use a simple modification of

the basic model structure, to allow the trees to gen-
erate dependents on the left and the right with dif-
ferent distributions – as is useful in modeling natu-
ral language. The modification of the independent
child tree is trivial: we have two copies of each of
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Learning Structured BNP Models


  Nonparametric:  Data-driven discovery of model 
structure:  topics, behaviors, objects, communities… 

  Reliable:  Structure driven by data and modeling 
assumptions, not heuristic algorithm initializations 

  Parsimonious:  Want a single model structure with 
good predictive power, not full posterior uncertainty 
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Hierarchical 
Dirichlet Process 

(Teh et al., JASA 2006)


There are reasons to believe that the 
genetics of an organism are likely to 
shift due to the extreme changes in 
our climate. To protect them, our 
politicians must pass environmental 
legislation that can protect our future 
species from becoming extinct…


Genetics, Climate Change, Politics, …




Variational Inference for  
Dirichlet Process Mixtures
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Dirichlet Process Mixtures

GOAL: Partition data into an a priori unknown number of discrete clusters.


�k ⇠ H(�0) ⇡ ⇠ Stick(↵)
Each observation n = 1, 2, …, N:

 Cluster assignment:

 Observed value:
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Exponential family with conjugate prior:
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Variational Bounds

Bayesian Learning:  Maximize the marginal likelihood of our observed data


log p(x | ↵,�0) = log
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Inequality


Expected log-likelihood 
(negative of “average energy”)
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  Maximizing this bound recovers true posterior:


L(q) = log p(x | ↵,�0)

�KL(q(z, v,�) || p(z, v,� | x,↵,�0))

  The simplest mean field variational methods create 
tractable algorithms via assumed independence:


q(z, v,�) = q(z)q(v,�)

⇡k = vk
Qk�1

`=1 (1� v`)

  For any variational distribution                  :




Approximating Infinite Models
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For any k>K, optimal 
variational distributions 
equal prior & need not  
be explicitly represented


q(zn) = Cat(zn | rn1, rn2, . . . , rnK , 0, 0, 0, . . .)



Batch Variational Updates

A Bayesian nonparametric analog of Expectation-Maximization (EM)


q(zn) = Cat(zn | rn1, rn2, . . . , rnK , 0, 0, 0, . . .) for some K>0
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Update Assignments (The Expectation Step):   For all N data,

rnk / exp(Eq[log ⇡k(v)] + Eq[log p(xn | �k)]) for k  K

Update Cluster Parameters  
(The Other Expectation Step):
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Variational EM: Convergence

1 iteration
 2 iterations
 5 iterations


10 iterations
 50 iterations
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+  Likelihood bound monotonically increases to mode

-  Each iteration must examine all data (SLOW)




Bayesian Model Selection


L
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Maximizing marginal likelihood enables Bayesian model selection


log p(x) � Eq[log p(x, z, v,� | ↵,�0)]� Eq[log q(z, v,�)] = L(q)

+  Allows Bayesian comparison of hypotheses with varying complexity K. 
For BNP models, MAP estimation will cause severe overfitting!


- Truncation level K is fixed, must fit many different models (EXPENSIVE)




Variational EM: Local Optima


Result from init A
 Result from init B
 Result from init C


Final clusters can be (highly) sensitive to initialization!


-  Run from many different random initializations

-  Use application intuition to engineer reasonable initializations

-  Repeat for each complexity hypotheses (number of clusters K)


Heuristics commonly used in practice: 


Requires expertise, not-big datasets,  
and often compromises in model sophistication.




Mean Field versus Loopy BP

Toroidal 9x9 Grid with Attractive Binary Potentials (Weiss 2001)


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

FMF=83.175494
2 4 6 8

2

4

6

8

FMF=83.174927 FMF=83.174927

True 
Marginals


Loopy 
BP


MF init from 
Loopy BP


FMF=155.179773 FMF=136.806680

FMF=176.301337 FMF=161.115060

MF init

Randomly


Optimize mean field via coordinate ascent on node marginals. 




Objective versus Algorithm

3.6 Conjugate Duality: Maximum Likelihood and Maximum Entropy 69

Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings ∇A and ∇A∗

associated with the conjugate dual pair (A,A∗) provide a bijective mapping between Ω and
the interior M◦.

3.6.2 Some Simple Examples

Theorem 3.4 is best understood by working through some simple
examples. Table 3.2 provides the conjugate dual pair (A,A∗) for
several well-known exponential families of scalar random variables.
For each family, the table also lists Ω := domA, as well as the set M,
which contains the effective domain of A∗, corresponding to the set of
values for which A∗ is finite.

In the rest of this section, we illustrate the basic ideas by work-
ing through two simple scalar examples in detail. To be clear, neither
of these examples is interesting from a computational perspective —
indeed, for most scalar exponential families, it is trivial to compute the
mapping between canonical and mean parameters by direct methods.
Nonetheless, they are useful in building intuition for the consequences
of Theorem 3.4. The reader interested only in the main thread may
skip ahead to Section 3.7, where we resume our discussion of the role
of Theorem 3.4 in the derivation of approximate inference algorithms
for multivariate exponential families.

Example 3.10 (Conjugate Duality for Bernoulli). Consider a
Bernoulli variable X ∈ {0,1}: its distribution can be written as an expo-
nential family with φ(x) = x, A(θ) = log(1 + exp(θ)), and Ω = R. In
order to verify the claim in Theorem 3.4(a), let us compute the conju-
gate dual function A∗ by direct methods. By the definition of conjugate

r�(✓)

⇥

5.4 Nonconvexity of Mean Field 141

Fig. 5.3 Cartoon illustration of the set MF (G) of mean parameters that arise from tractable
distributions is a nonconvex inner bound on M(G). Illustrated here is the case of discrete
random variables where M(G) is a polytope. The circles correspond to mean parameters
that arise from delta distributions, and belong to both M(G) and MF (G).

a finite convex hull3

M(G) = conv{φ(e), e ∈ X m} (5.24)

in d-dimensional space, with extreme points of the form µe := φ(e) for
some e ∈ X m. Figure 5.3 provides a highly idealized illustration of this
polytope, and its relation to the mean field inner bound MF (G).

We now claim that MF (G) — assuming that it is a strict subset
of M(G) — must be a nonconvex set. To establish this claim, we first
observe that MF (G) contains all of the extreme points µx = φ(x) of
the polytope M(G). Indeed, the extreme point µx is realized by the
distribution that places all its mass on x, and such a distribution is
Markov with respect to any graph. Therefore, if MF (G) were a con-
vex set, then it would have to contain any convex combination of such
extreme points. But from the representation (5.24), taking convex com-
binations of all such extreme points generates the full polytope M(G).
Therefore, whenever MF (G) is a proper subset of M(G), it cannot be
a convex set.

Consequently, nonconvexity is an intrinsic property of mean field
approximations. As suggested by Example 5.4, this nonconvexity

3 For instance, in the discrete case when the sufficient statistics φ are defined by indicator
functions in the standard overcomplete basis (3.34), we referred to M(G) as a marginal
polytope.

90 Sum-Product, Bethe–Kikuchi, and Expectation-Propagation

Fig. 4.2 Highly idealized illustration of the relation between the marginal polytope M(G)
and the outer bound L(G). The set L(G) is always an outer bound on M(G), and the
inclusion M(G) ⊂ L(G) is strict whenever G has cycles. Both sets are polytopes and so can
be represented either as the convex hull of a finite number of extreme points, or as the
intersection of a finite number of half-spaces, known as facets.

Both sets are polytopes, and consequently can be represented either
as the convex hull of a finite number of extreme points, or as the inter-
section of a finite number of half-spaces, known as facets. Letting φ
be a shorthand for the full vector of indicator functions in the stan-
dard overcomplete representation (3.34), the marginal polytope has
the convex hull representation M(G) = conv{φ(x) | x ∈ X}. Since the
indicator functions are {0,1}-valued, all of its extreme points consist
of {0,1} elements, of the form µx := φ(x) for some x ∈ X m; there are
a total of |X m| such extreme points. However, with the exception of
tree-structured graphs, the number of facets for M(G) is not known
in general, even for relatively simple cases like the Ising model; see
the book [69] for background on the cut or correlation polytope, which
is equivalent to the marginal polytope for an Ising model. However,
the growth must be super-polynomial in the graph size, unless certain
widely believed conjectures in computational complexity are false.

On the other hand, the polytope L(G) has a polynomial number
of facets, upper bounded by any graph by O(rm + r2|E|). It has more
extreme points than M(G), since in addition to all the integral extreme
points {µx,x ∈ X m}, it includes other extreme points τ ∈ L(G)\M(G)
that contain fractional elements; see Section 8.4 for further discussion
of integral versus fractional extreme points. With the exception of trees
and small instances, the total number of extreme points of L(G) is not
known in general.

Variational Inference Objectives:
 Wainwright & Jordan, 2008


 Collapsed variational bounds

 Bethe and Kikuchi variational expansions

  Loop series expansions and cycle polytopes

  Fractional, reweighted, and convexified variational methods

 …


Variational Inference Algorithms:

 Coordinate ascent:  Pick one free parameter, fix others,  

take step towards improving objective

  For non-convex objectives, we need improved algorithms!




Why not MCMC? 
It’s asymptotically exact…




zn
�3

�1 �2

xn

MCMC for DP Mixtures

Can we sample from the posterior distribution over data clusterings?


Given any fixed partition z:

 Marginalize cluster frequencies via 

species sampling prediction rule  
(Chinese restaurant process)
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  Via conjugacy of base measure to 
exponential family likelihood, 
marginalize cluster shape parameters
 �k

Gibbs Sampler: (Neal 1992, MacEachern 1994)

Iteratively resample cluster assignment for one observation, fixing all others.
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Mixing for DP Mixture Samplers

MNIST:  60,000 digits projected to 50 dimensions via PCA. 


Log-probability
 Number of clusters


  Five random initializations from K=1, K=50, K=300 clusters

 Need good initialization for good results.  Can we do better?




MCMC for HDP-HMM Diarization
THE STICKY HDP-HMM 1053

FIG. 15. Trace plots of (a) log-likelihood, (b) Hamming distance error and (c) number of speakers
for 10 chains for two meetings: CMU_20050912-0900 / meeting 5 (top) and NIST_20051102-1323 /
meeting 16 (bottom). For meeting 5, which has behavior representative of the majority of the meet-
ings, we show traces over the 10,000 Gibbs iterations used for the results in Section 8. For meeting
16, we ran the chains out to 100,000 Gibbs iterations to demonstrate the especially slow mixing rate
for this meeting. The dashed blue vertical lines indicate 10,000 iterations.

where one does not have direct observations of the underlying state sequence, the
issues arising from not properly capturing state persistence are exacerbated. The
sticky HDP-HMM presented in this paper provides a robust building block for
developing more complex Bayesian nonparametric dynamical models.

Acknowledgments. We thank O. Vinyals, G. Friedland and N. Morgan for
helpful discussions about the NIST data set.

SUPPLEMENTARY MATERIAL

Supplement: Notational conventions, Chinese restaurant franchises and
derivations of Gibbs samplers (DOI: 10.1214/10-AOAS395SUPP; .pdf). We
present detailed derivations of the conditional distributions used for both the direct
assignment and blocked Gibbs samplers, as well as the associated pseudo-code.
The description of these derivations relies on the Chinese restaurant analogies
associated with the HDP and sticky HDP-HMM, which are expounded upon in

Blocked Gibbs sampler based on dynamic programming:
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GOAL:  Recover 
unknown set of 
people, and when 
each one spoke, 
from audio data


Fox, Sudderth, Jordan, & Willsky, AOAS 2011




Reversible Jump MCMC?


Fox, Hughes, Sudderth, & Jordan, AOAS 2014


JOINT MODELING OF MULTIPLE TIME SERIES VIA THE BETA PROCESS 1299

Beyond the DP mixture model setting, split-merge MCMC moves are not well
studied. Both Meeds et al. (2006) and Mørup, Schmidt and Hansen (2011) mention
adapting an RG procedure for relational models with latent features based on the
beta process. However, neither work provides details on constructing proposals,
and both lack experimental validation that split-merge moves improve inference.

7.2. Split-merge MCMC for the BP-AR-HMM. In standard mixture models,
such as considered by Jain and Neal (2004), a given data item i is associated
with a single cluster ki , so selecting two anchors i and j is equivalent to se-
lecting two cluster indices ki, kj . However, in feature-based models such as the
BP-AR-HMM, each data item i possesses a collection of features indicated by fi .
Therefore, our split-merge requires a mechanism not only for selecting anchors,
but also for choosing candidate features to split or merge from fi , fj . After propos-
ing modified feature vectors, the associated state sequences must also be updated.
Following the motivations for our data-driven birth–death proposals, our split-
merge proposals create new feature matrices F∗ and state sequences z∗, collapsing
away HMM parameters θ ,η. Figure 4 illustrates F and z before and after a split
proposal. Motivated by the efficiencies of sequential allocation [Dahl (2005)], we
adopt a sequential approach. Although a RG approach that samples all variables
(F, z, θ,η) is also possible and relatively straightforward, our experiments [Sup-
plement I of Fox et al. (2014)] show that our sequential collapsed proposals are
vastly preferred. Intuitively, constructing high acceptance rate proposals for θ ,η
can be very difficult since each behavior-specific parameter is high dimensional.

FIG. 4. Illustration of split-merge moves for the BP-AR-HMM, which alter binary feature matrix F
(white indicates present feature) and state sequences z. We show F, z before (top) and after (bottom)
feature km (yellow) is split into ka, kb (red, orange). An item possessing feature km can have either
ka, kb , or both after the split, and its new z sequence is entirely resampled using any features avail-
able in fi . An item without km cannot possess ka, kb , and its z does not change. Note that a split
move can always be reversed by a merge.

1282 FOX, HUGHES, SUDDERTH AND JORDAN

FIG. 1. Motivating data set: 6 sequences of motion capture data [CMU (2009)], with manual an-
notations. Top: Skeleton visualizations of 12 possible exercise behavior types observed across all
sequences. Middle left: Binary feature assignment matrix F produced by manual annotation. Each
row indicates which exercises are present in a particular sequence. Middle right: Discrete segmenta-
tions z of all six time series into the 12 possible exercises, produced by manual annotation. Bottom:
Sequence 2’s observed multivariate time series data. Motion capture sensors measure 12 joint angles
every 0.1 seconds. Proposed model: The BP-AR-HMM takes as input the observed time series sensor
data across multiple sequences. It aims to recover the global behavior set, the binary assignments F,
and the detailed segmentations z. When segmenting each sequence, our model only uses behaviors
which are present in the corresponding row of F.

This allows a combinatorial form of shrinkage involving subsets of behaviors from
a global collection.

A flexible yet simple method of describing single time series with such pat-
terned behaviors is the class of Markov switching processes. These processes as-
sume that the time series can be described via Markov transitions between a set

1306 FOX, HUGHES, SUDDERTH AND JORDAN

FIG. 5. Analysis of six MoCap sequences, comparing sampling methods. Baselines are reversible
jump proposals from the prior [Fox et al. (2009)], and split-merge moves interleaved with data-driven
proposals of continuous parameters (SM + cDD) [Hughes, Fox and Sudderth (2012)]. The proposed
sampler interleaves split-merge and data-driven discrete variable proposals (SM + zDD), with and
without annealing. Top row: Log-probability and Hamming distance for 25 runs of each method
over 10 hours. Bottom row: Estimated state sequence z for three fragments from distinct sequences
that humans label “arm circles” (left) or “jogging” (right). Each recovered feature is depicted by
one unique color and letter. We compare segmentations induced by the most probable samples from
the annealed SM + zDD (top) and Prior Rev. Jump (bottom) methods. The latter creates extraneous
features.

Rev. Jump algorithm rarely creates meaningful new features from this simple ini-
tialization, so instead we initialize with five unique features per sequence as recom-
mended in Fox et al. (2009). The results are summarized in Figure 5. We plot traces
of the joint log probability of data and sampled variables, p(y,F, z,α, c,γ ,κ),
versus elapsed wall-clock time. By collapsing out the continuous HMM param-
eters θ ,η, the marginalized form allows direct comparison of configurations de-
spite possible differences in the number of instantiated features [see Supplement C
of Fox et al. (2014) for computation details]. We also plot the temporal evolution
of the normalized Hamming distance between the sampled segmentation z and
the human-provided ground truth annotation, using the optimal alignment of each
“true” state to a sampled feature. Normalized Hamming distance measures the
fraction of time steps where the labels of the ground-truth and estimated segmen-
tations disagree. To compute the optimal (smallest Hamming distance) alignment
of estimated and true states, we use the Hungarian algorithm.

With respect to both the log-probability and Hamming distance metrics, we find
that our SM + zDD inference algorithm with annealing yields the best results.
Most SM + zDD runs using annealing (blue curves) converge to regions of good
segmentations (in terms of Hamming distance) in under two hours, while no run of
the Prior Rev. Jump proposals (teal curves) comes close after ten hours. This indi-
cates the substantial benefit of using a data-driven proposal for adding new features

Sequentially allocated split-merge RJ-MCMC for BP-HMM:


Correct MCMC proposals versus annealed acceptance ratio.  
Combinatorial factors overwhelming for big datasets!
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Stochastic Variational Inference

Hoffman, Blei, Paisley, & Wang, JMLR 2013
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Properties of stochastic inference:

+  Per-iteration cost is low

+  Initial progress is rapid


-  Objective is highly non-convex,  
so convergence guarantee is weak


-  Sensitivity to batch size & learning rate




Memoized Variational Inference

Hughes & Sudderth, NIPS 2013; Neal & Hinton 1999


Data


x(BB)

x(B2)

x(B1)

Memoization:   Storage (caching) of results of previous computations 


x(Bb)
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...

Properties of memoized inference:

+  Per-iteration cost is low

+  Initial progress is rapid

+  Insensitive to batch size, no learning rate

-  Requires storage proportional to number of 

batches (NOT number of observations)
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Memoized Variational Inference

Hughes & Sudderth, NIPS 2013; Neal & Hinton 1999


Data


x(BB)

x(B2)

x(B1)

Memoization:   Storage (caching) of results of previous computations 


x(Bb)

...

...

An Inspiration:

A Stochastic Gradient Method with an 
Exponential Convergence Rate for 
Strongly-Convex Optimization with 
Finite Training Sets.  N. Le Roux,  
M. Schmidt, F. Bach, NIPS 2012.


For cluster k = 1, 2, … K:
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Memoized Cluster Merges


rnkm rnka + rnkb
s0km
 s0ka

+ s0kb

 New cluster takes over all responsibility for data assigned to old clusters:


Merge two clusters into one for parsimony, accuracy, efficiency.


�ka

�kb

�km

 Accept or reject via exact full-dataset likelihood bound:
 L(qmerge) > L(q)?
 No batch processing required, efficiently evaluate via memoized statistics


Requires memoized entropy sums for candidate pairs of clusters;  
efficient implementation limits overhead.




Memoized Cluster Births
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GOAL:  Effective & efficiently verifiable cluster creation for general likelihoods.  




Clustering Handwritten Digits

MNIST:  60,000 digits projected to 50 dimensions via PCA. 
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Learning rate schedules 

Memoized birth-merge from K=1 has  
highest accuracy while using fewer clusters.


Batch, memoized, & memoized birth-merge

Stochastic variational:  Rate a, Rate b, Rate c

Kurihara:  Accelerated variational, NIPS 2006




MNIST:  Variational versus Gibbs


Gibbs: Log-probability
 Gibbs: Number of clusters


  Five random initializations from K=1, K=50, K=300 clusters

 Diagonal-covariance Gaussians (change from previous slides)


Memoized birth-merge:  
Log-likelihood bound


Memoized birth-merge:  
Number of clusters


Gap:  Tiny clusters




Clustering Image Patches

8x8 Image Patches (BSDS):   N=1.88 million
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  Memoized birth-merge allows growth in model complexity

  Effective performance as density model for image denoising




Memoized Variational Inference for 
Hierarchial DP Topic Models


Michael Hughes, Dae Il Kim, & E. Sudderth




Hierarchical DP Topic Model

Generalization of Latent Dirichlet Allocation (LDA, Blei 2003) by Teh et al. JMLR 2006. 
Dependent Dirichlet process (DDP, MacEachern 1999) with group-specific weights.


�k = uk
Qk�1

`=1 (1� u`)

 Global topic frequencies and parameters:

uk ⇠ Beta(1, �)

�k ⇠ Dirichlet(�0) (sparse)


 For each of Nd words in document d:

  Topic assignment:

 Observed value:


zdn ⇠ Cat(⇡d)
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 For each of D documents (groups):

  Topic frequencies:
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Variational Learning of HDP Topics
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  For some current number of active topics K:


  A DP induces a finite Dirichlet distribution on  
any finite partition.  We consider K+1 events:


Document-Topic Distributions:


(⇡d1,⇡d2, . . . ,⇡dK ,⇡d+) ⇠ Dir(↵,�)

  Probabilities of K active topics, and infinite tail
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Figure 1: Left: Directed graphical model representation
of an HDP admixture model (Sec. 2). Free parameters
for mean-field variational inference (Sec. 3) shown in red.
Top Right: Comparison of variational objectives resulting
from different choices for q(u) on the empty topic model
selection task of Sec. 3.2. Bottom Right: Illustration of the
tight lower bound − log Γ(x) ≥ log(x), which enables our
tractable surrogate objective for the HDP in Eq. (12).

To discover themes or topics common to all groups,
while capturing group-specific variability in topic us-
age, we use the HDP admixture model (Teh et al.,
2006) of Fig. 1. The HDP uses group-specific frequen-
cies to cluster token into an a priori unbounded set of
topics. To generate each token, a global topic (indexed
by integer k) is first drawn, and an observation is then
sampled from the likelihood distribution for topic k.
Topic-specific data generation. HDP admixtures
are applicable to any real or discrete data for which an
appropriate exponential family likelihood is available.
Data assigned to topic k is generated from a distribu-
tion F with parameters φk, and conjugate prior H :

F :

H :

log p(xdn|φk) = sF (xdn)
Tφk + cF (φk),

log p(φk|τ̄ ) = φTk τ̄ + cH(τ̄ ).

Here cH and cF are cumulant functions, and sF (xdn)
is a sufficient statistic vector. For discrete data x, F
is multinomial and H is Dirichlet. For real-valued x,
we take F to be Gaussian and H Normal-Wishart.
Allocating topics to tokens. Each topic k is de-
fined by two global variables: the data-generating
exponential family parameters φk, and a frequency
weight uk. Each scalar 0 < uk < 1 defines the condi-
tional probability of sampling topic k, given that the
first k − 1 topics were not sampled:

uk ∼ Beta(1, γ), βk ! uk

∏k−1
!=1 (1−u!). (1)

This stick-breaking process (Sethuraman, 1994; Blei
and Jordan, 2006) transforms {u!}k!=1 to define the
marginal probability βk of selecting topic k.

Each group or document has unique topic frequencies
πd = [πd1, . . . ,πdk, . . .], where the HDP prior induces a
finite Dirichlet distribution on the firstK probabilities:

[πd1 . . . πdK πd>K ] ∼ Dir(αβ1, . . .αβK ,αβ>K). (2)
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Figure 2: Top : Outline of one pass of our memoized infer-
ence algorithm (Sec. 4), with focus on sufficient statistics.
Bottom: Diagrams for merge and delete proposals.

This implies that πd has mean β, and variance de-
termined by the concentration parameter α. The sub-
script >K denotes the aggregate mass of all topics with
indices larger than K, so that β>K !

∑∞
!=K+1 β!.

To generate token n in document d, the model first
draws a topic assignment zdn ∼ Cat(πd), where integer
zdn ∈ {1, 2, . . .} indicates the chosen topic k. Second,
we draw the observed token xdn from density F , using
the parameter φk indicated by zdn.

3 VARIATIONAL INFERENCE

Given observed data x, we seek to learn global topic
parameters u,φ and local document structure πd, zd.
Taking an optimization approach (Wainwright and
Jordan, 2008), we seek an approximate distribution
q over these variables that is as close as possible to
the true, intractable posterior in KL divergence but
belongs to a simpler, fully factorized family q(·) =
q(u)q(φ)q(π)q(z) of exponential family densities.

Previous variational methods for HDP topic mod-
els (Wang et al., 2011) have employed a Chinese
restaurant franchise (CRF) model representation (Teh
et al., 2006). Here each document has its own lo-
cal topics (“tables” in the CRF metaphor), a stick-
breaking prior on their frequencies of occurrence, and
latent categorical variables linking each table to some
global cluster. With this expanded set of highly-
coupled latent variables, the factorizations inherent in
mean field variational methods induce many local op-
tima. Storage and optimization of the corresponding
variational parameters is also computationally inten-
sive. We thus develop an alternative bound based on

Global Topic Frequencies: Beta posteriors
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Figure 1: Left: Directed graphical model representation
of an HDP admixture model (Sec. 2). Free parameters
for mean-field variational inference (Sec. 3) shown in red.
Top Right: Comparison of variational objectives resulting
from different choices for q(u) on the empty topic model
selection task of Sec. 3.2. Bottom Right: Illustration of the
tight lower bound − log Γ(x) ≥ log(x), which enables our
tractable surrogate objective for the HDP in Eq. (12).

To discover themes or topics common to all groups,
while capturing group-specific variability in topic us-
age, we use the HDP admixture model (Teh et al.,
2006) of Fig. 1. The HDP uses group-specific frequen-
cies to cluster token into an a priori unbounded set of
topics. To generate each token, a global topic (indexed
by integer k) is first drawn, and an observation is then
sampled from the likelihood distribution for topic k.
Topic-specific data generation. HDP admixtures
are applicable to any real or discrete data for which an
appropriate exponential family likelihood is available.
Data assigned to topic k is generated from a distribu-
tion F with parameters φk, and conjugate prior H :

F :

H :

log p(xdn|φk) = sF (xdn)
Tφk + cF (φk),

log p(φk|τ̄ ) = φTk τ̄ + cH(τ̄ ).

Here cH and cF are cumulant functions, and sF (xdn)
is a sufficient statistic vector. For discrete data x, F
is multinomial and H is Dirichlet. For real-valued x,
we take F to be Gaussian and H Normal-Wishart.
Allocating topics to tokens. Each topic k is de-
fined by two global variables: the data-generating
exponential family parameters φk, and a frequency
weight uk. Each scalar 0 < uk < 1 defines the condi-
tional probability of sampling topic k, given that the
first k − 1 topics were not sampled:

uk ∼ Beta(1, γ), βk ! uk

∏k−1
!=1 (1−u!). (1)

This stick-breaking process (Sethuraman, 1994; Blei
and Jordan, 2006) transforms {u!}k!=1 to define the
marginal probability βk of selecting topic k.

Each group or document has unique topic frequencies
πd = [πd1, . . . ,πdk, . . .], where the HDP prior induces a
finite Dirichlet distribution on the firstK probabilities:

[πd1 . . . πdK πd>K ] ∼ Dir(αβ1, . . .αβK ,αβ>K). (2)

for each batch b: 
update all docs in b 

Merge Delete 

token-topic 
assignments 

doc-topic 
parameters 

!"
#$
%

&"'(#$%

!"
#$
%

θ̂

summarize batch 
topic usage counts topic 

log prob. 

update global summaries 

update global parameters 

N
b

T
b

S
b topic data stats 

ρ̂ ω̂τ̂

T
)*&%

'+&%

,"-).&*/0%
1&"/2)*%

N
b

T
b

S
bN+=N b

N-=N b
old

topic  
data-generation 

topic  
appearance 

[N1 N2 N3]

[N ′

1 N ′

2] [N ′

1 N ′

2]
[N1 N2 N3]

N S

&"'(#$%

!"
#$
%

r̂
x

!"#$%"&
'&()*+&

"#,%"&
*&()*+&

E step 
M step 

[N ′

1 N ′

2]

x
′

target dataset 

current%
proposal%

Figure 2: Top : Outline of one pass of our memoized infer-
ence algorithm (Sec. 4), with focus on sufficient statistics.
Bottom: Diagrams for merge and delete proposals.

This implies that πd has mean β, and variance de-
termined by the concentration parameter α. The sub-
script >K denotes the aggregate mass of all topics with
indices larger than K, so that β>K !

∑∞
!=K+1 β!.

To generate token n in document d, the model first
draws a topic assignment zdn ∼ Cat(πd), where integer
zdn ∈ {1, 2, . . .} indicates the chosen topic k. Second,
we draw the observed token xdn from density F , using
the parameter φk indicated by zdn.

3 VARIATIONAL INFERENCE

Given observed data x, we seek to learn global topic
parameters u,φ and local document structure πd, zd.
Taking an optimization approach (Wainwright and
Jordan, 2008), we seek an approximate distribution
q over these variables that is as close as possible to
the true, intractable posterior in KL divergence but
belongs to a simpler, fully factorized family q(·) =
q(u)q(φ)q(π)q(z) of exponential family densities.

Previous variational methods for HDP topic mod-
els (Wang et al., 2011) have employed a Chinese
restaurant franchise (CRF) model representation (Teh
et al., 2006). Here each document has its own lo-
cal topics (“tables” in the CRF metaphor), a stick-
breaking prior on their frequencies of occurrence, and
latent categorical variables linking each table to some
global cluster. With this expanded set of highly-
coupled latent variables, the factorizations inherent in
mean field variational methods induce many local op-
tima. Storage and optimization of the corresponding
variational parameters is also computationally inten-
sive. We thus develop an alternative bound based on
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HDP Representations
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Figure 2.28. Directed graphical representations of a hierarchical Dirichlet process (HDP) mixture
model. Global cluster weights β ∼ GEM(γ) follow a stick–breaking process, while cluster parameters
are assigned independent priors θk ∼ H(λ). Left: Explicit stick–breaking representation, in which
each group reuses the global clusters with weights πj ∼ DP(α, β). zji ∼ πj indicates the cluster
that generates xji ∼ F (θzji). Right: Alternative distributional form, in which G0 ∼ DP(γ, H) is an
infinite discrete distribution on Θ, and Gj ∼ DP(α, G0) a reweighted, group–specific distribution.
θ̄ji ∼ Gj are then the parameters of the cluster that generates xji ∼ F (θ̄ji). We illustrate with a
shared, infinite Gaussian mixture, where cluster variances are known (bottom) and H(λ) is a Gaussian
prior on cluster means (top). Sampled cluster means θ̄j1, θ̄j2, and corresponding Gaussians, are shown
for two observations xj1, xj2 in each of two groups G1, G2.

measures on the positive integers [289]. Thus, β determines the average weight of local
clusters (E[πjk] = βk), while α controls the variability of cluster weights across groups.
Note that eq. (2.202) suggests the alternative graphical model of Fig. 2.28, in which
zji ∼ πj directly indicates the global cluster associated with xji. In contrast, Fig. 2.29
indirectly determines global cluster assignments via local clusters, taking zji = kjtji .

Comparing these representations to Fig. 2.11, we see that HDPs share clusters as
in the LDA model, but remove the need for model order selection. In terms of the
DDP framework, the global measure G0 provides a particular, convenient mechanism
for inducing dependencies among the mixture weights in different groups. Note that
the discreteness of G0 plays a critical role in this construction. If, for example, we had
instead taken Gj ∼ DP(α, H) with H continuous, the stick–breaking construction of
Thm. 2.5.3 shows that groups would learn independent sets of disjoint clusters.

Extending the analogy of Fig. 2.23, we may alternatively formulate the HDP rep-
resentation of Fig. 2.29 in terms of a Chinese restaurant franchise [289]. In this inter-
pretation, each group defines a separate restaurant in which customers (observations)
xji sit at tables (clusters) tji. Each table shares a single dish (parameter) θ̃t, which is
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Figure 2.29. Chinese restaurant franchise representation of the HDP model of Fig. 2.28. Left: Global
cluster parameters are assigned independent priors θk ∼ H(λ), and reused by groups with frequencies
β ∼ GEM(γ). Each group j has infinitely many local clusters (tables) t, which are associated with a
single global cluster kjt ∼ β. Observations (customers) xji are independently assigned to some table
tji ∼ eπj , and thus indirectly associated with the global cluster (dish) θzji , where zji = kjtji . Right:
Example in which a franchise menu with dishes θk (squares, center) is shared among tables (circles, top
and bottom) in two different restaurants (groups). All customers (diamonds) seated at a given table
share the same dish (global cluster parameter).

ordered from a menu G0 shared among restaurants (groups). As before, let kjt indicate
the global parameter θkjt

assigned to table t in group j, and kj the parameters for all
of that group’s tables. We may then integrate over G0 and Gj (as in eq. (2.181)) to
find the conditional distributions of these indicator variables:

p(tji | tj1, . . . , tji−1, α) ∝
∑

t

Njtδ(tji, t) + αδ(tji, t̄) (2.203)

p(kjt | k1, . . . ,kj−1, kj1, . . . , kjt−1, γ) ∝
∑

k

Mkδ(kjt, k) + γδ(kjt, k̄) (2.204)

Here, Mk is the number of tables previously assigned to θk, and Njt the number of
customers already seated at the tth table in group j. As before, customers prefer tables t
at which many customers are already seated (eq. (2.203)), but sometimes choose a new
table t̄. Each new table is assigned a dish kjt̄ according to eq. (2.204). Popular dishes
are more likely to be ordered, but a new dish θk̄ ∼ H may also be selected.

The stick–breaking (Fig. 2.28) and Chinese restaurant franchise (Fig. 2.29) repre-
sentations provide complementary perspectives on the HDP. In particular, they have
each been used to design Monte Carlo methods which infer shared clusters from training

HDP Direct 
Assignment


HDP Chinese 
Restaurant Franchise


By introducing extra latent variables, the CRF:

+ Makes all conditionals conjugate, closed-form inference

-  Additional variables have very strong dependencies

-  For both Gibbs and variational: slower, more local optima




Toy Dataset: Bar Topics

10 Bar Topics:


Example Docs:


generative model 


Can we recover 10  
true topics from 1000 
observed documents?


900 vocabulary symbols

arranged as 30x30 image,

one pixel per word


high 
probability


low

probability




Toy Dataset: Bar Topics

Gibbs sampler 


K=67 topics

Fixed-truncation variational


K=100 topics


 Both methods produce far too many topics!

 Need merge and delete moves to find a compact set.
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 junk
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 junk
 junk
 junk
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topics 
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Toy Dataset: Bar Topics

Memoized fixed-truncation


K=100 topics




Memoized + merges, deletes

initial K=100 ! final K=10
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Figure 4: Left: Initial topics estimated by spectral algorithm (Arora et al., 2013) can change drastically after many
variational updates. Center: Example accepted topic pairs for merge moves on Wikipedia. Each pair is combined into
one topic to save space. Right: Example accepted deletion. Red topic is rarely used and lacks clear semantic focus.
Removing this topic and reassigning its mass to remaining topics improves model quality and interpretability.

by combining two topics in a single merged topic. Dur-
ing each pass we consider several candidate pairs. For
each pair ! < m, we imagine simply pooling together
all tokens assigned to either topic ! or m in the original
model to create topic ! in q′. All other parameters are
copied over unchanged. Formally,

r̂′dn! = r̂dn! + r̂dnm, ∀d, n θ̂′d! = θ̂d! + θ̂dm, ∀d (20)

A standard global update to create τ̂ ′, ρ̂′ completes the
candidate. After this one-step construction, we assess
the objective L(·) and keep q′ if it improves.

For large datasets, explicitly retaining both r̂ and r̂′

via Eq. (20) is prohibitive. Instead, we can exploit ad-
ditive statistics to rapidly evaluate a proposed merge.
Eq. (20) implies that S′

! = S!+Sm and N ′
! = N!+Nm.

This allows constructing candidate τ̂ ′ values and eval-
uating Ldata without visiting any batches.

Not all relevant statistics needed for global updates
or ELBO evaluation can be computed in this way, so
some modest tracking must occur. For each candidate
merge, we must compute T ′b

! from Eq. (17) as well
as the ELBO statistics G′b

! , Q
′b
! from Eq. (18) at each

batch. Finally, we must track the entropy Hz for each
candidate pair, as did Hughes and Sudderth (2013).

Each merge move unfolds throughout a single lap.
First, we select candidate pairs to track using an em-
pirical correlation score (Bryant and Sudderth, 2012).

score(!,m) = Corr(N:!, N:m), −1 < score < 1 (21)

This score is computable via incremental updates and
provides a strong, interpretable signal for selecting
merge pairs. In practice, before each pass we select
at most 50 pairs to track with score above 0.05.

Next, we visit each batch in order, tracking relevant
merge summaries during standard memoized updates.
Finally, we evaluate each candidate using both tracked
summaries and additive summaries, accepting or re-
jecting as needed. Many merges can be accepted after
each lap, so long as no two share a topic in common.

5.2 Delete moves

Delete moves provide a more powerful alternative to
merges for removing rare junk topics. For an illustra-
tion of an accepted delete move on Wikipedia data, see
Fig. 4. After identifying a candidate topic with small
mass to delete, we perform several local-global updates
to reassign all tokens to the remaining topics, and then
accept if the objective L(·) improves. This move can
succeed when a merge would fail because each docu-
ment’s tokens can be reassigned in a customized way,
as shown in Fig. 4.

To make this move scalable for our memoized algo-
rithm, we identify a candidate delete topic j in advance
and collect a target dataset x′ of all documents which
use selected topic j significantly: {d : Ndj > 0.01}.
Given the target set, we initialize candidate sufficient
statistics by simply removing entries associated with
topic j as shown in Fig. 2. From this initialization,
we run several local-global updates on the target and
then accept the move if the target’s variational objec-
tive L(·) improves. Further details can be found in
the Supplement. To be sure of deleting a topic, the
target set x′ must contain all documents which pass
our threshold test. Thus, deletes are only applicable to
topics of below some critical size to remain affordable.
We set a maximum budget of 500 documents for the
target dataset size in our topic modeling experiments.

6 EXPERIMENTS

We evaluate our HDP objective optimized via mem-
oized inference with fixed-truncation (MOfix), mem-
oized with delete and merge moves (MOdm), and
stochastic inference (SOfix). For topic models, we
compare against the collapsed Gibbs sampler (Gibbs)
of Teh et al. (2006), the CRF stochastic inference (crf-
SOfix) of Wang et al. (2011), and the stochastic split-
merge method (SOsm) of Bryant and Sudderth (2012).
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Figure 4: Left: Initial topics estimated by spectral algorithm (Arora et al., 2013) can change drastically after many
variational updates. Center: Example accepted topic pairs for merge moves on Wikipedia. Each pair is combined into
one topic to save space. Right: Example accepted deletion. Red topic is rarely used and lacks clear semantic focus.
Removing this topic and reassigning its mass to remaining topics improves model quality and interpretability.

by combining two topics in a single merged topic. Dur-
ing each pass we consider several candidate pairs. For
each pair ! < m, we imagine simply pooling together
all tokens assigned to either topic ! or m in the original
model to create topic ! in q′. All other parameters are
copied over unchanged. Formally,

r̂′dn! = r̂dn! + r̂dnm, ∀d, n θ̂′d! = θ̂d! + θ̂dm, ∀d (20)

A standard global update to create τ̂ ′, ρ̂′ completes the
candidate. After this one-step construction, we assess
the objective L(·) and keep q′ if it improves.

For large datasets, explicitly retaining both r̂ and r̂′

via Eq. (20) is prohibitive. Instead, we can exploit ad-
ditive statistics to rapidly evaluate a proposed merge.
Eq. (20) implies that S′

! = S!+Sm and N ′
! = N!+Nm.

This allows constructing candidate τ̂ ′ values and eval-
uating Ldata without visiting any batches.

Not all relevant statistics needed for global updates
or ELBO evaluation can be computed in this way, so
some modest tracking must occur. For each candidate
merge, we must compute T ′b

! from Eq. (17) as well
as the ELBO statistics G′b

! , Q
′b
! from Eq. (18) at each

batch. Finally, we must track the entropy Hz for each
candidate pair, as did Hughes and Sudderth (2013).

Each merge move unfolds throughout a single lap.
First, we select candidate pairs to track using an em-
pirical correlation score (Bryant and Sudderth, 2012).

score(!,m) = Corr(N:!, N:m), −1 < score < 1 (21)

This score is computable via incremental updates and
provides a strong, interpretable signal for selecting
merge pairs. In practice, before each pass we select
at most 50 pairs to track with score above 0.05.

Next, we visit each batch in order, tracking relevant
merge summaries during standard memoized updates.
Finally, we evaluate each candidate using both tracked
summaries and additive summaries, accepting or re-
jecting as needed. Many merges can be accepted after
each lap, so long as no two share a topic in common.

5.2 Delete moves

Delete moves provide a more powerful alternative to
merges for removing rare junk topics. For an illustra-
tion of an accepted delete move on Wikipedia data, see
Fig. 4. After identifying a candidate topic with small
mass to delete, we perform several local-global updates
to reassign all tokens to the remaining topics, and then
accept if the objective L(·) improves. This move can
succeed when a merge would fail because each docu-
ment’s tokens can be reassigned in a customized way,
as shown in Fig. 4.

To make this move scalable for our memoized algo-
rithm, we identify a candidate delete topic j in advance
and collect a target dataset x′ of all documents which
use selected topic j significantly: {d : Ndj > 0.01}.
Given the target set, we initialize candidate sufficient
statistics by simply removing entries associated with
topic j as shown in Fig. 2. From this initialization,
we run several local-global updates on the target and
then accept the move if the target’s variational objec-
tive L(·) improves. Further details can be found in
the Supplement. To be sure of deleting a topic, the
target set x′ must contain all documents which pass
our threshold test. Thus, deletes are only applicable to
topics of below some critical size to remain affordable.
We set a maximum budget of 500 documents for the
target dataset size in our topic modeling experiments.

6 EXPERIMENTS

We evaluate our HDP objective optimized via mem-
oized inference with fixed-truncation (MOfix), mem-
oized with delete and merge moves (MOdm), and
stochastic inference (SOfix). For topic models, we
compare against the collapsed Gibbs sampler (Gibbs)
of Teh et al. (2006), the CRF stochastic inference (crf-
SOfix) of Wang et al. (2011), and the stochastic split-
merge method (SOsm) of Bryant and Sudderth (2012).

Manuscript under review by AISTATS 2015

0.009 ball 
0.008 university 
0.007 says 
0.006 science 
0.006 new 

0.018 model 
0.013 computer 
0.012 models 
0.011 problem 
0.010 time 

Spectral 

0.022 birds 
0.009 new 
0.009 university 
0.009 says 
0.007 years 

0.017 silicate 
0.010 metal 
0.010 high 
0.009 melt 
0.007 water 

0.019 birds 
0.018 evolution 
0.016 evolutionary 
0.012 species 
0.010 molecular 

0.016 isotopic 
0.013 composition 
0.012 ratios 
0.012 isotope 
0.012 silicate 

 + Variational 

10 
passes 

thru 
dataset 

   674.2   series 
   629.5   song 
   573.5   release 
   519.8   star 
   489.1   television 
   388.1   york 
   385.0   award 
   371.4   friend 

   734.1   film 
   354.8   magazine 
   328.0   direct 
   313.2   production 
   296.1   actor 
   281.8   career 
   269.7   hollywood 
   268.2   appeared 

 1092.4   language 
   364.4   latin 
   345.5   letter 
   332.4   dialect 
   303.7   speak 
   296.1   speaker 
   290.7   sound 
   265.4   verb 

  154.7   linguistic 
  137.9   linguist 
  122.5   language 
  122.4   speech 
  103.1   linguistics 
  100.9   grammatical 
    75.1   pronunciation 
    71.7   suffix 

Accepted Merge Correlation Score 0.79!

Correlation Score 0.54!Accepted Merge 
100.4   engineering 
  84.9   science 
  64.5   computer 
  53.0   field 
  50.1   machine 
  49.8   mechanical 
  42.9   scientific 
  42.0   discipline 
  39.8   analysis 
  39.3   mathematics 

  32682 
math 
function 
theorem 
define 
theory 
property 

Accepted Delete 

Size: 4611 tokens 

  21165 
science 
theory 
scientific 
mathematics 
scientist 
research 

  69562 
process 
theory 
human 
information 
method 
approach 

  58392 
design 
engine 
build 
speed 
drive 
reduce 

  32612 
code 
language 
computer 
program 
programming 
machine 

Tokens from deleted topic 
reassigned to remaining topics, 
in document-specific fashion. 

16.05   42.78    17.56     19.09     7.11 
 
 9.43   40.88     0        20.61    11.29 
 
 0       0        0        35.86     0    
 
 3.77   36.10    30.63     16.70     0    
 

doc A 

Net change in doc-topic count            after delete Ndk

doc B 

doc C 

doc D 

Figure 4: Left: Initial topics estimated by spectral algorithm (Arora et al., 2013) can change drastically after many
variational updates. Center: Example accepted topic pairs for merge moves on Wikipedia. Each pair is combined into
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by combining two topics in a single merged topic. Dur-
ing each pass we consider several candidate pairs. For
each pair ! < m, we imagine simply pooling together
all tokens assigned to either topic ! or m in the original
model to create topic ! in q′. All other parameters are
copied over unchanged. Formally,

r̂′dn! = r̂dn! + r̂dnm, ∀d, n θ̂′d! = θ̂d! + θ̂dm, ∀d (20)

A standard global update to create τ̂ ′, ρ̂′ completes the
candidate. After this one-step construction, we assess
the objective L(·) and keep q′ if it improves.

For large datasets, explicitly retaining both r̂ and r̂′

via Eq. (20) is prohibitive. Instead, we can exploit ad-
ditive statistics to rapidly evaluate a proposed merge.
Eq. (20) implies that S′

! = S!+Sm and N ′
! = N!+Nm.

This allows constructing candidate τ̂ ′ values and eval-
uating Ldata without visiting any batches.

Not all relevant statistics needed for global updates
or ELBO evaluation can be computed in this way, so
some modest tracking must occur. For each candidate
merge, we must compute T ′b

! from Eq. (17) as well
as the ELBO statistics G′b

! , Q
′b
! from Eq. (18) at each

batch. Finally, we must track the entropy Hz for each
candidate pair, as did Hughes and Sudderth (2013).

Each merge move unfolds throughout a single lap.
First, we select candidate pairs to track using an em-
pirical correlation score (Bryant and Sudderth, 2012).

score(!,m) = Corr(N:!, N:m), −1 < score < 1 (21)

This score is computable via incremental updates and
provides a strong, interpretable signal for selecting
merge pairs. In practice, before each pass we select
at most 50 pairs to track with score above 0.05.

Next, we visit each batch in order, tracking relevant
merge summaries during standard memoized updates.
Finally, we evaluate each candidate using both tracked
summaries and additive summaries, accepting or re-
jecting as needed. Many merges can be accepted after
each lap, so long as no two share a topic in common.

5.2 Delete moves

Delete moves provide a more powerful alternative to
merges for removing rare junk topics. For an illustra-
tion of an accepted delete move on Wikipedia data, see
Fig. 4. After identifying a candidate topic with small
mass to delete, we perform several local-global updates
to reassign all tokens to the remaining topics, and then
accept if the objective L(·) improves. This move can
succeed when a merge would fail because each docu-
ment’s tokens can be reassigned in a customized way,
as shown in Fig. 4.

To make this move scalable for our memoized algo-
rithm, we identify a candidate delete topic j in advance
and collect a target dataset x′ of all documents which
use selected topic j significantly: {d : Ndj > 0.01}.
Given the target set, we initialize candidate sufficient
statistics by simply removing entries associated with
topic j as shown in Fig. 2. From this initialization,
we run several local-global updates on the target and
then accept the move if the target’s variational objec-
tive L(·) improves. Further details can be found in
the Supplement. To be sure of deleting a topic, the
target set x′ must contain all documents which pass
our threshold test. Thus, deletes are only applicable to
topics of below some critical size to remain affordable.
We set a maximum budget of 500 documents for the
target dataset size in our topic modeling experiments.

6 EXPERIMENTS

We evaluate our HDP objective optimized via mem-
oized inference with fixed-truncation (MOfix), mem-
oized with delete and merge moves (MOdm), and
stochastic inference (SOfix). For topic models, we
compare against the collapsed Gibbs sampler (Gibbs)
of Teh et al. (2006), the CRF stochastic inference (crf-
SOfix) of Wang et al. (2011), and the stochastic split-
merge method (SOsm) of Bryant and Sudderth (2012).
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Figure 6: Topic modeling algorithm comparisons from Sec. 6.2. Line style indicates initial number of topics K: 100 is dots
(:), 200 is solid (-), 400 is dashed (--,NYTimes only). Top: Heldout likelihood vs. training data seen. Bottom: Traces of
predictive power vs. number of active topics K during training. Solid dot indicates final result of each algorithm.

set of the more-scalable algorithms. Here, both crfSO
and our SOfix have similar performance, though our
implementation can complete many more laps given
the same time budget. Our memoized algorithm con-
tinues to improve from 200 spectral topics over 10 full
laps, but seems to overfit at 400 topics. No deletes or
merges are accepted here, likely because at this scale
we are using too few topics. However, the acceptance
rate of sparsity-promoting restarts is 75%.

6.3 Image patch modeling.

Finally, we study 8 × 8 patches from grayscale natu-
ral images, inspired by Zoran and Weiss (2012). We
train on 3.5 million patches from 400 Berkeley Seg-
mentation images, comparing HDP admixtures to flat
Dirichlet process mixtures using a zero-mean Gaussian
likelihood. Both methods are evaluated on 50 heldout
images scored via Eq. (22). We expect our HDP ap-
proach to dominate, because it can customize topic
weights πd for each image during training and test-
ing, while the DP mixture must use the same mixture
model for all images.

Fig. 7 shows merges and deletes successfully removing
topics while improving performance, justifying gener-
ality beyond topic models. Further, the HDP shows
improved prediction scores over the flat DP mixture.
We illustrate this success by plotting sample patches
from the top 4 topics in appearance probability for sev-
eral heldout images. The HDP adapts to favor smooth
patches for smooth images (d) and textured patches
for richer images (e-f), while the less-flexible DP must

(c) (b) (a) 

(d) (e) (f) 

Figure 7: Comparison of DP mixtures and HDP admix-
tures on 3M 8x8 image patches from Sec. 6.3. (a-b) Trace
plots of model complexity and predictive performance. (c)
Patches from the top 4 estimated DP clusters. Each col-
umn shows 6 stacked 8 × 8 sample patches. (d-f) Patches
from 4 top-ranked HDP topics for select test images.

always place weight on both types of patches (c).

7 CONCLUSION

We have developed a novel variational algorithm en-
abling discovery of compact, interpretable HDP mod-
els from millions of examples. Our objective is ap-
plicable to any exponential family likelihood and our
novel bounds could prove useful for other sequential or
relational models based on the HDP.

 On small-to-medium datasets, match or beat performance of 
MCMC with orders of magnitude less computation
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set of the more-scalable algorithms. Here, both crfSO
and our SOfix have similar performance, though our
implementation can complete many more laps given
the same time budget. Our memoized algorithm con-
tinues to improve from 200 spectral topics over 10 full
laps, but seems to overfit at 400 topics. No deletes or
merges are accepted here, likely because at this scale
we are using too few topics. However, the acceptance
rate of sparsity-promoting restarts is 75%.

6.3 Image patch modeling.

Finally, we study 8 × 8 patches from grayscale natu-
ral images, inspired by Zoran and Weiss (2012). We
train on 3.5 million patches from 400 Berkeley Seg-
mentation images, comparing HDP admixtures to flat
Dirichlet process mixtures using a zero-mean Gaussian
likelihood. Both methods are evaluated on 50 heldout
images scored via Eq. (22). We expect our HDP ap-
proach to dominate, because it can customize topic
weights πd for each image during training and test-
ing, while the DP mixture must use the same mixture
model for all images.

Fig. 7 shows merges and deletes successfully removing
topics while improving performance, justifying gener-
ality beyond topic models. Further, the HDP shows
improved prediction scores over the flat DP mixture.
We illustrate this success by plotting sample patches
from the top 4 topics in appearance probability for sev-
eral heldout images. The HDP adapts to favor smooth
patches for smooth images (d) and textured patches
for richer images (e-f), while the less-flexible DP must
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Figure 7: Comparison of DP mixtures and HDP admix-
tures on 3M 8x8 image patches from Sec. 6.3. (a-b) Trace
plots of model complexity and predictive performance. (c)
Patches from the top 4 estimated DP clusters. Each col-
umn shows 6 stacked 8 × 8 sample patches. (d-f) Patches
from 4 top-ranked HDP topics for select test images.

always place weight on both types of patches (c).

7 CONCLUSION

We have developed a novel variational algorithm en-
abling discovery of compact, interpretable HDP mod-
els from millions of examples. Our objective is ap-
plicable to any exponential family likelihood and our
novel bounds could prove useful for other sequential or
relational models based on the HDP.
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set of the more-scalable algorithms. Here, both crfSO
and our SOfix have similar performance, though our
implementation can complete many more laps given
the same time budget. Our memoized algorithm con-
tinues to improve from 200 spectral topics over 10 full
laps, but seems to overfit at 400 topics. No deletes or
merges are accepted here, likely because at this scale
we are using too few topics. However, the acceptance
rate of sparsity-promoting restarts is 75%.

6.3 Image patch modeling.

Finally, we study 8 × 8 patches from grayscale natu-
ral images, inspired by Zoran and Weiss (2012). We
train on 3.5 million patches from 400 Berkeley Seg-
mentation images, comparing HDP admixtures to flat
Dirichlet process mixtures using a zero-mean Gaussian
likelihood. Both methods are evaluated on 50 heldout
images scored via Eq. (22). We expect our HDP ap-
proach to dominate, because it can customize topic
weights πd for each image during training and test-
ing, while the DP mixture must use the same mixture
model for all images.
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ality beyond topic models. Further, the HDP shows
improved prediction scores over the flat DP mixture.
We illustrate this success by plotting sample patches
from the top 4 topics in appearance probability for sev-
eral heldout images. The HDP adapts to favor smooth
patches for smooth images (d) and textured patches
for richer images (e-f), while the less-flexible DP must

(c) (b) (a) 

(d) (e) (f) 

Figure 7: Comparison of DP mixtures and HDP admix-
tures on 3M 8x8 image patches from Sec. 6.3. (a-b) Trace
plots of model complexity and predictive performance. (c)
Patches from the top 4 estimated DP clusters. Each col-
umn shows 6 stacked 8 × 8 sample patches. (d-f) Patches
from 4 top-ranked HDP topics for select test images.

always place weight on both types of patches (c).

7 CONCLUSION

We have developed a novel variational algorithm en-
abling discovery of compact, interpretable HDP mod-
els from millions of examples. Our objective is ap-
plicable to any exponential family likelihood and our
novel bounds could prove useful for other sequential or
relational models based on the HDP.

 On large datasets, continual model improvement over many 
passes through data.  Memoized & stochastic competitive.


  Informative moment-based initialization useful (Arora et al. 
ICML13), but topics evolve in interesting ways.
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Figure 4: Left: Initial topics estimated by spectral algorithm (Arora et al., 2013) can change drastically after many
variational updates. Center: Example accepted topic pairs for merge moves on Wikipedia. Each pair is combined into
one topic to save space. Right: Example accepted deletion. Red topic is rarely used and lacks clear semantic focus.
Removing this topic and reassigning its mass to remaining topics improves model quality and interpretability.

by combining two topics in a single merged topic. Dur-
ing each pass we consider several candidate pairs. For
each pair ! < m, we imagine simply pooling together
all tokens assigned to either topic ! or m in the original
model to create topic ! in q′. All other parameters are
copied over unchanged. Formally,

r̂′dn! = r̂dn! + r̂dnm, ∀d, n θ̂′d! = θ̂d! + θ̂dm, ∀d (20)

A standard global update to create τ̂ ′, ρ̂′ completes the
candidate. After this one-step construction, we assess
the objective L(·) and keep q′ if it improves.

For large datasets, explicitly retaining both r̂ and r̂′

via Eq. (20) is prohibitive. Instead, we can exploit ad-
ditive statistics to rapidly evaluate a proposed merge.
Eq. (20) implies that S′

! = S!+Sm and N ′
! = N!+Nm.

This allows constructing candidate τ̂ ′ values and eval-
uating Ldata without visiting any batches.

Not all relevant statistics needed for global updates
or ELBO evaluation can be computed in this way, so
some modest tracking must occur. For each candidate
merge, we must compute T ′b

! from Eq. (17) as well
as the ELBO statistics G′b

! , Q
′b
! from Eq. (18) at each

batch. Finally, we must track the entropy Hz for each
candidate pair, as did Hughes and Sudderth (2013).

Each merge move unfolds throughout a single lap.
First, we select candidate pairs to track using an em-
pirical correlation score (Bryant and Sudderth, 2012).

score(!,m) = Corr(N:!, N:m), −1 < score < 1 (21)

This score is computable via incremental updates and
provides a strong, interpretable signal for selecting
merge pairs. In practice, before each pass we select
at most 50 pairs to track with score above 0.05.

Next, we visit each batch in order, tracking relevant
merge summaries during standard memoized updates.
Finally, we evaluate each candidate using both tracked
summaries and additive summaries, accepting or re-
jecting as needed. Many merges can be accepted after
each lap, so long as no two share a topic in common.

5.2 Delete moves

Delete moves provide a more powerful alternative to
merges for removing rare junk topics. For an illustra-
tion of an accepted delete move on Wikipedia data, see
Fig. 4. After identifying a candidate topic with small
mass to delete, we perform several local-global updates
to reassign all tokens to the remaining topics, and then
accept if the objective L(·) improves. This move can
succeed when a merge would fail because each docu-
ment’s tokens can be reassigned in a customized way,
as shown in Fig. 4.

To make this move scalable for our memoized algo-
rithm, we identify a candidate delete topic j in advance
and collect a target dataset x′ of all documents which
use selected topic j significantly: {d : Ndj > 0.01}.
Given the target set, we initialize candidate sufficient
statistics by simply removing entries associated with
topic j as shown in Fig. 2. From this initialization,
we run several local-global updates on the target and
then accept the move if the target’s variational objec-
tive L(·) improves. Further details can be found in
the Supplement. To be sure of deleting a topic, the
target set x′ must contain all documents which pass
our threshold test. Thus, deletes are only applicable to
topics of below some critical size to remain affordable.
We set a maximum budget of 500 documents for the
target dataset size in our topic modeling experiments.

6 EXPERIMENTS

We evaluate our HDP objective optimized via mem-
oized inference with fixed-truncation (MOfix), mem-
oized with delete and merge moves (MOdm), and
stochastic inference (SOfix). For topic models, we
compare against the collapsed Gibbs sampler (Gibbs)
of Teh et al. (2006), the CRF stochastic inference (crf-
SOfix) of Wang et al. (2011), and the stochastic split-
merge method (SOsm) of Bryant and Sudderth (2012).
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9.4. Exploring a large motion capture data set. Finally, we consider a larger
motion capture data set of 124 sequences, all “Physical Activities & Sports” ex-
amples from the CMU MoCap data set (including all sequences in our earlier
small data set). The median length is T = 95.5 times steps (minimum 16, maxi-
mum 1484). Human-produced segmentations for ground-truth comparison are not
available for data of this scale. Furthermore, analyzing this data is computationally
infeasible without split-merge and data-driven birth–death moves. For example,
the small data set required a special “5 unique features per sequence” initializa-
tion to perform well with Prior Rev. Jump proposals, but using this initialization
here would create over 600 features, requiring a prohibitively long sampling run
to merge related behaviors. In contrast, our full MCMC sampler (SM-zDD with
annealing) completed 2000 iterations in 24 hours. Starting from just one feature
shared by all 124 sequences, our SM + zDD moves identify a diverse set of 33 be-
haviors in this data set. A set of 16 representative behaviors are shown in Figure 7.
The resulting clusterings of time series segments represent coherent dynamic be-
haviors. Note that a full quantitative analysis of the segmentations produced on
this data set is not possible because we lack manual annotations. Instead, here

FIG. 7. Analysis of 124 MoCap sequences by interleaving of split-merge and data-driven MCMC
moves. 16 exemplars of the 33 recovered behaviors are displayed, with text label applied post-hoc
to aid human interpretation. Skeleton trajectories were visualized from contiguous segments of at
least 1 second of data as segmented by the sampled state sequence z(i). Boxes group segments from
distinct sequences assigned to the same behavior type.


