

Diverse Particle Selection for High-Dimensional Inference in Graphical Models

Erik Sudderth

UC Irvine Computer Science

Collaborators:
> Particle Max-Product: Jason Pacheco, MIT
> Human Pose: Silvia Zuffi \& Michael Black, MPI Tubingen
Related papers at ICML 2014 \& ICML 2015

High-Dimensional Inference

Discrete
 Unknowns

Continuous Unknowns

Efficient inference based on combinatorial optimization

Unless we make unrealistic model approximations, no efficient general solutions. Standard gradient-based optimization is ineffective.

Continuous Inference Problems

Human pose estimation \& tracking

Protein structure \& side chain prediction

Robot motion \&

 vehicle path planning
Maximum a Posteriori (MAP)

Posterior often intractable and multimodal complicating exact MAP inference:

$$
x^{*}=\underset{x}{\operatorname{argmax}} p(x \mid y)
$$

Maximum a Posteriori (MAP)

Posterior often intractable and multimodal complicating exact MAP inference:

$$
x^{*}=\underset{x}{\operatorname{argmax}} p(x \mid y)
$$

Local optima can be useful when models are inaccurate or data are noisy.

Goal

Develop maximum a posteriori (MAP) inference algorithms for continuous probability models that:

> Apply to any pairwise graphical model, even if model is complex (highly non-Gaussian)
$>$ Are black-box (no gradients required)
> Will reliably infer multiple local optima

Pairwise Graphical Models

$$
p(x) \propto \prod \psi_{s}\left(x_{s}\right) \prod \psi_{s t}\left(x_{s}, x_{t}\right) \quad x_{s} \in \mathbb{R}^{d}
$$

$>$ Nodes are continuous random variables
$>$ Potentials encode statistical relationships
$>$ Edges indicate direct, pairwise energetic interactions

Message Passing on Trees

Global MAP inference

 decomposes into local computations via graph structure...

```
\mp@subsup{\operatorname{max}}{x}{}p(x)\propto\mp@subsup{\operatorname{max}}{x}{}\mp@subsup{\psi}{12}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})\mp@subsup{\psi}{23}{}(\mp@subsup{x}{2}{},\mp@subsup{x}{3}{})\mp@subsup{\psi}{24}{}(\mp@subsup{x}{2}{},\mp@subsup{x}{4}{})
```


Max-Product Belief Propagation

Finding max-marginals via message-passing

$$
q_{s}\left(x_{s}\right)=\max _{x_{t \neq s}} p\left(x_{s}, x_{t \neq s}\right) \propto \psi_{s}\left(x_{s}\right) \prod_{t \in \Gamma(s)} m_{t s}\left(x_{s}\right)
$$

$m_{t s}\left(x_{s}\right)=\max _{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \psi_{t}\left(x_{t}\right) \prod m_{k t}\left(x_{t}\right)$

$$
k \in \Gamma(t) \backslash s
$$

Why max-marginals?
> Directly encode global MAP
> Other modes important: models approximate, data uncertain

Max-product dynamic programming finds exact max-marginals on tree-structured graphs.

Articulated Pose Estimation

[Zuffi et al., CVPR 2012]

"Spring"

Poses \& Discrete Energies

$$
G\left(X_{p}\right)=\sum_{i=1}^{p} \sum_{j=1}^{i} g_{i j}\left(x_{i}, x_{j}\right)
$$

Localize object by minimizing cost or energy defined by synthetic springs.

Fischler \& Elschlager, 1973

$x_{i}-x_{j}=\left(z_{i}-z_{j}, y_{i}-y_{j}\right)$	$g_{i j}\left(x_{i}-x_{j}\right)$
1,0	0
2,0	1
otherwise	∞

1234567890123456789012345678901234567890
1234567890123456789012345678901234567890
Original picture.

1234547990123456799012345678961234567890
Noisy picture (sensed scene) as used in experiment.

L(EV)A for nose. (Density at a point is proportional to probability that nose is present at that location.)

HAIR WAS LOCATED AT $(8,21)$ L/EDGE WAS LOCATED AT $(17,11)$ R/EDGE WAS LOCATED AT $(17,25)$ L/EYE WAS LOCATED AT $(17,14)$ R/EYE WAS LOCATED AT $(17,20$ NOSE WAS LOCATED WAS LOCATED AT $(23,16)$

Poses \& Discrete Probabilities

Localize object via MAP estimate in pairwise MRF

Felzenszwalb \& Huttenlocher, 2005

$$
p(L \mid \theta)=\frac{\prod_{\left(v_{i}, v_{j}\right) \in E} p\left(l_{i}, l_{j} \mid \theta\right)}{\prod_{v_{i} \in V} p\left(l_{i} \mid \theta\right)^{\operatorname{deg} v_{i}-1}}
$$

with rigid geometry.

$$
p(I \mid L, \theta)=p(I \mid L, u) \propto \prod_{i=1}^{n} p\left(I \mid l_{i}, u_{i}\right)
$$

SCAPE

Shape Completion and Animation of People, Anguelov et al. 2004

Deformable Structures

Zuffi, Freifeld, \& Black, CVPR 2012

b)

1

d)

Deformable Structures

Zuffi, Freifeld, \& Black, CVPR 2012

von Mises distribution Gaussian distribution on relative orientation on relative position

PC1
$z_{s t}(1)$

PCA model of part shape

Max-Product Belief Propagation

Discrete

$$
x \in\{1, \ldots, N\}^{D}
$$

Message Update:
$m_{t s}=\max _{x_{t}} \square \psi_{s t} \stackrel{\psi_{t}}{\square m_{L}}$

Matrix-vector multiplication and discrete maximization.

Continuous

$x \in \mathcal{R}^{D}$

Message Update:

$$
m_{t s}\left(x_{s}\right)=\ldots
$$

$$
\max _{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \psi_{t}\left(x_{t}\right) \prod m_{k t}\left(x_{t}\right)
$$

Messages are functions with no analytic form. Nonlinear optimization.

Regular Discretization Infeasible

Approximate continuous max-product messages over regular grid of points?
Head
n
n
Ω
Ω

Example: Torso

$>\sim 10$ dimensions.
> 10 grid points per dimension
> 10 Million points!

Infeasible for high dimensional models.

Pose Tracking Particle Filter?

CONDENSATION algorithm [lsard \& Blake, 1998]
> Particles degenerate over time
$>$ Resampling reduces effective number of particles
> Extension beyond time series models non-trivial

Particle Representations

Particle filter:

>Each particle is a full joint instantiation

Max-Product:

$>$ Each particle is a single variable node (part)
>Efficiently enumerates all combinations

R

Particle Max-Product (PMP)

Combine particle filter ideas with maxproduct more effectively.

Particle approximation of continuous max-product (MP) messages.

Particle Max-Product (PMP)

Sample new hypotheses at every node to grow particle set.

Particle Max-Product (PMP)

Update MP messages on augmented particles.

Particle Max-Product (PMP)

Given N particles particles; $\alpha>1$

Reduce to N
good particles

Select subset of good particles \& repeat Need a particle selection method...

Deformable Structures for Silhouettes

Chamfer Distance Likelihood

$z_{s t}(1)$

$z_{s t}(2)$
"Spring"

Random Initialization

Inference Goals:

> Accurately localize all 4 people $>$ Reliably find global MAP (the "M")

Greedy Particle Max-Product

G-PMP: Trinh \& McAllester 2009

$>$ Select: Discard all current particles except "MAP"
>Augment: Propose new particles by perturbing MAP (Gaussian "random walk")

Particles degenerate to a single mode. Discovered mode is very sensitive to initialization, and is often not the true MAP.

Example Runs Colors

Top-Mode Particle Max-Product

T-PMP: Generalization of PatchMatch BP, Besse et al. 2012

Example Runs Colors
>Augment: Propose new particles from neighbors
>Select: Sort max-marginals and keep top N particles

Particles degenerate to a single mode. Discovered mode is sensitive to initialization, and is often not the true MAP.

Diverse Particle Selection

GOAL: Maintain diversity in particles.

Initial Particles

Diverse Selection

Integer Program (IP) solved with efficient greedy approximation:

LP : Linear Program relaxation IP: Optimal solution by brute force Greedy: Efficient approximation

Continuous Message

$$
m_{t s}\left(x_{s}\right)=\max _{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \psi_{t}\left(x_{t}\right)
$$

Message

Model is a mixture of 2 Gaussians.

Discrete Message

Joint Distribution

Regular grid of 50 states gives discretization:

$$
\mathbb{X}=\left\{x^{(1)}, \ldots, x^{(50)}\right\}
$$

Particle Selection

$$
\hat{m}_{t s}(z)=\max _{x_{t}} \square z[
$$

\rightarrow Selection vector

Joint Distribution

Message

\rightarrow Indicator vector controls state selection: $z \in\{0,1\}^{50}$
$>z(i)=1$ indicates selected states (red line)

Particle Selection

Message

Adding states reduces distortion between discrete message vectors.

Diverse Particle Selection

Minimize total message distortion:

minimize z

subject to $\|z\|_{1} \leq N, z \in\{0,1\}^{\alpha N}$
NP-hard Submodular

Good approximation qualities.

Submodularity

Set function $f: 2^{Z} \rightarrow \mathbb{R}$ is submodular iff diminishing marginal gains.
$f($ ($) \cup\{e\})-f($ (D) $) \geq f(\mathbb{X} \cup\{e\})-f(\mathbb{X})$
 Margin
Diverse particle selection IP equivalent to submodular maximization.
$>$ Efficient greedy approximation
$>$ Within $(1-1 / e) \approx 63 \%$ of optimal

Greedy Particle Selection

Greedy Particle Selection

Greedy Particle Selection

Greedy Particle Selection

Diverse Particle Max-Product (D-PMP)

$>$ No explicit diversity constraint
$>$ Objective encourages diversity
$>$ Efficient "lazy" greedy algorithm
>Bounds on optimality
Avoids particle degeneracies by maintaining ensemble of diverse solutions near local modes.

Example Runs
Colors

[Pacheco et al., ICML 2014]

Discovering Multiple Hypotheses

Prior Work Specialized to Discrete Graphical Models
M-Best MAP [Nilsson 1998; Yanover and Weiss 2003]
$>$ Produce M solutions with highest joint probability
$>$ Typically, these are minor variations of a single mode
Diverse M-Best MAP [Batra et al. 2012]
> Externally specified metric used to find probable hypotheses separated by some distance threshold
> Specialized to discrete models, and requires tuning of metrics/thresholds for each graphical model
Diverse Particle Max-Product
$>$ Tractable for high-dimensional state spaces
$>$ Notion of "distance" arises automatically from model

Synthetic Images: ICML Puppets

True MAP

Pose Error of MAP Estimate

Random Initialization

Log Probability of MAP Estimate

Box plots summarize results from 10 random initializations.

Real Images (Single Person)

Top 3 arm hypotheses MAP estimate, $2^{\text {nd }}$ and $3^{\text {rd }}$ modes for upper arm (magenta, cyan), lower arm (green, white).
$>$ "Buffy" dataset [Ferrari et al. 2008].
$>$ Detections versus number of ranked hypotheses.
> Baseline: Flexible Mixture of Parts (FMP) [Yang \& Ramanan 2013; Park \& Ramanan 2011]

[Pacheco, Zuffi, Black \& Sudderth, ICML 2014]

Real Images (Multiple People)

D-PMP Particles
Mode Estimates

Precision-Recall for multi-person frames:
T-PMP : High precision, low recall, particles on one figure D-PMP : Outperforms FMP and other particle methods Note: G-PMP not reported due to poor performance.
[Pacheco, Zuffi, Black \& Sudderth, ICML 2014]

D-PMP for 3D Mesh Alignment

Independent work by Zuffi \& Black, appeared at CVPR 2015.

Articulated Pose Tracking

Prior work fails to show improvement by incorporating motion model.

This is a failure of inference...

Articulated Pose Tracking

Extension of the Flowing Puppets model [Zuffi et al., 2013]

Part Likelihood

Gradients: Encode object and motion boundaries via HOG / HOF.

Appearance: 2D histogram of A/B color channels in L*a*b*
 space. Luminance ignored.

Frame t

Prior

Part Motion: Scale mixture captures heavy tailed statistics of motion between frames.

Structural prior identical to DS.

Loopy Max-Product BP

Many interesting models exhibit cyclic dependency structure...

Loopy Max-Product BP: Iteratively update until converged.

State-of-the-art decoding for error correcting codes but may perform poorly in general.

MAP Probability Bound

Spanning Tree Distribution

Bound MAP via Jensen's Inequality:
$\max _{x} \log p(x) \leq \sum_{T} \rho(T) \max _{x} \log p(x ; \psi(T))$
Dual Problem:

$$
\underset{\psi}{\operatorname{minimize}} \sum_{T} \rho(T) \max _{x} \log p(x ; \psi(T))
$$

Reweighted Max-Product (RMP)

Edge Appearance

$m_{t s}\left(x_{s}\right)=\max _{x_{t}} \psi_{t}\left(x_{t}\right) \psi_{s t}\left(x_{s}, x_{t}\right)^{\frac{1}{\rho_{s t}}} \frac{\prod_{u \in \Gamma(t) \backslash s} m_{u t}\left(x_{t}\right)^{\rho_{u t}}}{m_{s t}\left(x_{t}\right)^{1-\rho_{s t}}}$

Solve dual problem via reweighted message passing

[Wainwright et al., 2005]

RMP Bound Tightness

Pseudo-Max-Marginal distribution:

$$
\nu_{s}\left(x_{s}\right) \propto \psi_{s}\left(x_{s}\right) \prod_{u \in \Gamma(s)} m_{u s}\left(x_{s}\right)^{\rho_{u s}} \approx q_{s}\left(x_{s}\right)
$$

Consistent maximizer:

$$
x_{s}^{*}=\underset{x_{s}}{\operatorname{argmax}} \nu_{s}\left(x_{s}\right)
$$

$$
\left(x_{s}^{*}, x_{t}^{*}\right)=\operatorname{argmax} \nu_{s t}\left(x_{s}, x_{t}\right)
$$

$$
x_{s}, x_{t}
$$

RMP bound tight and x^{*} global MAP:
$\max _{x} \log p(x)=\sum_{T} \rho(T) \max _{x} \log p(x ; \psi(T))$

Reweighted BP \& Stereo Vision

Left

Right

Disparity
$>$ State space is horizontal displacement (disparity) between corresponding pixels in aligned images (~ 50 options)
> Yanover, Meltzer, Weiss (JMLR 2006) show reweighted max-product finds global MAP in $\sim 90 \%$ of test instances

Loopy Particle Max-Product

Select diverse subset and repeat...

Diverse Particle Selection

Minimize reweighted message distortion:

$$
\begin{aligned}
& \underset{z}{\operatorname{minimize}} \sum_{s \in \Gamma(t)} \sum_{a=1}^{\alpha N}\left(m_{t s}(a)^{\rho_{s t}}-\hat{m}_{t s}(a, z)^{\rho_{s t}}\right) \\
& \text { subject to }\|z\|_{1} \leq N, z \in\{0,1\}^{\alpha N}
\end{aligned}
$$

$>$ Accounts for spanning tree distribution >Remains submodular
$>$ Same greedy approximation

Pseudo-Max-Marginal Error

Selection IP objective upper bounds

 pseudo-max-marginal distortion.$$
\left\|\nu_{s}-\hat{\nu}_{s}\right\|_{1} \leq \sum_{t \in \Gamma(s)} \sum_{a=1}^{\alpha N}\left(m_{t s}(a)^{\rho_{s t}}-\hat{m}_{t s}(a)^{\rho_{s t}}\right)
$$

Recall pseudo-max-marginal definitions:

$$
\nu_{s}(a) \propto \psi_{s}(a) \prod_{t \in \Gamma(s)} m_{t s}(a) \quad \hat{\nu}_{s}(a) \propto \psi_{s}(a) \prod_{t \in \Gamma(s)} \hat{m}_{t s}(a)
$$

VideoPose2 Experiments

Comparison on VideoPose2 dataset of $\sim 2,000$ video frames
from TV shows [Sapp et al., 2011]

Pose Tracking Particles

T-PMP

D-PMP Both right arm hypotheses

Greater diversity in particles allows D-PMP to reason more globally

VideoPose2 Experiments ${ }_{\text {ssappetal 20011] }}$

$>$ Superior to static image estimates (--,--)
$>$ Clear improvement over Sapp et al. baseline
$>$ D-PMP superior to Flowing Puppets in close detection ranges. Looking at failure cases.

Protein Structure Prediction

V-S-R-L-E-E-D-V-R-N-L-N-A-I-V-Q-K-L-Q-E-R-L-D-R-L-E-E-T-V-Q-A-K

All information for predicting 3D structure encoded in amino acid sequence and physics

Protein Side Chains

Side chain prediction: Estimate side chains given fixed backbone.

Dihedrals and Rotamers

Dihedral Angles:
$>$ Compact angular encoding
> 1D-4D continuous state
Rotamer discretization based on marginal statistics fails to capture fine details...

[Shapovalov \& Dunbrack 2007]

Side Chain Prediction

$$
p(x) \propto \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right) \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right)
$$

Edges between amino acids $x_{1} \circlearrowright$ within distance threshold.
[Image: Harder et al., BMC Informatics 2010]

Side Chain Prediction

D-PMP for Side Chains

Continuous optimization of side chains:
$>$ Captures non-rotameric side chains
$>$ Conformational diversity
>Likelihood-based proposals

Rosetta

$>$ Energy model used in Foldlt game
$>$ Simulated annealing (SA) Monte Carlo
> Independent chains for multiple optima
Replace SA with D-PMP. Use Rosetta as black-box energy method.

Protein Side Chain Prediction

Log-probability of MAP estimate for...

 20 Proteins

G-PMP, T-PMP, D-PMP, Rosetta simulated annealing [Rohl et al., 2004]

Protein Side Chain Prediction

Root mean square deviation (RMSD) from x-ray structure.

Oracle selects best configuration in current particle set.

Non-Rotameric Side Chains

Penicillin Acylase Complex, Trp154 [Shapovalov \& Dunbrack 2007]

Protein Side Chain Prediction

Protein Side Chain Prediction

Contributions

Reliable particle-based MAP inference

 for graphical models with continuous variables: object shape, articulation, position, motion, ...

Validation: Inference of multiple poses, motions, protein conformations, ...

Guarantees of Reliabilty:
Rigorous, non-asymptotic bounds on accuracy of diverse particle selection
Code: General-purpose, black-box inference for continuous graphical models

