
Diverse Particle Selection for
High-Dimensional Inference in

Graphical Models
Erik Sudderth

UC Irvine Computer Science

Collaborators:
Ø Particle Max-Product: Jason Pacheco, MIT
Ø Human Pose:  Silvia Zuffi & Michael Black, MPI Tubingen
Related papers at ICML 2014 & ICML 2015



High-Dimensional Inference
UnknownsData

Probability 
Model

Estimate

Continuous
Unknowns

Discrete
Unknowns

Unless we make unrealistic model 
approximations, no efficient general 
solutions.  Standard gradient-based 
optimization is ineffective.

Efficient inference based on 
combinatorial optimization



Continuous Inference Problems
Human pose 

estimation & tracking

Protein structure & 
side chain prediction

Robot motion & 
vehicle path planning



Maximum a Posteriori (MAP)

Data Unknowns Posterior MAP Estimate
*

Posterior often intractable and multimodal 
complicating exact MAP inference:



Maximum a Posteriori (MAP)

Data Unknowns Posterior Local Optimum
*

*

Posterior often intractable and multimodal 
complicating exact MAP inference:

Local optima can be useful when models are 
inaccurate or data are noisy.



Goal

Develop maximum a posteriori (MAP) 
inference algorithms for continuous
probability models that:

Ø Apply to any pairwise graphical model, even if 
model is complex (highly non-Gaussian)

Ø Are black-box (no gradients required)
Ø Will reliably infer multiple local optima



x5
x6

x7
x8

x4

x3

x1
x2

x9

Pairwise Graphical Models
xs 2 Rd

ØNodes are continuous random variables
ØPotentials encode statistical relationships
ØEdges indicate direct, pairwise energetic interactions



Message Passing on Trees

Global MAP inference 
decomposes into local 
computations via graph 

structure…



Max-Product Belief PropagationMax-Product Belief Propagation
Finding max-marginals via message-passing

Max-product dynamic programming finds 
exact max-marginals on tree-structured graphs.

Why max-marginals?
Ø Directly encode global MAP
Ø Other modes important: 

models approximate,
data uncertain
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Articulated Pose Estimation

Continuous state             for part 
shape, location, orientation, scale.

Complicated
Likelihood

Non-Gaussian
Compatibility

PCA Shape

Deformable Structures (DS):

[ Zuffi et al., CVPR 2012 ]
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(a)

VALUE(X)=(E+F+G+H)-(A+B+C+D)

Note: VALUE(X) is the value assigned to the
L(EV)A corresponding to the location X
as a function of the intensities of locations
A through H in the sensed scene.

(b)

K K2=CONSTANTS
a=(C+D+E+F)/4
p=(A+B+G+H+I+J)/6

p-(X+F)
IF [X<(a-K}) OR. a < /3)THEN VALUE(X)=yFK2
ELSE VALUE (X) = y

(c)
Fig. 3. Reference description of a face. (a) Schematic representation

of face reference, indicating components and their linkages.
(b) Reference description for left edge of face. (c) Reference
description for eye.

(noisy) face pictures using two references which in-
cluded, but differed in, the nose/mouth definitions. In
the first series, consisting of 90 experiments, there were

83 completely correct embeddings, and 7 partially incor-
rect embeddings. The errors involved six experiments
in which the nose/mouth complex was offset by three to
four resolution cells from its ideal location, and one ex-

periment in which both the eyes and the nose/mouth
complex were improperly placed. In the second series,
consisting of 45 experiments, the placement of the nose/
mouth complex was judged incorrect in 3 experiments,
while all the other components were always correctly
embedded.

Analysis of the face experiments led to the following
conclusions. In spite of almost perfect performance in
embedding the hair, eyes, and sides of the face, precise
placement of the nose/mouth complex based on strictly
local evaluation was almost impossible in some of the
noisy pictures due to loss of detail [e.g., see Fig. 4(b) ].
With the attribute feature of the LEA not yet opera-

tional, and with the arbitrary decision to use binary
(rather than multivalued) weights in the spring arrays

for these experiments, the LEA restricted the feasible
region over which an optimum value could be selected
for embedding the nose/mouth complex, but did not
bias the selection as would genetally be the case. In the
presence of heavy noise, the simple nose/mouth descrip-

tions used in these experiments were not always ade-
quate to produce a local optimum in the L(EV)A at or
near the ideal embedding location. (A three-resolution
cell deviation was considered an error.)

Image-Matching Experiments Using Terrain Scenes
Approximately 40 experiments have been performed

using terrain scenes (including both aerial and ground
scenes). The object in each case was to create a relatively
simple description of some portion of the scene and then
attempt to find the proper embedding of the description
in the image (or some distorted or alternate view of
the image).
The descriptions employed two basic types of com-

ponents: 1) texture components, in which- the "texture
value" of a point was defined as a crude statistical func-
tion of the intensity values and gradients in some local
region surrounding the point; and 2) shape components,
which were defined by collections of "edge" points hav-
ing specified gradients.

Fig. 5(a) shows an example of a terrain (reference)
description. Fig. 5(b) shows its successful embedding
relative to the computer-stored version of the photo-
graph of the actual terrain segment as shown in Fig.
5 (c). Each coherent piece in reference 5 (a) is represented
by several points enclosed by a dotted line. In this ex-
ample, the points of each enclosure of the reference com-

Fischler & Elschlager, 1973
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local and global evaluation functions. The global evalu-
ation function, associated with the relative positioning
of the coherent pieces as described previously, has
strong syntactic controls on its form to permit its inte-
gration directly into the decision algorithm. This is im-
portant because the global evaluation produces the most
severe combinatorial problems. A local evaluation func-
tion, associated with how well a given coherent piece is
independently embedded, is easily changed from prob-
lem to problem (based on problem-dependent considera-
tions) without requiring any change in the core algo-
rithms. Thus, the form of a local evaluation function
can be a (conventional) correlation function together
with a pictorial reference component, or a procedure
based on linguistic concepts together with a formal
description of a reference component,' or even a series
of guesses in'serted interactively by a human evaluator.
The decoupling of the local evaluation functions from
the core algorithms provides a great deal of flexibility
in' making changes or improvements in the evaluation
functions for a given problem, as well as when switching
from problem to problem. Further, because of the above
separation, the performance of the algorithms (both
local and global) can be independently evaluated in a
direct and intuitively obvious manner. Such an evalua-
tion then permits iterative improvement in performance
by selective alteration in the problem-dependent options.
We are now in a position to present formally the pro-

posed embedding metric. Let the reference be composed
of p components (i.e., p coherent, or primitive, pieces).
For 1 <i<p, let xi be a variable ranging over the set
of all locations of the sensed scene. xi is defined to be the
postion of the ith component. Suppose there is a mech-
anism, either a computer program, or possibly a person,
or some mechanical device, which, for location xi of the
ith component, outputs a numerical value l1(x2) that
indicates how strongly the ith component fits at location
xi of the sensed scene. The smaller li(xi), the better
the fit.
While not formally required, the intent is that li(x2)

measure the presence of the ith component at a location
in the sensed scene independent of any knowledge of the
.locations of the other components. That is, li(xi) is a
purely local and possibly imprecise measure of the pres-
ence of the ith component at location xi.

In addition to the purely local measure li, 1< i.p,
there are the following considerations: 1) how well the
different components are situated in the required spa-
tial relations to each other; and 2) how relative values
of attributes of the components compare with the cor-
responding measured values in the sensed image (e.g.,
we might want to specify that the ith component be
thicker and more greenish than the jth component). The

I Note that we are now further generalizinig the coincept of "com-
ponent." ITt no longer has to be a rigid entity defined pictorially, but
rather may be anv information structure or decision procedure which
can be used to define a real-valued function whose domain of defini-
tion is the set of all locations in the sensed image.

extent to which the above specifications are not satisfied
is reflected in the "stretching" of the springs between the
corresponding components.
Each location in the sensed image can be associated

with a two-dimensional vector (e.g., the components of
the vector can be the row and column number of the
location in the sensed scene). In that case, xi-xj (usual
vector subtraction) is a vector pointing from xj to xi.
We can now let gij(xi, xj) =gij(xi-xj) be the cost associ-
ated with the spring joining the ith and jth components.
If there is no spring between these components, then
gij is identically zero.

If we set gij(xi, xj) =lI(x) when i =j; and let Xi
= {Xi, x2, * , xi }, then the total cost of embedding p
components at locations X, is G(Xp).

p i

G(Xp) = E E gij(xi, xi).
i=i j-1

Expression (1) can also be written as
p

G(Xp) = E hi(Xi)
i=j

(1)

(2)

where

hi(Xi) gAjxi xj) .
j-l

hi(Xi) can be thought of as the cost of embedding the
ith component at location xi, given that the previous
i-1 components are at the locations specified by X2.

COMPUTATIONAL PROCEDURES
In this section of the paper, we will present computa-

tional procedures for locating a suitable embedding of
one image in another, based on the embedding metric
just presented. A discussion of dynamic programing
(DP) is included to place our proposed algorithm [the
"linear embedding algorithm" (LEA)] in proper per-
spective. In particular, a generic (but computationally
impractical) approach to solving the embedding prob-
lem is some form of DP. The specific form of our em-
bedding metric permits a simplification of the general
DP formulation, and the LEA is offered as a computa-
tionally feasible approximation to this restricted DP
formulation. A graph theoretic interpretation is in-
cluded to provide a better intuitive appreciation of the
LEA in relation to DP.

Let us assume that the sensed image, designated by
the abbreviation SM, is composed of M resolution ele-
ments; while the reference, designated by the abbrevia-
tion RM, is composed of P pictorially defined com-
ponents (coherent pieces) with a total of N= ni
resolution elements, ni being the number of resolution
elements in the ith component.
The most direct procedure for locating a best em-

bedding is to select combinationally N resolution ele-
ments at a time from the SMT, determine if each sucl- se-
lection satisfies the coherent (intracomponent) and
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Localize object by 
minimizing cost or 
energy defined by 
synthetic springs.
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2 8 1 5 7

1 4 3 2 4

1 2 3 4 -_z

C1 (1, 1)

c2 (1,1)

C3 (1, 1)

C4 (1,1)

4Q-L C2

2 3

= CI =36
C2 4

=C3 =5
=C4 =3

I(z Y) = I SM(z,Y) Ci
for I i - 4

Spring definition when (i, j) = (2, 1) or (i,j) - (4,3)

Xi - Xj =(Zi - Zj J _ yj) gi (xi- X)

1,0 0

2,0 1

otherwise

Spring definition when (i,j) - (4, 1) or (i,j) = (3,2)

xi-=xj- (zi- zi Yi Yj) g.i(Xi-x.)
0,1 0

0,2 1

otherwise

(b)

Evaluation of g2

x2 x1 61 s2
z2 Y2 z1Y1 I1 12 g21 92
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Evaluation of 93
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3 4 0 1 6
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4 4 2 1 6
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3 1 3 2 1 2 3 0 4 7
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4 1 4 2 3 2 1 0 4 5

4 3 1 1 3

Evaluation of g4 = G

x4 23 xl 94
Z4y4 Z y33 1 Y

6g43 g41 S4 14 g3 G

1 3 2 3 1 4 0 0 0 4 3 7

3 3 1 4 1 0 1 4 10 15

2 3 3 3 1 4 0 2

4 3 3 4 1 2

3 3 4 3 3 4 0 0 0 2 8 10

1 2 2 2 1 3 0 0 0 5 6 11

3 2 2 3 1 5

2 2 3 2 2 3 0 0 0 2 4 6

4 2 2 3 1 0 1 2 5 8

3 2 4 2 2 3 0 2

1 1 2 1 1 3 0 1 1 1 5 7

3 1 1 2 1 0 1 1 7 9

21 31 12 0 0

41 32 1 0

31' 4 1 3 2 0 0 0 1 5 6

(c)

Fig. 1. An example illustrating the operation of the linear embedding algorithm. The definitions of x, gij, I, are given on pages

z and y are the components of x; that is, x = (z, y). (a) The sensed image. (b) The reference description. (c) Linear embedding algorithm.
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x= (z Y)

1,4
2,4
3,4
4,4
1,3
2,3
3,3
4,3
1,2
2,2
3,2
4,2
1,1
2,1
3,1
4,1

SM (Zty)

5
2
8
8
7
5
1
3
8
1
5
7
4
3
2
4

(a)

-[ (2, 3), (3, 3), (3, 2), (2, 2)]

-I (3, 2), (4, 2), (4, 1)(3, 1)]
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L(EV)A for nose. (Density at a point is proportional

to probability that nose is present at that loca-

tion.)
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Noisy picture (sensed scene) as used in experiment.

HAIR WAS LOCATED AT (8,21)
L/EDGE WAS LOCATED AT (17, 11)
R/EDGE WAS LOCATED AT (17,25)
L/EYE WAS LOCATED AT (17,14)
R/EYE WAS LOCATED AT (17,20)
NOSE WAS LOCATED AT (21,16)
MOUTH WAS LOCATED AT (23,16)

(b)
Fig. 4 (continued). (b) Incorrect embedding of nose under random noise.
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Noisy picture (sensed scene) as used in experiment.

HAIR WAS LOCATED AT (8,21)
L/EDGE WAS LOCATED AT (17, 11)
R/EDGE WAS LOCATED AT (17,25)
L/EYE WAS LOCATED AT (17,14)
R/EYE WAS LOCATED AT (17,20)
NOSE WAS LOCATED AT (21,16)
MOUTH WAS LOCATED AT (23,16)

(b)
Fig. 4 (continued). (b) Incorrect embedding of nose under random noise.
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Fig. 4 (continued). (b) Incorrect embedding of nose under random noise.
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parameters that define an object model, I denote an
image, and as before let L denote a configuration of
the object (a location for each part). The distribution
p(I | L , θ ) captures the imaging process, and measures
the likelihood of seeing a particular image given that
an object is at some location. The distribution p(L | θ )
measures the prior probability that an object is at a
particular location. Finally, the posterior distribution,
p(L | I, θ ), characterizes the probability that the object
configuration is L given the model θ and the image I .
Using Bayes’ rule the posterior can be written as,

p(L | I, θ ) ∝ p(I | L , θ )p(L | θ ) . (3)

A common drawback of the Bayesian formulation
is the difficulty of determining a prior distribution,
p(L | θ ), that is both informative and generally appli-
cable. For instance, a uniform prior is general but pro-
vides no information. On the other hand a prior which
says that the object is in the lower left corner of the
image is highly informative but of little use in general.
For pictorial structures, the prior over configurations
encodes information about the relative positions of the
parts, which can be both informative and general. For
instance, for a human body model such a prior can
capture which are likely relative orientations of two
connected limbs.

A number of interesting problems can be character-
ized in terms of this statistical framework,

• MAP estimation—this is the problem of finding a
location L with maximum posterior probability. In
some sense, the MAP estimate is our best guess for
the location of the object. In our framework this will
be equivalent to the energy minimization problem
defined by Eq. (1).

• Sampling from the posterior—sampling provides a
natural way to hypothesize many good potential
matches of a model to an image, rather than just
finding the best one. This is useful to detect multiple
instances of an object in an image and to find possible
locations of an object with an imprecise model.

• Model estimation—this is the problem of finding θ

which specifies a good model for a particular ob-
ject. The statistical framework allows us to learn
the model parameters from training examples using
maximum likelihood estimation.

Our pictorial structure models are parametrized by
θ = (u, E, c), where u = {u1, . . . , un} are appear-
ance parameters, the set of edges E indicates which

parts are connected, and c = {ci j | (vi , v j ) ∈ E} are
connection parameters. There is a separate appearance
model for each part, but the exact method used to model
the appearance of parts is not important at this point.
In Section 5 we model appearance using image deriva-
tives around a point, to represent local features of a face
such as the tip of the nose or the corners of the mouth.
In Section 6 we model appearance using rectangular
shapes, to represent individual body parts. In practice,
the appearance modeling scheme just needs to provide
a distribution p(I | li , ui ) up to a normalizing constant,
which measures the likelihood of seeing a particular
image, given that a part with appearance parameters ui

is at location li . This distribution does not have to be
a precise generative model, an approximate measure is
good enough in practice.

We model the likelihood of seeing an image given
that the object is at some configuration by the product
of the individual likelihoods,

p(I | L , θ ) = p(I | L , u) ∝
n∏

i=1

p(I | li , ui ). (4)

This approximation is good if the parts do not overlap,
as in this case they generate different portions of the
image. But the approximation can be bad if one part
occludes another. For the iconic models described in
Section 5 the prior distribution over configurations en-
forces that the parts do not overlap (the probability of
a configuration with overlap is very small). For the ar-
ticulated models described in Section 6 there is much
less constraint on the locations of parts, and parts can
easily overlap. In this case we demonstrate that a good
estimate of the object configuration can be found by ob-
taining multiple samples from the posterior distribution
and then selecting one of them using an independent
method. This shows that sampling from the posterior
can be useful for handling modeling error.

The prior distribution over object configurations is
captured by a tree-structured Markov random field with
edge set E . In general, the joint distribution for a tree-
structured prior can be expressed as,

p(L | θ ) =
∏

(vi ,v j )∈E p(li , l j | θ )
∏

vi ∈V p(li | θ )deg vi −1
,

where deg vi is the degree of vertex vi in the graph de-
fined by E . We do not model any preference over the
absolute location of each part, only over their relative
configuration. This means that p(li | θ ) is constant, and
we let it equal one for simplicity. The joint distributions
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Finding the maximum likelihood estimate of σ 2
s is easy

since we just have a Gaussian distribution over si −
s j . Similarly, there are known methods for finding the
ML parameters (θi j , k) of a von Mises distribution (see
Gumbel et al., 1953). The ML estimate of the joint
location in each part are the values (xi j , yi j , x ji , y ji )
which minimize the sum of square distances between
(x ′

i , y′
i ) and (x ′

j , y′
j ) over the examples. We can compute

this as a linear least squares problem.
We need to write the joint distribution of li and l j in

the specific form required by our algorithms. It must
be a Gaussian distribution with zero mean and diagonal
covariance in a transformed space, as shown in Eq. (6).
First note that a von Mises distribution over angular
parameters can be specified in terms of a Gaussian over
the unit vector representation of the angles. Let α⃗ and β⃗

be the unit vectors corresponding to two angles α and
β. That is, α⃗ = [cos(α), sin(α)]T , and similarly for β⃗.
Then,

cos(α − β) = α⃗ · β⃗ = −∥α⃗ − β⃗∥2 − 2
2

.

Now let

Ti j (li ) = (x ′
i , y′

i , si , cos(θi + θi j ), sin(θi + θi j )),

Tji (l j ) = (x ′
j , y′

j , s j , cos(θ j ), sin(θ j )),

Di j = diag(σ 2
x , σ 2

y , σ 2
s , 1/k, 1/k),

which allow us to write Eq. (16) in the right form,

p(li , l j | ci j ) ∝ N (Tji (l j ) − Ti j (li ), 0, Di j ).

For these models, the number of discrete locations h′ in
the transformed space is a little larger than the number
of locations h for each part. This is because we repre-
sent the orientation of a part as a unit vector which lives
in a two-dimensional grid. In practice, we use 32 pos-
sible angles for each part, and represent them as points
in a 11 × 11 grid, which makes h′ about four times h.

6.3. Experiments

We use a coarse articulated model to represent the hu-
man body. Our model has ten parts, corresponding to
the torso, head, two parts per arm and two parts per
leg. To generate training examples we labeled the lo-
cation of each part in ten different images (without too
much precision). The learned model is illustrated in
Fig. 11. The crosses indicate joints between parts. We

Figure 11. Human body model learned from example configura-
tions.

never told the system which parts should be connected
together, this is automatically learned during the ML
learning procedure. Note that the correct structure was
learned, and the joint locations agree with the human
body anatomy (the joint in the middle of the torso con-
nects to the head). The configuration of parts shown in
Fig. 11 was obtained by fixing the position of the torso
and placing all other parts in their optimal location with
respect to each other.

We tested the model by matching it to novel im-
ages. As described in Section 6.1, we sample config-
urations from the posterior distribution to obtain mul-
tiple hypotheses and rate each sample using a sepa-
rate measure. For each sample we compute the Cham-
fer distance between the shape of the object under the
hypothesized configuration and the binary image ob-
tained from the input. The Chamfer distance is a robust
measure of binary correlation (Borgefors, 1988). The
matching process is illustrated in Fig. 12. First, a binary
image is obtained from the original image using back-
ground subtraction. We use this binary image as input
to the sampling algorithm to obtain a number of dif-
ferent pose hypotheses. The best pose is then selected
using the Chamfer measure.

More matching results are shown in Fig. 13. For
each image, we sampled two-hundred object configu-
rations from the posterior distribution and picked the
best one under the Chamfer distance. Using a desk-
top computer it took about one minute to process each
image. The space of possible locations for each part
was discretized into a 70 × 70 × 10 × 32 grid, corre-
sponding to (x, y, s, θ ) parameters. There are over 1.5
million locations for each part, making any algorithm
that considers locations for pairs of parts at a time im-
practical.
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Figure 5. Matching results on occluded faces. The top row shows some input images and the bottom row shows the corresponding matching
results. The MAP estimate was a good match when the faces had up to two of five parts occluded and incorrect when three parts were occluded.

that we can learn a useful model from training
examples.

Figure 5 illustrates matching results on images with
partially occluded faces. The matching algorithm au-
tomatically handles such partial occlusion in a robust
way, finding a good configuration of all the parts when
up to two of the five parts are occluded. The occluded
parts are placed at reasonable locations because of the
constraints between parts. Moreover, it does not matter
which parts are occluded because our matching algo-

Figure 6. Matching results on an image with multiple faces. See text for description.

rithm finds the global minimum of the energy function,
independent of the choice of root used by the dynamic
programming approach. When three of the five parts
are occluded the best match of the model to the image
was incorrect.

Figure 6 illustrates matching results on an image that
contains multiple faces. Recall that our energy mini-
mization algorithm computes the optimal location for
the model as a function of the location of a root part.
To detect multiple faces we first find the best overall
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Figure 3. Three examples from the first training set showing the locations of the labeled features and the structure of the learned model.

that all model parameters were automatically estimated
with the maximum likelihood procedure. Thus, there
are no “knobs” to tune in the matching algorithm. Some
matching results are shown in Fig. 4. Both the learning

Figure 4. Matching results.

and matching algorithms are extremely fast. Using a
desktop computer it took a few seconds to learn the
model and less than a second to compute the MAP es-
timate in each image. These experiments demonstrate

76 Felzenszwalb and Huttenlocher

Figure 14. In this case, the binary image doesn’t provide enough information to estimate the position of one arm.

Figure 15. This example illustrates how our method works well with noisy images.
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Figure 13. Matching results (sampling 200 times).

Of course, sometimes the estimated pose is not cor-
rect. The most common source of error comes from
ambiguities in the binary images. Figure 14 shows an
example where the image does not provide enough in-

formation to estimate the position of one arm. Even in
that case we get a fairly good estimate. We can detect
when ambiguities happen because we obtain many dif-
ferent poses with equally good Chamfer score. Thus

Felzenszwalb & Huttenlocher, 2005



SCAPE
Shape Completion and Animation of People, Anguelov et al. 2004 

Figure 17. Scans from the CEASAR dataset after hole-filling [3].

to match the data, a marker term, that favors the markers to overlap, and a smooth-

ness term, that favors solutions where neighboring triangles undergo the same a�ne

transformation. The registration technique employs markers in a first stage, where

the data term is disabled, then in a successive stage markers have weaker relevance,

as they are not reliable for a precise alignment. Also, the optimization proceeds in a

multi-scale fashion, first on low-resolution meshes, to avoid local minima. The energy

minimization is robust to holes: if the data point closest to a vertex in the template

is on a boundary edge of the data mesh, its data term is disabled, and its a�ne

transformation is defined through the smoothness terms from neighboring triangles.

This has the e↵ect that holes in the data mesh are filled by seamlessly transformed

triangles of the template surface. The template mesh is obtained by aligning a mesh

generated from an artist to one of the CAESAR scans using 58 manually selected

landmarks.

Given a set of k meshes aligned to a template with n vertexes, Allen et al. [3]

compute Principal Component Analysis (PCA) on the k⇥n vertexes of the template

transformed according to the estimated alignment transformations for each data mesh.

The resulting PCA space describes the variability in the intrinsic shape of people.

Note that here the authors assume body pose is fixed, but it is likely that there

is some pose variation among subjects, which could have been partially removed

by exploiting the markers location. Exploiting the PCA model, data meshes can

then be parametrized by PCA coe�cients instead of a�ne transformations. This

generates a new form for the energy to optimize for the alignment, where instead

of the smoothness term for neighboring a�ne transformations one would minimize
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Figure 4: Examples of muscle deformations that can be captured in the SCAPE pose model.

Figure 5: The first four principal components in the space of body shape
deformation

5 Body-Shape Deformation

The SCAPE model also encodes variability due to body shape
across different individuals. We now assume that the scans of our
training set Y i correspond to different individuals.

5.1 Deformation Process

We model the body-shape variation independently of the pose vari-
ation, by introducing a new set of linear transformation matrices
Sik, one for each instance i and each triangle k. We assume that
the triangle pk observed in the instance mesh i is obtained by first
applying the pose deformation Qik, then the body shape deforma-
tion Sik, and finally the rotation associated with the corresponding
joint Ri`[k]. The application of consecutive transformation matrices
maintains proper scaling of deformation. We obtain the following
extension to Eq. (1):

vik, j = Ri`[k]S
i
kQ

i
kv̂k, j. (6)

The body deformation associated with each subject i can thus be
modeled as a set of matrices Si = {Sik : k = 1, . . . ,P}.

5.2 Learning the Shape Deformation Model

To map out the space of body shape deformations, we view the dif-
ferent matrices Si as arising from a lower dimensional subspace. For
each example mesh, we create a vector of size 9£N containing the
parameters of matrices Si. We assume that these vectors are gener-
ated from a simple linear subspace, which can be estimated by using
PCA:

Si = SU,µ (β i) =Uβ i+µ (7)

whereUβ i+µ is a (vector form) reconstruction of the 9£N matrix
coefficients from the PCA, andUβ i+µ is the representation of this
vector as a set of matrices. PCA is appropriate for modeling the ma-
trix entries, because body shape variation is consistent and not too
strong. We found that even shapes which are three standard devia-
tions from the mean still look very much like humans (see Fig. 5).
If we are given the affine matrices Sik for each i,k we can easily

solve for the PCA parameters U , µ , and the mesh-specific coeffi-
cients β i. However, as in the case of pose deformation, the indi-
vidual shape deformation matrices Sik are not given, and need to be
estimated. We use the same idea as above, and solve directly for Sik,
with the same smoothing term as in Eq. (5):

argmin
Si

∑
k
∑
j=2,3

kRikS
i
kQ

i
kv̂k, j°v

i
k, jk

2+ws ∑
k1,k2 adj

kSik1 °S
i
k2k

2. (8)

Importantly, recall that our data preprocessing phase provides us
with an estimate Ri for the joint rotations in each instance mesh,
and therefore the joint angles 4ri. From these we can compute the
predicted pose deformations Qik = Qak (4ri`[k]) using our learned
pose deformation model. Thus, the only unknowns in Eq. (8) are
the shape deformation matrices Sik. The equation is quadratic in
these unknowns, and therefore can be solved using a straightforward
least-squares optimization.

5.3 Application to Our Data Set

We applied this method to learn a SCAPE body shape deformation
model using the 45 instances in the body shape data set, and taking
as a starting point the pose deformation model learned as described
in Sec. 4.3. Fig. 5 shows the mean shape and the first four prin-
cipal components in our PCA decomposition of the shape space.
These components represent very reasonable variations in weight
and height, gender, abdominal fat and chest muscles, and bulkiness
of the chest versus the hips.

Figure 4: Examples of muscle deformations that can be captured in the SCAPE pose model.

Figure 5: The first four principal components in the space of body shape
deformation

5 Body-Shape Deformation

The SCAPE model also encodes variability due to body shape
across different individuals. We now assume that the scans of our
training set Y i correspond to different individuals.

5.1 Deformation Process

We model the body-shape variation independently of the pose vari-
ation, by introducing a new set of linear transformation matrices
Sik, one for each instance i and each triangle k. We assume that
the triangle pk observed in the instance mesh i is obtained by first
applying the pose deformation Qik, then the body shape deforma-
tion Sik, and finally the rotation associated with the corresponding
joint Ri`[k]. The application of consecutive transformation matrices
maintains proper scaling of deformation. We obtain the following
extension to Eq. (1):

vik, j = Ri`[k]S
i
kQ

i
kv̂k, j. (6)

The body deformation associated with each subject i can thus be
modeled as a set of matrices Si = {Sik : k = 1, . . . ,P}.

5.2 Learning the Shape Deformation Model

To map out the space of body shape deformations, we view the dif-
ferent matrices Si as arising from a lower dimensional subspace. For
each example mesh, we create a vector of size 9£N containing the
parameters of matrices Si. We assume that these vectors are gener-
ated from a simple linear subspace, which can be estimated by using
PCA:

Si = SU,µ (β i) =Uβ i+µ (7)

whereUβ i+µ is a (vector form) reconstruction of the 9£N matrix
coefficients from the PCA, andUβ i+µ is the representation of this
vector as a set of matrices. PCA is appropriate for modeling the ma-
trix entries, because body shape variation is consistent and not too
strong. We found that even shapes which are three standard devia-
tions from the mean still look very much like humans (see Fig. 5).
If we are given the affine matrices Sik for each i,k we can easily

solve for the PCA parameters U , µ , and the mesh-specific coeffi-
cients β i. However, as in the case of pose deformation, the indi-
vidual shape deformation matrices Sik are not given, and need to be
estimated. We use the same idea as above, and solve directly for Sik,
with the same smoothing term as in Eq. (5):

argmin
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Importantly, recall that our data preprocessing phase provides us
with an estimate Ri for the joint rotations in each instance mesh,
and therefore the joint angles 4ri. From these we can compute the
predicted pose deformations Qik = Qak (4ri`[k]) using our learned
pose deformation model. Thus, the only unknowns in Eq. (8) are
the shape deformation matrices Sik. The equation is quadratic in
these unknowns, and therefore can be solved using a straightforward
least-squares optimization.

5.3 Application to Our Data Set

We applied this method to learn a SCAPE body shape deformation
model using the 45 instances in the body shape data set, and taking
as a starting point the pose deformation model learned as described
in Sec. 4.3. Fig. 5 shows the mean shape and the first four prin-
cipal components in our PCA decomposition of the shape space.
These components represent very reasonable variations in weight
and height, gender, abdominal fat and chest muscles, and bulkiness
of the chest versus the hips.



Deformable Structures
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Figure 2. Contours generated from the SCAPE model. The rendered

3D meshes are SCAPE models in two similar poses; the contour-based

representations are obtained by per-part projections of the meshes on

the image plane, and then extracting the contour from silhouettes.

Each DS model is learned from 3000 mirrored samples. Figure 3 shows example

poses in the training set for the female body; note the variability of pose and ori-

entation of the body relative to the camera. While the camera is frontal-view, the

random noise we add generates also slightly lateral poses (see Fig. 3).

Each part is rendered as a separate 2D closed contour and discretized into a fixed

number of contour points plus two additional “joint” locations at the proximal and

distal ends of the part. The two “joints” define a local coordinate system for the part

(Fig. 2) and a line through them divides the part into two sides. Each side of the

part is sampled to a fix number of points, evenly spaced according to the arclength.

We represent therefore each part with a fixed number of points.

We learn models with various numbers of body parts: 10 parts, consisting of the

head, torso, upper and lower limbs, where the hands and feet are included in the

lower limbs; and 14 parts with hands and feet treated as independent parts. We use
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Figure 3. Examples of training poses. Note the variability in pose as

well as in camera location.

the 10-part model for our pose estimation experiments, for a more direct comparison

to traditional PS models.

3. Shape Representation

The shape of each part is learned independently and then these local shape models

are coupled in the graphical model by the pairwise potentials. The training examples

for each part are aligned to a common coordinate system, which has one axis corre-

sponding to the bone of the part, as defined by the joint points. The mid-point of the

bone is the part center; the bone defines the part length and rotation. We vectorize

the set of contour points p
i

and joint points y
i

, all in the local frame of reference,

and form training vectors composed of the contour and joint points. We put these

training vectors into a large matrix of training data, and perform Principal Compo-

nent Analysis (PCA). We can then represent a training vector with a low-dimensional

linear model as:

(6)

2

4pi

y
i

3

5 = B
i

z
i

+m
i

,

where p
i

is a vector of contour points and y
i

is a vector of joint points. The vector

m
i

represents the mean contour (and joints) of part i. B
i

is a matrix containing the

eigenvectors of the training data corresponding to the dominant eigenvalues. Finally,
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Figure 5: The first four principal components in the space of body shape
deformation

5 Body-Shape Deformation

The SCAPE model also encodes variability due to body shape
across different individuals. We now assume that the scans of our
training set Y i correspond to different individuals.

5.1 Deformation Process

We model the body-shape variation independently of the pose vari-
ation, by introducing a new set of linear transformation matrices
Sik, one for each instance i and each triangle k. We assume that
the triangle pk observed in the instance mesh i is obtained by first
applying the pose deformation Qik, then the body shape deforma-
tion Sik, and finally the rotation associated with the corresponding
joint Ri`[k]. The application of consecutive transformation matrices
maintains proper scaling of deformation. We obtain the following
extension to Eq. (1):

vik, j = Ri`[k]S
i
kQ

i
kv̂k, j. (6)

The body deformation associated with each subject i can thus be
modeled as a set of matrices Si = {Sik : k = 1, . . . ,P}.

5.2 Learning the Shape Deformation Model

To map out the space of body shape deformations, we view the dif-
ferent matrices Si as arising from a lower dimensional subspace. For
each example mesh, we create a vector of size 9£N containing the
parameters of matrices Si. We assume that these vectors are gener-
ated from a simple linear subspace, which can be estimated by using
PCA:

Si = SU,µ (β i) =Uβ i+µ (7)

whereUβ i+µ is a (vector form) reconstruction of the 9£N matrix
coefficients from the PCA, andUβ i+µ is the representation of this
vector as a set of matrices. PCA is appropriate for modeling the ma-
trix entries, because body shape variation is consistent and not too
strong. We found that even shapes which are three standard devia-
tions from the mean still look very much like humans (see Fig. 5).
If we are given the affine matrices Sik for each i,k we can easily

solve for the PCA parameters U , µ , and the mesh-specific coeffi-
cients β i. However, as in the case of pose deformation, the indi-
vidual shape deformation matrices Sik are not given, and need to be
estimated. We use the same idea as above, and solve directly for Sik,
with the same smoothing term as in Eq. (5):
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Importantly, recall that our data preprocessing phase provides us
with an estimate Ri for the joint rotations in each instance mesh,
and therefore the joint angles 4ri. From these we can compute the
predicted pose deformations Qik = Qak (4ri`[k]) using our learned
pose deformation model. Thus, the only unknowns in Eq. (8) are
the shape deformation matrices Sik. The equation is quadratic in
these unknowns, and therefore can be solved using a straightforward
least-squares optimization.

5.3 Application to Our Data Set

We applied this method to learn a SCAPE body shape deformation
model using the 45 instances in the body shape data set, and taking
as a starting point the pose deformation model learned as described
in Sec. 4.3. Fig. 5 shows the mean shape and the first four prin-
cipal components in our PCA decomposition of the shape space.
These components represent very reasonable variations in weight
and height, gender, abdominal fat and chest muscles, and bulkiness
of the chest versus the hips.
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Figure 3. Examples of training poses. Note the variability in pose as

well as in camera location.

the 10-part model for our pose estimation experiments, for a more direct comparison

to traditional PS models.

3. Shape Representation

The shape of each part is learned independently and then these local shape models

are coupled in the graphical model by the pairwise potentials. The training examples

for each part are aligned to a common coordinate system, which has one axis corre-

sponding to the bone of the part, as defined by the joint points. The mid-point of the

bone is the part center; the bone defines the part length and rotation. We vectorize

the set of contour points p
i

and joint points y
i

, all in the local frame of reference,

and form training vectors composed of the contour and joint points. We put these

training vectors into a large matrix of training data, and perform Principal Compo-

nent Analysis (PCA). We can then represent a training vector with a low-dimensional

linear model as:
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where p
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is a vector of contour points and y
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is a vector of joint points. The vector
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represents the mean contour (and joints) of part i. B
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is a matrix containing the

eigenvectors of the training data corresponding to the dominant eigenvalues. Finally,
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von Mises distribution
on relative orientation

Gaussian distribution
on relative position

PCA model of
part shape



Max-Product Belief Propagation
Discrete

Matrix-vector multiplication and 
discrete maximization.  

Messages are functions with no
analytic form.  Nonlinear optimization.

Continuous

Message Update: Message Update:

? ?

? ?



Regular Discretization Infeasible

Infeasible for high dimensional models.

Approximate continuous max-product 
messages over regular grid of points?

Ø ~10 dimensions.  
Ø 10 grid points per dimension
Ø 10 Million points!

Location ShapeExample: Torso

Head Upper Arm Lower Arm Torso



Pose Tracking Particle Filter?
1 2 3 4

5 TT-1

CONDENSATION algorithm [Isard & Blake, 1998]

ØParticles degenerate over time
ØResampling reduces effective number of particles
ØExtension beyond time series models non-trivial



Particle Representations
Particle filter:
ØEach particle is a full 

joint instantiation

Max-Product:
ØEach particle is a single variable node (part)
ØEfficiently enumerates all combinations



Particle Max-Product (PMP)

Particle approximation of continuous 
max-product (MP) messages.

Combine particle filter ideas with max-
product more effectively.



Particle Max-Product (PMP)

Augment
Particles

1

Sample new hypotheses at every node 
to grow particle set.

Augmented Set

Head Upper Arms Lower Arms Torso

Proposal



Particle Max-Product (PMP)

Update MP messages on 
augmented particles.

Augment
Particles

1
Max-Product

Update

2
Colors



Particle Max-Product (PMP)

Select subset of good particles & repeat

Augment
Particles

1
Max-Product

Update

2 Select
Particles

3

Given   .   
particles

Grow to   .     
particles;     .

Reduce to  .
good particles

Need a particle selection method…

Colors



Deformable Structures for Silhouettes

Chamfer Distance Likelihood

Random Initialization

Inference Goals:
Ø Accurately localize all 4 people
Ø Reliably find global MAP (the “M”)



Greedy Particle Max-Product

ColorsExample Runs

G-PMP:  Trinh & McAllester 2009

Particles degenerate to a single 
mode.  Discovered mode is 

very sensitive to initialization,
and is often not the true MAP.

ØSelect: Discard all current 
particles except “MAP”

ØAugment: Propose new 
particles by perturbing MAP
(Gaussian “random walk”)



Top-Mode Particle Max-Product
T-PMP:  Generalization of PatchMatch BP, Besse et al. 2012

ColorsExample Runs

Particles degenerate to a single 
mode.  Discovered mode is 

sensitive to initialization,
and is often not the true MAP.

ØAugment: Propose new 
particles from neighbors

ØSelect: Sort max-marginals
and keep top N particles



Diverse Particle Selection

Integer Program (IP) 
solved with efficient 

greedy approximation:

Integer
Program

Initial Particles

Diverse Selection
LP : Linear Program relaxation

IP: Optimal solution by brute force
Greedy: Efficient approximation

GOAL:  Maintain diversity in particles.



Continuous Message

Model is a mixture of 2 Gaussians.

Joint Distribution Message



Discrete Message

Regular grid of 50 states gives discretization:

All Particles

Joint Distribution Message



Particle Selection

Joint Distribution Message

Ø Indicator vector controls state selection:
Ø indicates selected states (red line)

All Particles

Selected

Selection vector



Particle Selection

Adding states reduces distortion between 
discrete message vectors.

All Particles

Selected

Joint Distribution Message



Diverse Particle Selection

NP-hard
Submodular

Minimize total message distortion:

All Particles

Selected

Good approximation qualities.



Submodularity

Ø Efficient greedy approximation
Ø Within                            of optimal                           

Diverse particle selection IP equivalent 
to submodular maximization.

Set function                  is submodular 
iff diminishing marginal gains.

Margin



Greedy Particle Selection

Margin
Maximum



Greedy Particle Selection

Margin
Maximum



Greedy Particle Selection

Margin
Maximum



Greedy Particle Selection

Margin
Maximum



Avoids particle degeneracies by 
maintaining ensemble of diverse 

solutions near local modes.

Example Runs Colors

Diverse Particle Max-Product (D-PMP)

[ Pacheco et al., ICML 2014 ]

ØNo explicit diversity constraint
ØObjective encourages diversity
ØEfficient “lazy” greedy algorithm
ØBounds on optimality



Discovering Multiple Hypotheses
M-Best MAP [Nilsson 1998; Yanover and Weiss 2003]

Ø Produce M solutions with highest joint probability
Ø Typically, these are minor variations of a single mode

Prior Work Specialized to Discrete Graphical Models

Diverse M-Best MAP [Batra et al. 2012]

Ø Externally specified metric used to find probable 
hypotheses separated by some distance threshold

Ø Specialized to discrete models, and requires tuning 
of metrics/thresholds for each graphical model

Diverse Particle Max-Product
Ø Tractable for high-dimensional state spaces
Ø Notion of “distance” arises automatically from model



Synthetic Images:  ICML Puppets

Box plots summarize results from 10 random initializations.

True MAP Random Initialization

Pose Error of MAP Estimate

G-PMP T-PMP D-PMP D/T-PMP

Log Probability of MAP Estimate

G-PMP T-PMP D-PMP D/T-PMP



Top 3 arm hypotheses  MAP estimate, 2nd and 3rd modes for 
upper arm (magenta, cyan), lower arm (green, ).

De
te

ct
io

n

Real Images (Single Person)

# Solutions

Ø “Buffy” dataset [Ferrari et al. 2008].

Ø Detections versus number 
of ranked hypotheses.

Ø Baseline: Flexible Mixture of 
Parts (FMP) [Yang & Ramanan 2013; 
Park & Ramanan 2011]

[ Pacheco, Zuffi, Black & Sudderth, ICML 2014 ]



D-PMP Particles

Colors

Real Images (Multiple People)

Mode Estimates

[ Pacheco, Zuffi, Black & Sudderth, ICML 2014 ]

Precision-Recall for multi-person frames:
T-PMP : High precision, low recall, particles on one figure
D-PMP : Outperforms FMP and other particle methods
Note: G-PMP not reported due to poor performance.



D-PMP for 3D Mesh Alignment

Figure 2. Example of particles initialization: note that particles are

initialized from disconnected SP models randomly sampled. The red

arm on the right belongs to the FAUST scan around which the random

puppets are generated.

As an estimate of the global translation of the scan, we take the average value of

the scan points. We make this point coincide with the centre of the torso of the SP

models that we generate for initialization. Note that this simple assumption creates

a bias between model and scan, but the optimization algorithm can deal with large

uncertainty in the particles locations, also due to the fact that the scan data does not

contain outliers.

Figure 2 shows the set of initial particles in an example where the optimization

uses 30 particles. During optimization, we use an adaptive scheme for assigning the

weights ↵ and � in the energy.
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Figure 3. Stitched Puppet Model. To generate an instance of SP we

start with the template body (top left), which is segmented into parts.

We apply the intrinsic shape deformation to change the body shape

(top right). We generate pose deformations for each body part (see

text) (bottom left). The pose of the body is defined by the rotation

and translation that stitches the parts together (bottom, middle and

right).

upper arms, lower arms, upper legs, lower legs, hands and feet (see color coding in

Fig. 1(c)).

SP is a tree-structured graphical model in which each body part corresponds to

a node, with the torso at the root. Each part is represented by a triangulated 3D

mesh in a canonical, part-centered, coordinate system. Let i be a node index, with
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Figure 12. Stitching parts illustration. Parts can be thought of as

being connected by springs between the interface points. When the

model fits together seamlessly, this stitching cost is zero. During in-

ference, the parts can move apart to fit data and then the inference

method tries to infer a consistent model.

are replicated for each node, and generate body parts for the template mesh with the

desired intrinsic shape (Figure 3(b)). We then sample a vector of pose deformation

variables for the torso. These define the pose of the torso: given in SP the torso

part also includes the pelvis, poses with the torso bent or twisted with respect to the

pelvis are modeled as pose deformations (Figure ??). We then assign a global rotation

and generate the torso mesh in the global frame. Recursively in the tree, starting

at torso, for each node i: we get the pose-dependent deformation variables of the

parent, d
pa(i); we condition the pairwise Gaussian p

pa(i)i with d
pa(i), and marginalize

the relative rotation vector r
pa(i)i. This gives a Gaussian distribution over d

i

; we

sample this conditioned distribution to get part deformations, and generate the part

mesh in the local frame. The e↵ect of the part deformations applied to each body part

is shown in Fig. 3(c). We finally compute the rotation and translation that stitches

the parts together at their interface (Fig. 3(d,e)) using the orthogonal Procrustes

algorithm. Figure 13 shows samples of bodies generated using this procedure. Note
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Figure 3. D-PMP optimization. Inference with 30 particles for 60

iterations. From top to bottom, left to right: initial particles; scan

(red) and current solution (light blue) at various steps; the final set

of particles. At the end a greedy algorithm resamples all the particles

around the current solution.
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Independent work by Zuffi & Black, appeared at CVPR 2015.

Figure 3. D-PMP optimization. Inference with 30 particles for 60

iterations. From top to bottom, left to right: initial particles; scan

(red) and current solution (light blue) at various steps; the final set

of particles. At the end a greedy algorithm resamples all the particles

around the current solution.
112



Articulated Pose Tracking
Prior work fails to show improvement by 

incorporating motion model.  

This is a failure of inference…



Articulated Pose Tracking

Frame t

Frame t+1

Data and Optical Flow

…

…

t t+1

PriorPart Likelihood

Gradients: Encode object 
and motion boundaries via 
HOG / HOF.

Appearance: 2D histogram of 
A/B color channels in L*a*b* 
space.  Luminance ignored.

HOF HOG

Structural prior identical to DS.

Part Motion: Scale mixture 
captures heavy tailed statistics of 
motion between frames.

Color

Extension of the Flowing Puppets
model [Zuffi et al., 2013]

1 2 3



Loopy Max-Product BP

State-of-the-art decoding for error correcting codes
but may perform poorly in general.

Many interesting models exhibit
cyclic dependency structure...

Loopy Max-Product BP: 
Iteratively update 
until converged.



MAP Probability Bound
Spanning Tree Distribution

Dual Problem:

Bound MAP via Jensen’s Inequality:

[Wainwright et al., 2005]



Reweighted Max-Product (RMP)

Solve dual problem via reweighted 
message passing

Edge Appearance

[Wainwright et al., 2005]



RMP Bound Tightness

Consistent maximizer:

RMP bound tight and     global MAP: 

Pseudo-Max-Marginal distribution:



Reweighted BP & Stereo Vision
LP RELAXATIONS AND BP–AN EMPIRICAL STUDY

Left Right

Disparity

Figure 1: An illustration of the stereo problem. Given two images taken from slightly different
viewpoints (Left,Right) we search for the disparity of each pixel. The best results for this
problem use energy minimization formulations which are equivalent to solving the MAP
for a grid graphical model.

where smoothness(disp) is a cost that penalizes disparity fields where neighboring pixels have dif-
ferent disparities and dissim[Left(u,v),Right(u′,v′)] measures the dissimilarity of the left and right
image at corresponding locations.

We associate each disparity disp(u,v) with an assignment of a node xi in a two dimensional grid
graph. If we define x to be the disparity field, and P(x|y) ∝ exp(−E(x)) where E(x) is the energy
function, minimizing the energy is equivalent to maximizing P(x). Furthermore, since E(x) is a sum
of singleton and pairwise terms, P(x) will factorize with respect to the two-dimensional grid:

Pr(x|y) ∝ ∏
i
Ψi(xi) ∏

<i j>
Ψi j(xi,x j) =

= e−∑i Ei(xi)−∑<i j>Ei j(xi,x j).

The problem of finding the most probable set of disparities is NP hard. Good approximate
solutions can be achieved using algorithms based on min-cut/max-flow formulations (Boykov et al.,

1893

Ø State space is horizontal displacement (disparity) between 
corresponding pixels in aligned images (~50 options)

Ø Yanover, Meltzer, Weiss (JMLR 2006) show reweighted 
max-product finds global MAP in ~90% of test instances

� log st(xs, xt)



Loopy Particle Max-Product

Select diverse subset 
and repeat…

Augment
Particles

1 RMP
Update

2 Select
Diverse

3
Colors



Diverse Particle Selection

ØAccounts for spanning tree distribution
ØRemains submodular
ØSame greedy approximation

Minimize reweighted message distortion:



Pseudo-Max-Marginal Error

Recall pseudo-max-marginal definitions:

Selection IP objective upper bounds 
pseudo-max-marginal distortion.



VideoPose2 Experiments

Comparison on VideoPose2 
dataset of ~2,000 video frames 
from TV shows [Sapp et al., 2011]

D-PMP
T-PMP



Pose Tracking Particles

Greater diversity in particles allows 
D-PMP to reason more globally

D-PMP

T-PMP

Colors

Both right arm hypotheses



VideoPose2 Experiments [Sapp et al. 2011]

Ø Superior to static image estimates (--,--)
Ø Clear improvement over Sapp et al. baseline
Ø D-PMP superior to Flowing Puppets in close 

detection ranges.  Looking at failure cases.



Protein Structure Prediction

All information for predicting 3D structure 
encoded in amino acid sequence and physics



Protein Side Chains

Trp (W)Phe (F)Leu (L) Val (V)

…

Backbone

Sidechain
20 Amino Acid Types

Side chain prediction: Estimate side 
chains given fixed backbone.

Sidechains
Backbone



Dihedrals and Rotamers

ØCompact angular encoding 
Ø1D-4D continuous state

Dihedral Angles:

300o
180o

60o

Rotamers

[Shapovalov & Dunbrack 2007]

Truth Rotamers

Rotamer discretization based on marginal 
statistics fails to capture fine details…



x5
x6

x7
x8

x4

x3

x1
x2 x9

Side Chain Prediction

[ Image: Harder et al., BMC Informatics 2010 ]

Edges between amino acids 
within distance threshold.



Side Chain Prediction

[ Image: Harder et al., BMC Informatics 2010 ]

Statistical and physical 
potential functions.

Atomic InteractionRotamer Likelihood



D-PMP for Side Chains

Continuous optimization of side chains:

ØCaptures non-rotameric side chains
ØConformational diversity
ØLikelihood-based proposals

Augment
Particles

1 RMP
Update

2
Select

Diverse

3



Rosetta

Ø Energy model used in FoldIt game
Ø Simulated annealing (SA) Monte Carlo
Ø Independent chains for multiple optima

Gradient 
Optimization

2 Rosetta 
Energy

3

Rotamer Proposal1

Accept / 
Reject

3

Replace SA with D-PMP.  Use Rosetta as 
black-box energy method.



Protein Side Chain Prediction

20 Proteins
(11 Runs) 370 Proteins

G-PMP, T-PMP, D-PMP, Rosetta simulated 
annealing [Rohl et al., 2004]

Log-probability of MAP estimate for…

[ Pacheco et al., ICML 2015 ]



Rosetta
G-PMP
T-PMP

D-PMP

Protein Side Chain Prediction
Root mean square deviation (RMSD) 

from x-ray structure.

Oracle selects best configuration in 
current particle set.



Non-Rotameric Side Chains
Truth RotamersRosetta D-PMP

Not all side chains obey standard 
rotamer discretization.

Penicillin Acylase Complex, Trp154 [Shapovalov & Dunbrack 2007]



Protein Side Chain Prediction



Protein Side Chain Prediction



Contributions
Reliable particle-based MAP inference 

for graphical models with continuous variables:
object shape, articulation, position, motion, …

Validation: Inference of 
multiple poses, motions, 
protein conformations, …

Guarantees of Reliabilty:
Rigorous, non-asymptotic 
bounds on accuracy of 
diverse particle selection 
Code: General-purpose, 
black-box inference for 
continuous graphical models


