
University of California, Irvine

ICS 52: Introduction to Software
Engineering

Fall Quarter 2002
Professor Richard N. Taylor

Lecture Notes: Testing

http://www.ics.uci.edu/~taylor/ICS_52_FQ02/syllabus.html
Copyright 2001, Richard N. Taylor. Duplication of course

material for any commercial purpose without written permission is prohibited.

University of California, Irvine

Two Approaches
u White box testing

– Structural testing
– Test cases designed, selected, and ran based on structure of the source

code
– Scale: tests the nitty-gritty
– Drawbacks: need access to source

u Black box testing
– Specification-based testing
– Test cases designed, selected, and ran based on specifications
– Scale: tests the overall system behavior
– Drawback: less thorough

University of California, Irvine

Structural Testing
u Use source code to derive test cases

– Build a graph model of the system
» Control flow
» Data flow

– State test cases in terms of graph coverage
u Choose test cases that guarantee different types of coverage

– Node coverage
– Edge coverage
– Loop coverage
– Condition coverage
– Path coverage

University of California, Irvine

Example

}8

Node getSecondElement() {1

 return null;6
 if (head.next == null)5
 return null;4

 return head.next.node;7

 if (head == null)3
 Node head = getHead();2

1 32 4 5 6 7

University of California, Irvine

Example

}11

float homeworkAverage(float[] scores) {1

 total = total – min;9
 }8
 total += scores[i];7
 min = scores[i];6
 if (scores[i] < min)5
 for (int i = 0 ; i < scores.length ; i++) {4

 return total / (scores.length – 1);10

 float total = 0;3
 float min = 99999;2

1 3 7 82 4 5 6 9 10

University of California, Irvine

Node Coverage
u Select test cases such that every node in the graph is visited

– Also called statement coverage
» Guarantees that every statement in the source code is executed at least once

u Selects minimal number of test cases

1 3 7 82 4 5 6 9 10

Test case: { 2 }

University of California, Irvine

Edge Coverage
u Select test cases such that every edge in the graph is visited

– Also called branch coverage
» Guarantees that every branch in the source code is executed at least once

u More thorough than node coverage
– More likely to reveal logical errors

1 3 7 82 4 5 6 9 10

Test case: { 2, 1 }

University of California, Irvine

Other Coverage Criteria
u Loop coverage

– Select test cases such that every loop boundary and interior is tested
» Boundary: 0 iterations
» Interior: 1 iteration and > 1 iterations

– Watch out for nested loops
– Less precise than edge coverage

u Condition coverage
– Select test cases such that all conditions are tested

» if (a > b || c > d) …
– More precise than edge coverage

University of California, Irvine

Other Coverage Criteria
u Path coverage

– Select test cases such that every path in the graph is visited
– Loops are a problem

» 0, 1, average, max iterations
u Most thorough…
u …but is it feasible?

University of California, Irvine

Challenges
u Structural testing can cover all nodes or edges without revealing obvious

faults
– No matter what input, program always returns 0

u Some nodes, edges, or loop combinations may be infeasible
– Unreachable/unexecutable code

u “Thoroughness”
– A test suite that guarantees edge coverage also guarantees node

coverage…
– …but it may not find as many faults as a different test suite that only

guarantees node coverage

University of California, Irvine

More Challenges
u Interactive programs
u Listeners or event-driven programs
u Concurrent programs
u Exceptions
u Self-modifying programs
u Mobile code
u Constructors/destructors
u Garbage collection

University of California, Irvine

Specification-Based Testing
u Use specifications to derive test cases

– Requirements
– Design
– Function signature

u Based on some kind of input domain
u Choose test cases that guarantee a wide range of coverage

– Typical values
– Boundary values
– Special cases
– Invalid input values

University of California, Irvine

“Some Kind of Input Domain”
u Determine a basis for dividing the input domain into subdomains

– Subdomains may overlap
u Possible bases

– Size
– Order
– Structure
– Correctness
– Your creative thinking

u Select test cases from each subdomain
– One test case may suffice

University of California, Irvine

Example

}11

float homeworkAverage(float[] scores) {1

 total = total – min;9
 }8
 total += scores[i];7
 min = scores[i];6
 if (scores[i] < min)5
 for (int i = 0 ; i < scores.length ; i++) {4

 return total / (scores.length – 1);10

 float total = 0;3
 float min = 99999;2

University of California, Irvine

Possible Bases
u Array length

– Empty array
– One element
– Two or three elements
– Lots of elements

Input domain: float[]
Basis: array length

one

small

emptylarge

University of California, Irvine

Possible Bases
u Position of minimum score

– Smallest element first
– Smallest element in middle
– Smallest element last

Input domain: float[]
Basis: position of minima

somewhere in middle
first last

University of California, Irvine

Possible Bases
u Number of minima

– Unique minimum
– A few minima
– All minima

Input domain: float[]
Basis: number of minima

all data equal1 minimum
2 minima

University of California, Irvine

Testing Matrix

NotesExpected
output

Basis
(subdomain)

Test case
(input)

University of California, Irvine

homeworkAverage 1

Empty One Small Large

crashes!

86.0

87.3

92.5

(87.3)

(80,81,82,83,
 84,85,86,87,
 88,89,90,91)

(90,95,85)

x

x

x

0.0x()

NotesExpected
output

Basis: Array lengthTest case
(input)

University of California, Irvine

homeworkAverage 2

First Middle Last

88.0

88.0

97.5

(87,88,80,89)

(87,88,89,80)

(99,98,0,97,96)

x

x

x

88.0x(80,87,88,89)

NotesExpected
output

Basis: Position of minimumTest case
(input)

University of California, Irvine

homeworkAverage 3

One Several All

88.0

87.0

73.5

(87,86,86,88)

(88,88,88,88)

(99,98,0,97,0)

x

x

x

88.0x(80,87,88,89)

NotesExpected
output

Basis: Number of minimaTest case
(input)

