
University of California, Irvine 1

ICS 52: Introduction to Software
Engineering

Fall Quarter 2002
Professor Richard N. Taylor

Lecture Notes: CM, Management, and Evolution
Many slides taken from Ian Sommerville’s text…

http://www.ics.uci.edu/~taylor/ICS_52_FQ02/syllabus.html
Copyright 2021, Richard N. Taylor. Duplication of course

material for any commercial purpose without written permission is prohibited.

University of California, Irvine 2

A “Survival Fare” of Topics

uConfiguration Management
uMaintenance and Evolution
uProject Management

University of California, Irvine 3

u New versions of software systems are created as they change
– For different machines/OS
– Offering different functionality
– Tailored for particular user requirements

u Configuration management is concerned with managing evolving software
systems
– System change is a team activity
– CM aims to control the costs and effort involved in making changes to a

system

Configuration management

University of California, Irvine 4

System families

University of California, Irvine 5

Configuration Hierarchy (for 1 family member)

University of California, Irvine 6

u All CM information should be maintained in a
configuration database

u This should allow queries about configurations to be
answered
– Who has a particular system version?
– What platform is required for a particular version?
– What versions are affected by a change to component X?
– How many reported faults in version T?

u The CM database should preferably be linked to the software being managed

 The configuration database

University of California, Irvine 7

u Version An instance of a system which is
functionally distinct in some way from other
system instances

u Variant An instance of a system which is
functionally identical but non-functionally
distinct from other instances of a system

u Release An instance of a system which is
distributed to users outside of the development
team

Versions/variants/releases

University of California, Irvine 8

Version identification
u Procedures for version identification should define an unambiguous way of

identifying component versions
u Three basic techniques for component identification

– Version numbering
– Attribute-based identification
– Change-oriented identification

University of California, Irvine 9

Version derivation structure

University of California, Irvine 10

Version management tools
u Version and release identification

– Systems assign identifiers automatically when a new version is submitted
to the system

u Storage management.
– System stores the differences between versions rather than all the

version code
u Change history recording

– Record reasons for version creation
u Independent development

– Only one version at a time may be checked out for change. Parallel
working on different versions

University of California, Irvine 11

Delta-based versioning

University of California, Irvine 12

System building
u Building a large system is computationally expensive and may take several

hours
u Hundreds of files may be involved
u System building tools may provide

– A dependency specification language and interpreter
– Tool selection and instantiation support
– Distributed compilation
– Derived object management

Make-oids

University of California, Irvine 13

Component dependencies

University of California, Irvine 14

u Maintenance to repair software faults
– Changing a system to correct deficiencies in the way meets

its requirements
u Maintenance to adapt software to a different operating environment

– Changing a system so that it operates in a different environment
(computer, OS, etc.) from its initial implementation

u Maintenance to add to or modify the system’s functionality
– Modifying the system to satisfy new requirements

Types of maintenance

University of California, Irvine 15

Distribution of maintenance effort

University of California, Irvine 16

Management of Software Engineering
u Planning

– Objectives
– Necessary resources
– How to acquire resources
– How to achieve goals

u Organizing
– From small group structure to large organizations

u Staffing: the key resource in software development
u Directing

– ensure continuing understanding and buy-in
u Controlling

– Measure performance and take corrective action when necessary

University of California, Irvine 17

Project Control: Task-based
u Work Breakdown Structures

– Hierarchical statement of the tasks to be performed
» a subset of a statement of the process which will be followed

u “Off-line” management schemes
– Gantt charts

» Bar charts where length of bar proportional to the length of time planned for the
activity

» Can be used as a statement of schedule
» Useful for analysis of resource deployment (e.g. maximum number of engineers

needed at any one time)
– PERT charts

» A network of activities showing dependencies (precedence relationships
» Exposes critical path
» Shows maximal possible parallelism in project execution

University of California, Irvine 18

Gantt Chart Example

Source: Ghezzi, et.al., pg. 436

University of California, Irvine 19

PERT Chart Example

Source: Ghezzi, et.al., pg.. 438

