 VirtualArtViewer Design Document 14

Design Document

VirtualArtViewer Application

Paragon Software, Inc.

Contracted by “Apogee Arts”, Inc.

ICS 52

Fall, 2002

Professor Richard N. Taylor

Information in this document is subject to change without notice. Companies, names, and data used in examples herein are fictitious unless otherwise noted.

Permission is hereby granted to reprint or retransmit this document, in original, printed or photocopied format as required.

© 2002 The Regents of the University of California. All Rights Reserved Worldwide.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

 chapter 1

Introduction

This is the official design document for the VirtualArtViewer application, based on the official requirements document for the same application developed by the ICS 52 staff. VirtualArtViewer is a new desktop application that offers a hypermedia framework to allow any user to view information about any painting and all related descriptions.

The main architectural style of the VirtualArtViewer application is a client-server style.

In this architecture, the administrator and the user act as clients for the Apogee Arts database which exists on a different machine; thus exhibiting the client-server architectural style. The highest-level design elements in the architecture are the User, the Administrator and the Apogee Arts server/database (AA Server); they are decomposed into more detailed modules.

Note: For the remainder of this document, provided interfaces on components will be represented on the TOP of the box, and required interfaces will be represented on the BOTTOM.
The high-level architecture for the system is shown in Figure 1-1.

User

The description of this module has been omitted from the Design document.

Administrator

Please see Chapter 2 for a detailed description of this module.

AA Server

 Please see Chapter 3 for a detailed description of this module.

 Chapter 2

Administrator Design

Administrator Module

Purpose

The purpose of this module is to allow Apogee Arts, Inc. administrators to create new paintings and artist records, to edit and delete existing records, to search for painting and artist information, to print and to generate reports.

Rationale

This module is created to centralize and encapsulate all the features and services provided to the administrator.

High-Level Module Design

The administrator module is broken down into high-level modules, as shown in Figure 2-1.

Required Interface

The required interface of this module is the union of the required interfaces of the following sub modules:

· Add

· View & Edit Painting

· View & Edit Artist

· Search

For more detail, please see these modules’ descriptions.

Provided Interface

This module has no provided interface.

View and Edit Painting Module

Purpose

The purpose of this module is to allow the administrator to view, edit and delete paintings.

Rationale

This module is created to group together the view and edit features for painting information that an administrator can use.

Provided Interface

This module has no provided interface.

Required Interface

PaintingADT getPaintingInfo(String paintingTitle) throws PaintingNotFoundException;

boolean isPaintingLinkValid(String paintingTitle);

boolean isArtistLinkValid(String artistName);

boolean deletePainting(String paintingTitle);

boolean savePaintingChanges(String oldPaintingTitle, PaintingADT paintingObject) throws PaintingTitleConflictException;

View and Edit Artist Module

Purpose

The purpose of this module is to allow an administrator to view, edit and delete artist information.

Rationale

This module is created to group together the view and edit features for the artist information that an administrator can use.

Provided Interface

This module has no provided interface.

Required Interface

ArtistADT getArtistInfo(String artistName) throws ArtistNotFoundException;

boolean isPaintingLinkValid(String paintingTitle);

boolean isArtistLinkValid(String artistName);

boolean deleteArtist(String artistName);

boolean saveArtistChanges(String oldArtistName, ArtistADT artistObject) throws ArtistNameConflictException;

Add Module

Purpose

The purpose of this module is to allow the administrator to add new paintings and artists.

Rationale

This module is created to group together the add functionality that an administrator can use.

Provided Interface

This module has no provided interface.

Required Interface

boolean addNewPainting(PaintingADT paintingObject) throws PaintingTitleConflictException;

boolean addNewArtist(ArtistADT artistObject) throws ArtistNameConflictException;

Search Module

Purpose

The purpose of this module is to allow an administrator to search for paintings and artists.

Rationale

This module is created to centralize and encapsulate the search services provided to the administrator.

Required Interface

String[] searchPaintingByTitle(String paintingTitle);

String[] searchArtistByName(String artistName);

String[] combinedSearch(String paintingTitle, String artistName);

Provided Interface

This module has no provided interface.

Chapter 3

AA Server Design

AA Server Module

Purpose

The purpose of this module is to handle all the features that the Administrator module provides to the administrator.

Rationale

This module is created to centralize and encapsulate the database that supports administrator functionality and is well modularized to support later expansion.

High-level Module Design

The AA server module is composed of two sub-modules, as illustrated in Figure 3-1.

Provided Interface

The provided interface of this module is the subset of the union of the provided interfaces of the following sub modules:

· Painting Module

· Artist Module

For more detail, please see these modules’ descriptions.

Required Interface

This module has no required interface.

Painting Module

Purpose

The purpose of this module is to store and manage the painting records.

Rationale

This module is created to centralize and encapsulate the data for paintings.

Provided Interface

PaintingADT getPaintingInfo(String paintingTitle) throws PaintingNotFoundException;

Description:

Returns the painting information for the specified painting.

Parameters:

paintingTitle: The title of the painting whose information is requested.

Exceptions:

PaintingNotFoundException: If the painting with the specified name is not found.

Returns:

The painting information encapsulated as a PaintingADT.

boolean isPaintingLinkValid(String paintingTitle);

Description:

Finds out whether a painting with the specified title exists.

Parameters:

paintingTitle: The title of the painting.

Exceptions:

No exceptions.

Returns:

True if the painting with the specified title exists else returns false.

boolean deletePainting(String paintingTitle);

Description:

Deletes the specified painting from the server database.

Parameters:

paintingTitle: The title of the painting to be deleted.

Exceptions:

No exceptions.

Returns:

True if the painting with the specified title was deleted successfully else returns false.

boolean savePaintingChanges(String oldPaintingTitle, PaintingADT paintingObject) throws PaintingTitleConflictException;

Description:

Replaces the original existing painting information with the new painting information IF the new painting information has the same original title OR IF the new title is different from the original title but is still unique in the server/database.

Parameters:

oldPaintingTitle: The original name of the painting whose information has been changed.

paintingObject: The new painting information that should replace the existing original painting information.

Exceptions:

PaintingTitleConflictException: If the new painting information (paintingObject) has a title that is different from the oldPaintingTitle and conflicts with an existing painting title.

Returns:

True if the new painting information was successfully saved else returns false.

boolean addNewPainting(PaintingADT paintingObject) throws PaintingTitleConflictException;

Description:

Adds the new painting to the server/database.

Parameters:

paintingObject: Object containing the new painting information to be added.

Exceptions:

PaintingTitleConflictException: If a painting with the same title already exists.

Returns:

True, if the new painting information was successfully added, else returns false.

String[] searchPaintingByTitle(String paintingTitle);

Description:

Retrieves the titles of all paintings that contain the specified paintingTitle.

Parameters:

paintingTitle: The string that is used to search for paintings by title.

Exceptions: None.

Returns:

A set of strings representing the titles of all paintings that contained the specified paintingTitle.

String[] combinedSearch(String paintingTitle, String artistName);

Description:

Retrieves titles of all paintings that contain the specified paintingTitle and have been painted by the specified artist.

Parameters:

paintingTitle: The string that is used to search for paintings by title.

artistName: String representing the name of artist specified.

Exceptions:

No exceptions.

Returns:

A set of strings representing the titles of paintings that met the search criteria.

Required Interface

This module has no required interface.

Artist Module

Purpose

The purpose of this module is to store and manage all the artist information.

Rationale

This module is created to centralize and encapsulate the all the information/data relating to the artists.

Provided Interface

ArtistADT getArtistInfo(String artistName) throws ArtistNotFoundException;

Description:

Returns the artist information for the specified artist.

Parameters:

artistName: The name of the artist whose information is requested.

Exceptions:

ArtistNotFoundException: If the artist information for the specified name is not found.

Returns:

The artist information encapsulated as a ArtistADT.

boolean isArtistLinkValid(String artistName);

Description:

Finds if the database contains artist information for the specified artist.

Parameters:

artistName: The name of the artist specified.

Exceptions: None.

Returns:

True if the database contains an artist information for the specified artist, else returns false.

boolean saveArtistChanges(String oldArtistName, ArtistADT artistObject) throws ArtistNameConflictException;

Description:

Replaces the original existing artist information with the new artist information IF the new artist information has the same original artist name ("oldArtistName") OR IF the new artist name is different from the original artist name but is still unique in the server/database.

Parameters:

oldArtistName: The original artist name in the artist information.

artistObject: The new artist information.

Exceptions:

ArtistNameConflictException: If the new artist information (contained in artistObject) has an artist name that is different from the original artist name and conflicts with the name of an existing artist information.

Returns:

True if the changed artist information is saved successfully else returns false.

boolean deleteArtist(String artistName);

Description:

Deletes the artist information with the specified name.

Parameters:

artistName: The name of the artist whose information is to be deleted.

Exceptions: None.
Returns:

Deletes the specified artist information and returns true, else returns false.

boolean addNewArtist(ArtistADT artistObject) throws ArtistNameConflictException;

Description:

Adds the new artist information to the database if it does not already exist.

Parameters:

artistObject: The artist information that needs to be added.

Exceptions:

ArtistNameConflictException: If artist information with the same name already exists.

Returns:

True if the new artist information is added successfully, else returns false.

String[] searchArtistByName(String artistName);

Description:

Searches for artist information using specified artist name.

Parameters:

artistName: The name of the artist that is being searched for.

Exceptions: None.

Returns:

A set of strings containing the names of artists that contain the specified query string "artistName".

Required Interface

This module has no required interface.

Module ADTs

ArtistADT {

String artistName;

String[] setOfPaintings;

String artistDescription;

}

PaintingADT {

String paintingTitle;

// The local path where the image is stored.

 String imageFilePath;

String artistName;

String theme;

 String year;

 String galleryLocation;

 String paintingDescription;

}

Figure 3-1:

High-Level AA Server Module Architecture

Provided Interface

Required Interface

User

Provided Interface

Required Interface

AA Server

Figure 1-1:

High-Level Architecture

Provided Interface

Required Interface

AA Server

Provided Interface

Required Interface

Search

Figure 2-1:

High-Level Administrator Module Architecture

Provided Interface

Required Interface

View & Edit Artist

Provided Interface

Required Interface

Add

Provided Interface

Required Interface

View & Edit Paintings

Provided Interface

Required Interface

Administrator Module

Provided Interface

Required Interface

Administrator

Provided Interface

Required Interface

Artist Module

Provided Interface

Required Interface

Painting Module

