
http://www.isr.uci.edu/

Myx Tutorial

Hazel Asuncion
For Inf 221

February 24, 2009
Slides taken and adapted from Eric Dashofy’s
C2-style & Implementing your system in Myx

Implementing Lunar Lander

Design, Myx Style
Implement Myx Components
Assign Myx Components to
Implementations

Designing, Myx Style
Architectural style – set of constraints put on
development to elicit beneficial properties
Myx style
– Constraints:

• Components – loci of computation; provide services to other
connectors; transform data

• Connectors – loci of communication; move data between
bricks

Components & connectors are collectively called “bricks”

Designing, Myx Style
Myx style
– Constraints:

• Interfaces – “portals”
through which bricks
interact

– Service Types:
» Provided (Provided

by the component)
» Required (Required

by the component)
– Direction: in, out, or

inout (flow of control)

Clock

Bus1

LCD
Driver

Links

ConfigurationMyx style
– Constraints:

• Links – associations
between provided and
required interfaces

– Direction of control is
provided by the interface
endpoints

Designing, Myx Style

Designing, Myx Style

Myx style
– Constraints:

• Interface mappings – similar to links but used to
associate an interface of the outer brick with the
interface of the inner brick

Constraints
– Links have exactly two endpoints

• One required interface to one provided interface
– Substrate independence

• A brick may make assumptions about services
provided by other bricks above it, but not services
provided by other bricks below it

– Communication only through interfaces

Designing, Myx Style

Communication
– Synchronous invocation – permitted upward

only
– Achieved through function call

Designing, Myx Style

Communication
– Synchronous invocation – with proxy

• Proxy enables
– Dynamic linking
– Data format transformation
– Logging
– Debugging

Designing, Myx StyleDesigning, Myx Style

Communication
– Asynchronous notification

– Event pump – receives the message and forwards the
message to all the bricks connected to its interface

Designing, Myx StyleDesigning, Myx Style

Designing, Myx Style

Communication
– Asynchronous requests

– Event pump – similar to synchronous notification
» Adds the requests to the queue
» Flow of control immediately given back to the

requester

Designing, Myx Style
Communication
– Multiway Call Pattern

• Multiway Connector – more
advanced

– Use when the calling component
want to invoke the same
operation on all three
components simultaneously

– May be implemented
» Synchronous Multiway Call
» Asynchronous Multiway Call
» Asynchronous Multiway Call

with Asynchronous
Notification

Myx Style - Benefits
Performance – no runtime overhead, if use the
synchrounous procedure calls
Reusability – component/connector can be
reused
Flexibility – substrate independence – can
replace a layer of components/connectors
Concurrency – asynchronous communication
Reduced deadlock – bricks are in separate
memory locations
Distributability – easy to split an application to
run on different processes or machines

Designing…in a Nutshell
1. Create a new component
2. Add component interfaces
3. Create new component types (usually

one for each new component added)
4. Assign components to component types
5. Add signatures to component types
6. Add links
7. Create interface types
8. Assign interfaces and signatures to

interface types (Type Wranger)

Taken from Scott Hendrickson’s tutorial

Implementation
You have designed an architecture for a Lunar
Lander application
– This could be termed the prescriptive architecture—it

is what you intend to construct
Now, you have to go implement the system
– This will test the assumptions you made during

design
– You will be challenged to do so in a way that plausibly

connects your architecture to your implementation
– Your architecture may end up slightly different—this is

a common phenomenon where descriptive
architecture != prescriptive architecture

Implementation Challenges
Although your architectures are going to be
different, they have some commonalities
– Components
– Interconnections (links, possibly explicit connectors)
– Explicit provided and required interfaces

Your target platform (Java) is mismatched
– Objects
– Pointers/references everywhere
– Optional provided interfaces

How do we bridge the gap?

An Architecture Framework
An architecture framework is software that
bridges the gap between the concepts of
an architectural style and the capabilities
of a given platform (programming
language + operating system + runtime)

Implementing a Myx
architecture

Myx architecture

Application (implemented)

Java/JVM

Native OS

Implemented by…

Uses services provided by…

??? How do we bridge this gap?

Myx
World

Object-
oriented
World

Implementing a Myx
architecture

Myx architecture

Application (implemented)

Java/JVM

Native OS

Implemented by…

Uses services provided by…

Architecture Framework

Uses services provided by…

Uses services provided by…

Object-
oriented
World

Myx
World

Example
Myx World
– Components
– Connectors
– Events
– Links
– Many threads
– Synchronous and

Asynchronous
communication

Java World
– Objects
– Method calls
– Parameters
– References
– Few threads
– Synchronous

communication

Enter myx.fw
myx.fw is an architecture framework for the Myx
style built in Java, providing:
– Abstract base classes for components, connectors
– Reusable connectors (local & network)
– (Pluggable) topology management
– (Pluggable) threading policies

Essentially, myx.fw does the hard work,
components and connectors simply implement
behaviors.

Your basic myx.fw
component…
package edu.uci.ics.mypackage;

//standard imports
import edu.uci.isr.myx.fw.AbstractMyxSimpleBrick;
import edu.uci.isr.myx.fw.IMyxName;
import edu.uci.isr.myx.fw.MyxUtils;

//May not need this import
//This can be used in looking up a specific component
import edu.uci.isr.myx.fw.MyxRegistry;

Your basic myx.fw
component…

public class MyMyxComponent extends AbstractMyxSimpleBrick
{

}

Implements lots of boilerplate
functionality from the IMyxBrick,

IMyxLifecycleProcessor,
IMyxProvidedServiceProvider

Name must exactly match the
interface name on the component

public class MyMyxComponent extends AbstractMyxSimpleBrick
{

private IView viewer;

//declare interfaces
public static final IMyxName INTERFACE_NAME_OUT =

MyxUtils.createName(“out_interface");

}

Your basic myx.fw
component…

Lifecycle Methods
public void init(){
//called when component/connector is created
//but component not guaranteed to be hooked up

}

public void begin(){
//called when component/connector is hooked up
//in the architecture, should send initial messages

}

public void end(){
//called when component/connector is about to be
//unhooked, should send final messages

}

public void destroy(){
//called when component/connector is about to be
//destroyed

}

A boilerplate myx.fw
component…

public class MyMyxComponent extends AbstractMyxSimpleBrick
{

private IView viewer;

//declare interfaces
public static final IMyxName INTERFACE_NAME_OUT =

MyxUtils.createName(“out_interface");

public static final IMyxName INTERFACE_NAME_IN =

MyxUtils.createName(“in_interface");

public void begin(){ //called automatically by fw.
//send out initial events
//may get required objects here

viewer =
(IView).MyxUtils.getFirstRequiredServiceObject(this,
INTERFACE_NAME_OUT)

}

A boilerplate myx.fw
component…

public class MyMyxComponent extends AbstractMyxSimpleBrick
{

:

public static final IMyxName INTERFACE_NAME_IN =

MyxUtils.createName(“in_interface");

:

public Object getServiceObject(IMyxName name) {
//if no interfaces are going in, always return null
//In this case, we have an interface coming in

if(name.equals(INTERFACE_NAME_IN)){
return this;

}
return null;

}

ArchStudio Tour

Further references
Myx Architecture Style
– http://www.isr.uci.edu/projects/archstudio/myx.html

Intro to ArchStudio
– http://tps.ics.uci.edu/svn/projects/archstudio4/documents/INF123_IntroT

oArchStudio.pdf
Hello World Tutorials
– http://www.ics.uci.edu/~hasuncio/classes/in4matx119/HelloWorldTutoria

l.pdf
– http://tps.ics.uci.edu/svn/projects/archstudio4/documents/INF123_Hello

World_OneComp_Mac.pdf
– http://tps.ics.uci.edu/svn/projects/archstudio4/documents/HelloWorld_T

woComp.pdf
Environment setup for current Lunar Lander implementation:
– http://tps.ics.uci.edu/svn/projects/archstudio4/documents/INF123_LL_E

nvSetup.pdf
– http://tps.ics.uci.edu/svn/projects/archstudio4/documents/INF123_LL_E

nvSetup2.pdf

