
1 of 16

A Component- and Message-Based
Architectural Style for GUI Software

Richard N. Taylor, Nenad Medvidovic,
Kenneth M. Anderson, E. James Whitehead Jr.,

 Jason E. Robbins, Kari A. Nies,
Peyman Oreizy and Deborah L. Dubrow

Abstract-- While a large fraction of application code is devoted to
graphical user interface (GUI) functions, support for reuse in this
domain has largely been confined to the creation of GUI toolkits
(“widgets”). We present a novel architectural style directed at sup-
porting larger grain reuse and flexible system composition. More-
over, the style supports design of distributed, concurrent
applications. Asynchronous notification messages and asynchronous
request messages are the sole basis for inter-component communica-
tion. A key aspect of the style is that components are not built with
any dependencies on what typically would be considered lower-level
components, such as user interface toolkits. Indeed, all components
are oblivious to the existence of any components to which notification
messages are sent. While our focus has been on applications involv-
ing graphical user interfaces, the style has the potential for broader
applicability. Several trial applications using the style are described.1

Index Terms-- architectural styles, message-based architectures,
graphical user interfaces (GUIs), heterogeneity, concurrency.

I. INTRODUCTION

Software architectural styles are key design idioms [8, 24].
UNIX’s pipe-and-filter style is more than twenty years old; black-
board architectures have long been common in AI applications.
User interface software has typically made use of two primary
runtime architectures: the client-server style (as exemplified by X
windows) and the call-back model, a control model in which
application functions are invoked under the control of the user
interface. Also well known is the model-view-controller (MVC)
style [15], which is commonly exploited in Smalltalk applica-
tions. The Arch style is more recent, and has an associated meta-
model [38].

This paper presents a new architectural style. It is designed to
support the particular needs of applications that have a graphical
user interface aspect, but the style clearly has the potential for
supporting other types of applications. This style draws its key
ideas from many sources, including the styles mentioned above,
as well as specific experience with the Chiron-1 user interface
development system [14, 34]. In the following exposition, the
style is referred to as the Chiron-2, or C2, style.

A key motivating factor behind development of the C2 style is

1. This material is based upon work sponsored by the Air Force Materiel Com-
mand, Rome Laboratory, and the Advanced Research Projects Agency under con-
tract number F30602-94-C-0218. The content of the information does not
necessarily reflect the position or policy of the Government and no official
endorsement should be inferred.

the emerging need, in the user interface community, for a more
component-based development economy [37]. User interface
software frequently accounts for a very large fraction of applica-
tion software, yet reuse in the UI domain is typically limited to
toolkit (widget) code. The architectural style presented supports a
paradigm in which UI components, such as dialogs, structured
graphics models of various levels of abstraction, and constraint
managers, can more readily be reused. A variety of other goals
are potentially supported as well. These goals include the ability
to compose systems in which: components may be written in dif-
ferent programming languages, components may be running con-
currently in a distributed, heterogeneous environment without
shared address spaces, architectures may be changed at runtime,
multiple users may be interacting with the system, multiple tool-
kits may be employed, multiple dialogs may be active and
described in different formalisms, and multiple media types may
be involved. We have not yet demonstrated that all these goals are
achievable or especially supported by this style. We have exam-
ined several key properties and built several diverse experimental
systems, however. The focus of this paper, therefore, is to present
the style and describe the evidence we have to date. We believe
our preliminary findings are encouraging and that the style has
substantial utility “as is.”

The new style can be informally summarized as a network of
concurrent components hooked together by message routing
devices. Central to the architectural style is a principle of limited
visibility: a component within the hierarchy can only be aware of
components “above” it and completely unaware of components
which reside “beneath” it. Notions of above and below are used in
this paper to support an intuitive understanding of the architec-
tural style. As is typical with virtual machine diagrams found in
operating systems textbooks, in this discussion the application
code2 is arbitrarily regarded as being at the top while user inter-
face toolkits, windowing systems, and physical devices are at the
bottom. The human user is thus at the very bottom, interacting
with the physical devices of keyboard, mouse, microphone, and
so forth.3

2. It is sometimes convenient to consider an application system as being subdi-
vided into two parts: one part are those aspects of the system which do not directly
perform any user interface functions (the “application”), and the other part are
those aspects concerned with interacting with the user (the “user interface”). Such
a distinction is rather arbitrary, and can usually be read as “those parts of an appli-
cation system not constructed according to our architectural style and principles,
and those parts which are.”

2 of 16

All components have their own thread(s) of control and there
is no assumption of a shared address space. At minimum, this
means that components may not assume that they can directly
invoke other component’s operations or have direct access to
other components’ data. It is important to recognize that this con-
ceptual architecture is distinct from the implementation architec-
ture. There are many ways of realizing a given conceptual
architecture, and this topic will be further discussed in
Section III.E.

A small example serves to illustrate several of these points. In
Fig. 1, we diagram a system in which a program alternately
pushes and pops items from a stack; the system also displays the
stack graphically, using the visual metaphor of a stack of plates in
a cafeteria. The human user can “directly” manipulate the stack
by dragging elements to and from it, using a mouse. As the user
drags elements around on the display, a scraping sound is played.
Whenever the stack is pushed, a sound appropriate for a spring
being compressed is played; whenever the stack is popped, the
sound of a plate breaking is played.

Fig. 1. An audio-visual stack manipulation system.

Visual depiction of the stack is performed by the “artist” that
receives notification of operations on the stack and creates an
internal abstract graphics model of the depiction. The rendering
agent monitors manipulation of this model and ultimately creates
the pictures on the workstation screen. To produce the audio
effects, the sound server at the bottom of the hierarchy monitors
the notifications sent from the artist and the graphics server;
depending on the events detected, the various sounds are played.
Performance is such that playing of the sound is very closely
associated with mouse movement; there is no perceptible lag.
The artist and rendering agent are completely unaware of the
activities of the sound server; similarly, the stack manipulator is
completely unaware that its stack object is being visualized.

The paper is organized as follows. Section II presents the new
architectural style. Section III presents a set of sample applica-

3. While this vertical orientation may be helpful in developing understanding, it
should be noted that the precise uses of top and bottom, provided below, do not
rest on assumption of this particular vertical orientation.

Sound
Server

Stack
Manipulator

Stack
ADT

Cafeteria Stack
Artist & Abstract Graphics

Rendering Agent
and X Server

I/O Devices I/O Devices

Legend:
Component

Connector
Communication
Link
Physical Device
Interaction

tions that have been built to investigate various aspects of the
style. Section IV discusses the C2 design environment. Section V
discusses related work and Section VI provides practical hints on
how to create an architecture in the C2 style. Discussion of open
issues and a conclusion round out the paper.

II. A UI ARCHITECTURAL STYLE SUPPORTINGHETEROGE-

NEITY, CONCURRENCY, AND COMPOSITION

In this section we present thearchitectural style and its ratio-
nale. Key elements of the C2 architectural style are components
and connectors. A configuration of a system of components and
connectors is anarchitecture. There is also a set of principles
governing how the components and connectors may be legally
composed. We attempt to provide a rationale for the desired prop-
erties of the components and connectors, as well as for the choice
of principles.

The architectural style consists ofcomponents andconnectors.
Components and connectors both have a defined top and bottom.
The top of a component may be connected to the bottom of a sin-
gle connector. The bottom of a component may be connected to
the top of a single connector. There is no bound on the number of
components or connectors that may be attached to a single con-
nector. Components can only communicate via connectors; direct
communication is disallowed. When two connectors are attached
to each other, it must be from the bottom of one to the top of the
other. Both components and connectors have semantically rich
interfaces.

Components communicate by passingmessages; notifications
travel down an architecture andrequests up. Connectors are
responsible for the routing and potential multi-cast of the mes-
sages.

A. Components

Components may have state, their own thread(s) of control,
and must have a top and bottom domain. The top domain speci-
fies the set of notifications to which the component responds, and
the set of requests that the component emits up an architecture.
The bottom domain specifies the set of notifications that the com-
ponent emits down an architecture and the set of requests to
which it responds. The elements of a bottom domain’s sets are
closely related, as will be discussed later. The two sets compris-
ing the top domain do not necessarily have any relation.

For purposes of exposition below, a specific internal architec-
ture of a component, targeted at the user interface software
domain, is assumed.4 Components contain an object with a
defined interface, a wrapper around the object, a dialog and con-
straint manager, and a domain translator, as shown in Fig. 2. The
object can be arbitrarily complex. For example, one component’s
object might be a complete structured graphics model of the con-
tents of a window. The object’s wrapper provides the following
service: whenever one of the access routines of the object’s inter-
face is invoked, the wrapper reifies that invocation and any return
values as a notification in the component’s bottom domain and
sends the notification to the connector below the component.5

4. It will be clear from the ensuing discussion that issues concerning composition
of an architecture are independent of a component’s internal structure, so this
assumption is not at all restrictive.

3 of 16

Thus the types of notifications emitted from a component are
determined by the interface to its internal object.

Fig. 2. The Internal Architecture of a C2 Component.

The access routines of the object may only be invoked by the
dialog portion of a component. This code, which may have its
own thread of control, may act upon the object for any reason,
but the intended style includes three situations: a) in reaction to a
notification that it receives from the connector above it, b) to exe-
cute a request received from the connector below it, and c) to
maintain some constraint, as defined in the dialog.

For case (a), the dialog receives a notification in its top domain
and determines what, if anything, to do as a result of receiving
the notification.

In case (b), the component receives a request in its bottom
domain and determines what, if anything, to do with the request.
For instance, it could choose to delay processing of the request,
ignore it, perform it without any additional processing, or per-
haps perform some other action.

Case (c) is best understood by considering its user interface
purpose: constraint managers are commonly employed in GUI
applications to resize fields, planarize graphs, or otherwise keep
parts of objects in some defined juxtaposition. The constraint por-
tion of a component can play this role either as part of case (a) or
(b), or the constraint manager may autonomously manipulate the
component’s object.

The dialog portion of a component may, in addition, choose to
send a request to the connector above it.

A domain translator subcomponent may also be present, to
assist in mapping between the component’s internal semantic
domain and that of the connector above it. Section II.E presents a
detailed discussion of domain translation.

B. Notifications and Requests

Components in an architecture communicate asynchronously
via messages. Messages consist of a name and an associated set
of typed parameters. There are two types of messages: notifica-
tions and requests. A notification is sent downward through a C2
architecture while a request is sent up. Notifications are
announcements of state changes of the internal object of a com-

5. Components can alternatively be formulated such that the wrapper sends the
connector the state, or part of the state, of the internal object. This variation is dis-
cussed briefly in Section VII.

Internal

Object

Wrapper

Dialog
&

Constraints

Domain
Translator

ponent. As noted above, the types of notifications that a compo-
nent can emit are fully determined by the interface to the
component’s internal object.

For instance, consider a small system consisting of two com-
ponents connected by one connector, as shown in Fig. 3. One
component manages a binary tree abstract data type (ADT) while
the other component manages a depiction of that binary tree.6 An
example notification from thebinary tree ADT component is
“new key has been inserted.” This notification is generated auto-
matically by the wrapper that monitors the usage of the compo-
nent’s internal object. Thebinary tree Artist component receives
the notification and makes calls to its internal object to update the
depiction.

Fig. 3. A partial C2 architecture.

Requests, on the other hand, are directives from components
below, generated by their dialog, requesting that an action be per-
formed by some set of components above. The requests that a
component can receive are determined by the interface to the
component’s internal object, similar to the way that notifications
are determined. The difference is that a notification is a statement
of what interface routine was invoked and what its parameters
and return values were, whereas a request is a statement of a
desired invocation of one of the object’s access functions.

To continue the example, the user may select a node of the
binary tree depiction, managed by thebinary tree Artist, indicat-
ing that the node should be removed from the tree. A request to
remove the key associated with the selected node is generated by
thebinary tree Artist and sent by the connector to thebinary tree
ADT. The binary tree ADT removes the key from its internal
object to satisfy the request. This, in turn, generates a notification
down the architecture, stating that the key has been deleted, caus-
ing thebinary tree Artist to update its depiction.

1) Interfacing with Legacy Systems: Note that many potential
C2 components, such as commercial user interface toolkits, have
interface conventions that do not match up with C2’s notifica-
tions and requests. Typically these systems will generate events
of the form “this window has been selected” or “the user has
typed the ‘x’ key” and send themup an architecture. These tool-
kit events will need to be converted by C2 bindings to the toolkits
into C2 request messages. Conversely, notifications from a C2
architecture will have to be converted to the type of invocations
that a toolkit expects. In order for these translations to occur and
be meaningful, careful thought has to go into the design of the
internal objects of the bindings to the toolkits such that they con-
tain the required functionality and are reusable across architec-
tures and applications. This is not an unreasonable task: we have

6. For purposes of this discussion, the external applications using the binary tree,
as well as the other components and connectors needed to actually display the
depiction are elided.

Binary Tree Artist
Component

Binary Tree ADT
Component

4 of 16

already accomplished this for both Motif and OpenLook in Chi-
ron-1 [34].

C. Connectors

Connectors bind components together into a C2 architecture.
They may be connected to any number of components as well as
other connectors. A connector’s primary responsibility is the
routing and broadcast of messages. A secondary responsibility is
message filtering.

Connectors may provide a number of filtering and broadcast
policies for messages, such as the following:

• No Filtering: Each message is sent to all connected compo-
nents on the relevant side of the connector (bottom for notifica-
tions, top for requests).

• Notification Filtering: Each notification is sent to only those
components that registered for it.

• Prioritized: The connector defines a priority ranking over its
connected components, based on a set of evaluation criteria
specified by the software designer during the construction of
the architecture. This connector then sends a notification to
each component in order of priority until a termination condi-
tion has been met. Prioritized connectors are useful for cases in
which several components connected to one side of the con-
nector perform the same function, e.g., spell-checking a docu-
ment, with possibly different implementations. In such a case,
some computation is needed to select the appropriate destina-
tion for a notification. For example, an HTML document needs
a spell checker that is able to ignore the HTML markup com-
mands contained therein.

• Message Sink: The connector ignores each message sent to it.
This is useful for isolating subsystems of an architecture as
well as incrementally adding components to an existing archi-
tecture. A developer can connect a new component to the
architecture and then “turn on” its connector, by changing its
filtering policy, when the component is ready to be tested.

A connector has an upper and lower domain, defined by the
components and connectors attached to it.7 These are described
in the following section.

D. Architecture Composition and Properties

An architecture consists of a specific configuration of compo-
nents and connectors. The meaningfulness of an architecture is a
function of the connections made. This section formalizes several
key relationships. In addition to aiding precise exposition, the
formalizations are the basis for automated analyses of candidate
architectures by a design environment [28].

Fig. 4. C2 Component Domains.

7. For the purposes of the discussion below, we do not make a distinction between
components attached to a connector and a connector attached to a connector.

Ci

Ci.top_out Ci.top_in

Ci.bottom_outCi.bottom_in

Let bottom_in be the set of requests received at the bottom side
of a component or connector. Letbottom_out be the set of notifi-
cations that a component or connector emits from its bottom side.
Furthermore, lettop_in be the set of notifications received on the
top side of a component or connector, and lettop_out be the set
of requests sent from its top side.

Fig. 4 represents the external view of a component Ci. Ci.top_-
out andCi.top_in are defined by the component’s dialog: they are
the requests it will be submitting and notifications it will be han-
dling. Ci.bottom_out are the notifications the component will be
making, reflecting changes to its internal object.Ci.bottom_in are
the requests the component accepts. Those requests can be
defined as a function,N_to_R, of the notifications:

This function is one-to-one and onto; it has an inverse func-
tion, R_to_N, that will uniquely map the requests to notifications.

Fig. 5. C2 Connector Domains.

Fig. 5 represents the external view of a connector Bi, with the
components Ctj and Cbk attached to its top and bottom respec-
tively. A connector’s upper and lower domains are completely
specified in terms of these components.

Consider the notifications that come in from the components
Ctj above the connector:

Then, since connectors may have the ability to filter messages,
as discussed in the previous section, the notifications that come
out of the bottom of a connector are a subset of the notifications
that come in from above. Thus, for each connector Bi, it is possi-
ble to identify the functionFilter_TB, such that

Similarly, consider the requests that come in from the compo-
nents Cbk below the connector:

Finally, if it is also possible for a connector to filter requests,
the requests that come out of the top of a connector are a subset
of those that come in from below, so the functionFilter_BT is

Ci .bottom_in N_ to_ R Ci .bottom_out()=

...

Bi

Bi.top_in1..nBi.top_out1..n

Bi.bottom_in1..mBi.bottom_out1..m

Ct1 Ct2 Ctn

...Cb1 Cb2 Cbm

Bi .top_in Ctj .bottom_out
j

∪=

Bi .bottom_out Filter_ TB Bi .top_in()=

Bi .bottom_in Cbk.top_out
k

∪=

5 of 16

defined as follows

In summary, a connector’s domain is defined by the unions of
the domains of the components above and below it, along with
any filtering that the connector does to those domains.

Pairwise relationships can be specified between the domains of
any connector and any component attached to it. These relation-
ships are expressed in terms of the potential for communication
between them.

A connector Bi and the j-th component above it, Ctj, are con-
sideredfully communicating if every request the connector sends
up to the component is “understood.”

Bi and Ctj are partially communicating if the component
understands some, but not all of the requests the connector sends:

Finally, they arenot communicating as follows:

The relationship between a connector Bi and a component Cbk
below it can be defined in a similar manner, by substituting‘bott-
om_out’ for ‘top_out’ and ‘top_in’ for ‘ bottom_in’ in the above
equations.

The degree of utilization of a component’s services, i.e., the
relationship between a component and a connector from the per-
spective of the requests and notifications the componentreceives
from the connector can be defined through a simple substitution
of terms in the three equations above. For instance, ifBi.top_out
is a non-empty proper subset ofCtj.bottom_in, then Ctj is being
partially utilized.

Clearly, the ideal scenario in an architecture would be one
where (1) components are fully communicating with the connec-
tors to which they are attached and (2) components’ services are
fully utilized. However, such a constraint would limit reusability
of components across architectures, as discussed in the following
section. Therefore, in general, there is no guarantee that a compo-
nent, Cbk, will receive notifications in reply to a request that it
issues. In addition to the potential inability of the intended recipi-
ent, Ctj, to understand the request, this can happen for several
other reasons:

• both the request and the resulting notification(s) may be lost
across the network and/or delayed due to network failure;

• the nature of the request may be such that Ctj is able to respond
to it only after receiving other requests. If those requests are
not issued, Cbk will not get a response;

• Ctj may itself need to issue requests to components above it in
order to be able to respond to the current request. If it does not
receive the required information for any of the above reasons,
it will not be able to issue notifications in response to the origi-
nal request.

Bi .top_out Filter_ BT Bi .bottom_in()=

Full- Comm Bi Ctj,() ≡
Bi . top_ outj Ctj .bottom_in⊆

Partial- Comm Bi Ctj,() ≡
Bi .top_outj Ctj .bottom_in∩ ∅≠() ∧
Bi .top_outj Ctj .bottom_in∩ Bi .top_outj⊂()

No- Comm Bi Ctj,() ≡
Bi .top_outj Ctj .bottom_in∩ ∅=

The asynchronous nature of components will allow Cbk to still
perform its function meaningfully in the above cases. Cbk may
choose to block on other messages for a certain amount of time
and/or preserve the part of its context relevant to properly han-
dling the expected notifications. After the specified time, the
component may unblock, assuming either that the request was
lost or that the intended recipient is unable to respond to the
request. The appropriate action in such a case will depend on the
component and the situation.

Finally, by utilizing the functions and relationships specified
above, it is possible to express a number of other relationships in
a given configuration (e.g., Bi.bottom_out can be expressed as a
function ofCtj.bottom_in). All such relationships can be deduced
from the complete formal definition of the C2 style [18], which
uses Z [31] as its formal notation.

The formal definition enables us to answer such questions as
whether a component can be added to an existing architecture
without modifications, whether its requests will be handled, if it
will be able to process the notifications it will be receiving, etc.
Conceivably, such analyses could be performed either statically
or dynamically. We are currently focusing only on analyses per-
formed statically, on a model of an architecture, by a system
design environment.

E. Domain Translation

Since a component has no knowledge of the interfaces of com-
ponents below it and does not directly issue requests to those
components, a component is independent of its substrate layers.
This substrate independence has a clear potential for fostering
substitutability and reusability of components across architec-
tures. One issue that must be addressed, however, is the potential
dependence of a given component on its “superstrate,” i.e., the
components above it. If each component is built so that its top
domain closely corresponds to the bottom domains of those com-
ponents with which it is specifically intended to interact in a
given architecture, its reusability value is greatly diminished. For
that reason, the C2 style introduces the notion of domain transla-
tion. Domain translation is a transformation of the requests issued
by a component into the specific form understood by the recipient
of the request, as well as the transformation of notifications
received by a component into a form understood by that compo-
nent. This transformation process is encapsulated in the domain
translator part of a component, as shown in Fig. 2.

Domain translation of a single request or notification consists
of at least two steps, described below. While this discussion
applies equally to requests and notifications, for simplicity,
examples will mainly discuss requests.

• Message Name Matching: a mismatch may occur because a
message name is different than expected. For example, a com-
ponent may issue a “stack_pop” request to a component which
has a “pop_stack” entry point. In this case, domain translation
involves a simple name replacement.

• Parameter Matching: a mismatch may occur in the number,
ordering, type, and units of parameters. As an example of
parameter matching difficulties, suppose component A issues a
“make_alarm” request giving a time delay in seconds before
component B issues an “alarm” notification. A parameter mis-
match occurs if component B only understands compound time

6 of 16

values of seconds and milliseconds, or only understands time
values if they are given in milliseconds.

Other factors may potentially affect domain translation. For
example, if a component issues a notification containing a com-
plete state, and the receiving component expects a state change
instead, the domain translator might have to store the state and
manually generate the expected state delta. Factors external to a
component’s interface, such as time performance or memory
usage, might also affect domain translation.

Simple domain translations, such as name replacement and
parameter order swapping could be specified by the system archi-
tect using the facilities of the development environment. We are
hopeful that these simple translations will frequently be automat-
able, particularly in cases where there exists an approximate one-
to-one correspondence between the messages received by a com-
ponent and those it actually understands. More commonly, how-
ever, this task will at least partly be guided by the system
architect. A human agent is needed to provide semantic interpre-
tation for both the component’s top domain and the interface pre-
sented by the connector above it, especially in cases of partial
communication and/or service utilization.

More difficult domain translations such as the generation of
missing parameters and unit conversions will require manual
generation of domain translators using either a scripting language
or a programming language.

Domain translation unavoidably adds overhead to the message
passing process. Except in rare cases, this is less than the cost of
passing the message itself, and is not a major source of ineffi-
ciency, however. Domain translation can be viewed as a tradeoff
between slightly diminished message passing efficiency and the
ability to reuse components as-is.

The need for domain translation can be considerably reduced
by the adoption of standard interfaces for similar components.
Exemplifying this approach are domain-specific architectures
[35], where similar components are characterized by similar
interfaces, certain component configurations are common, and
usual patterns of component usage are known to both the archi-
tect and the design environment.

F. Principles of the C2 Architectural Style

The architectural style is characterized by several principles,
the collection of which distinguish it from other UI architectures.
Subsets of these principles, of course, characterize a variety of
other systems.

• Substrate independence- a component is not aware of the com-
ponents below it. In particular, the notification of a change in a
component’s internal object is entirely transparent to its dialog.
Instead, the wrapper does this automatically when the dialog
accesses the internal object. However, even the wrapper only
generates a notification, not knowing whether any component
will receive it and respond. Substrate independence fosters
substitutability and reusability of components across architec-
tures.

• Message-based communication - all communication between
components is solely achieved by exchanging messages. This
requirement is suggested by the asynchronous nature of appli-
cations that have a GUI aspect, where both users and the appli-
cation perform actions concurrently and at arbitrary times and

where various components in the architecture must be notified
of those actions. Message-based communication is extensively
used in distributed environments for which this architectural
style is suited.

• Multi-threaded - this property is also suggested by the asyn-
chronous nature of tasks in the GUI domain. It simplifies mod-
eling and programming of multi-user and concurrent
applications and enables exploitation of distributed platforms.

• No assumption of shared address space - any premise of a
shared address space would be unreasonable in an architectural
style that allows composition of heterogeneous components,
developed in different languages, with their own threads of
control, internal objects, and domains of discourse.

• Implementation separate from architecture - many potential
performance issues can be remedied by separating the concep-
tual architecture from actual implementation techniques. For
example, while the C2 style disallows any assumptions of
shared threads of control and address spaces in a conceptual
architecture, substantial performance gains may be made in a
particular implementation of that architecture by placing multi-
ple components in a single process and a single address space
where appropriate. Furthermore, modelling the exchange of
messages among components by procedure calls where appro-
priate could yield performance gains.

III. EXAMPLES AND TRIAL APPLICATIONS

To formulate a viable new architectural style is a major under-
taking. A variety of experiments and proof-of-concept exercises
are needed to assess plausibility of the key ideas. As we are espe-
cially concerned with user interface applications, and since per-
formance is a critical factor in assessing the viability of any
technology in this domain, we have constructed a variety of
research prototypes. These trial applications were designed as
small-scale experiments to examine one or more aspects of the
C2 style. We present a selection of these prototypes here, focus-
ing on those which examined the style’s visibility rules and
multi-component nature.

With two exceptions, the examples in this section make use of
Chiron-1 [34] as a testbed. This allowed the rapid exploration of
several key C2 concepts without having to devote a large devel-
opment effort on support infrastructure. The first exception is the
modeling workbench which used a rapid prototyping environ-
ment, described in Section III.D. The second exception, the
KLAX example, given Section III.E, came after these initial
experiments and validated their findings by reproducing their
results in an environment completely separate from Chiron-1, in
addition to exploring other C2 concepts. Note that with the
exception of the KLAX example, performance descriptions are
anecdotal and should be interpreted as subjective descriptions of
a user’s experience with the application. In the KLAX example,
we provide performance metrics to reinforce these subjective
descriptions.

A. Petri Net Tool with Multiple Presentation Components

This example consisted of building a Petri net editor and simu-
lator such that places in the net are depicted by polygons whose
number of sides equals the number of tokens inside each place.
Clearly, places with zero, one, or two tokens cannot be repre-
sented by polygons. For the purpose of this exercise, they are

7 of 16

depicted by an empty circle, a point (filled circle), and a line
respectively. Every time a transition is fired, the shapes of all the
places connected to that transition potentially change.

In order to achieve this, an existing Chiron-1 Petri net artist
was redesigned to fit the C2 architectural style by separating the
layout of the Petri net from its presentation. In addition, the pre-
sentation of places with different numbers of tokens was
entrusted to separate components. The resulting architecture is
shown in Fig. 6. ThePetri net layout artist maintains the coordi-
nates of places, transitions, and arcs, addresses issues of adja-
cency, and maintains logical associations withPetri net ADT
objects. At the same time, it has no knowledge of the artists in the
presentation layer or the actual look of the Petri net. Therefore,
when a place is added, deleted, or repositioned, or its number of
tokens changes due to a transition firing, thelayout artist broad-
casts the appropriate notifications and only the artist maintaining
the presentation of places with the specified number of tokens
responds to them.

Fig. 6. Petri net places are polygons whose number of sides equals the number of
tokens.

The project illustrates the substrate independence principle, as
well as the multi-level and multi-component nature of the style.
The separation of the presentation from the layout enabled the
designers to easily change the presentation of Petri net places
from the standard circle-with-dots-as-tokens to polygons. The
components in the presentation layer are simple and entirely
independent of each other. They can be added, interchanged, or
substituted with new ones, without affecting the rest of the sys-
tem.

B. Graph Editor with Constraints

This exercise focused on a simple boxes-and-arrows editor,
where arrows are constrained to begin and end on edges of cer-
tain boxes. As boxes are moved, the arrows are updated accord-
ingly.

The architecture is shown in Fig. 7. Thenetwork component
maintains a graph of nodes with their incoming and outgoing
links. Thelayout block defines the geometry of various types of
nodes and maintains their display coordinates and associations
with network objects. Theconstraint manager generates and
maintains constraints: for each link between two nodes in a

...

Petri net
ADT

Petri net
Layout Artist

Arc Transition
Place

0 Tokens
Place

1 Token
Place

2 Tokens
Place

3 Tokens
Place

4 Tokens

Rendering Agent
and X Server

graph, themanager builds a set of linear constraints based on the
geometry of the nodes. Themanager receives the same notifica-
tions as therendering agent. These notifications are processed,
constraints applied, and requests sent back to thelayout artist, so
that positions may be updated.8

Fig. 7. A constraint manager is added to a drawing editor system.

This example highlights one goal of our work: to be able to
include a constraint manager in a UI architecture, where its inclu-
sion had not been previously planned. Most constraint managers
described in the UI literature are large and often intertwined with
the rest of the system [19]. This exercise demonstrated C2’s abil-
ity to incorporate such a manager in a very clean way. While per-
formance may become an issue in such a configuration, no
slowdown was noticed in this simple trial. A more significant
example of the use of an externally produced constraint manager
is discussed in Section III.E.

C. Distributed, Multi-user Meeting Scheduler

A meeting scheduling application was built to explore how use
of the C2 architectural style affects development of distributed
applications supporting multiple users. The application allows
multiple users working on different machines to schedule meet-
ings with each other. Each user’s display consists of three win-
dows. A “meeting proposal” window allows scheduling of a new
meeting. A “schedule” window displays a list of the meetings the
user had agreed to attend. An “invitation” window appears each
time the user is invited to a meeting and allows the user to either
accept or decline the invitation.

Fig. 8. The C2 architecture for the distributed meeting scheduler.

The C2 architecture for this experiment is shown in Fig. 8. A
centralizedpeople ADT keeps track of all the people using the

8. Note that other topologies are probably preferable for this application, namely
placing the constraint manager above the rendering agent/window manager. The
purpose of this exercise was to examine feasibility issues and was done by evolv-
ing a legacy system.

Network

Layout

Constraint
Manager

Rendering Agent
and X Server

People ADT

Person 1
ADT

Person 2
ADT

Person N
ADT

Rendering Agent
and X Server

PMA MMA CMA PMA MMA CMA PMA MMA CMA

Rendering Agent
and X Server

Rendering Agent
and X Server

8 of 16

meeting scheduler. Aperson ADT, which manages an individual
user’s schedule, is created for each user in the system. Theseper-
son ADTs request a list of people using the system from thepeo-
ple ADT. Each user also has a set of artists which allow
interaction with the system. The personal meeting artist (PMA),
the make meeting artist (MMA), and the create meeting artist
(CMA) manage the schedule window, the meeting proposal win-
dow, and the invitation window respectively.

A unique aspect of this experiment is that connectors, which
are used to broadcast notifications about new meetings, invitation
acceptances and declinations, span both multiple users and multi-
ple machines. For instance, the middle connector routes meeting
invitation messages from theMMA to theperson ADTs of the
users who have been invited. Additionally, each person has an
individual bus which routes their rendering information to ren-
dering components. In contrast to other meeting scheduling
applications such as Schedule+9 and Calendar Manager10, there
is no centralized meeting schedule server or ADT. Instead, each
user has an individual meeting schedule ADT, namely theperson
ADT. This ADT only stores information about the user’s sched-
uled meetings.

This application demonstrates the feasibility of using the C2
style to develop applications which support multiple users. It also
demonstrates that C2 messages could be sent to multiple
machines across a network without a noticeable degradation in
performance.

D. Workbench for Experimenting with Multi-Level Software
Architectures

This exercise focused on building a modeling workbench to
explore issues related to C2. A model was built of a simple stack
application. That model was embellished with various design fea-
tures to explore trade-offs such as the choice between broadcast-
ing an abstraction of the state of a component when it changes or
broadcasting an abstraction of the event that caused the modifica-
tion. This experiment also explored the usefulness of allowing
the domain of a component to vary over time, as a function of its
current state. The concept of a domain translator was explored in
combination with runtime domain representation.

The modeling was done programmatically in Self [36]. Self
allowed convenient what-if analysis via both programmatic
changes and direct manipulation. Components were modeled as
Self objects. Paths between connectors and components were
modeled as pointers. Messages were modeled as Self messages.
Connectors were modeled as Self objects that responded to mes-
sages by resending them to all appropriate components. Domains
were modeled as Self objects containing a list of available opera-
tions. In addition to insights which resulted and which are
reflected in this paper, the need for a modeling and design envi-
ronment to visualize and manipulate C2 style architectures was
clearly highlighted.

9. SCHEDULE+ is a registered trademark of Microsoft Corporation.
10. Calendar Manager is a registered trademark of Sun Microsystems.

E. KLAXTM Example

This exercise involved implementing a version of the video
game KLAX.11 A description of the game is given in Fig. 9. This
particular application was chosen as a useful test of the C2 style
concepts in that the game is based on common computer science
data structures and the game layout maps naturally to modular
artists. Also, the game play imposes some real-time constraints
on the application, bringing performance issues to the forefront.

Fig. 9. A snapshot and description of our implementation of the KLAXTM video
game.

The design of the system is given in Fig. 10. The components
that make up the KLAX game can be divided into three logical
groups. At the top of the architecture are the components which
encapsulate the game’s state. These data structure components
are placed at the top since game state is vital for the functioning
of the other two groups of components. These ADT components
receive no notifications, but respond to requests and emit notifi-
cations of internal state changes. ADT notifications are directed
to the next level where they are received by both the game logic
components and the artists components.

The game logic components request changes of ADT state in
accordance with game rules and interpret ADT state change noti-
fications to determine the state of the game in progress. For
example, if a tile is dropped from the well, therelative position-
ing logicdetermines if thepalette is in a position to catch the tile.
If so, a request is sent to the palette to catch the tile. Otherwise, a
notification is sent that a tile has been dropped. This notification
is detected by thestatus logic causing the number of lives to be
decremented.

The artist components also receive notifications of ADT state
changes, causing them to update their depictions. Each artist
maintains the state of a set of abstract graphical objects which,
when modified, send state change notifications in hope that a
lower-level graphics component will render them. Thetile artist
provides a flexible presentation level for tiles. Artists maintain
information about the placement of abstract tile objects. Thetile
artist intercepts any notifications about tile objects and recasts

11. KLAX is trademarked 1991 by Atari Games.

KLAX Chute
Tiles of random colors

KLAX Palette
Palette catches tiles coming
down the Chute and drops
them into the Well.

KLAX Well
Horizontal, vertical, and

drop at random times

diagonal sets of three or
more consecutive tiles of
the same color are removed
and any tiles above them
collapse down to fill in the
newly-created empty spaces.

and locations.

Score: 100
Lives: 2

KLAX Status

9 of 16

them to notifications about more concrete drawable objects. For
example, a “tile-created” notification might be translated into a
“rectangle-created” notification. Thelayout manager component
receives all notifications from the artists and offsets any coordi-
nates to ensure that the game elements are drawn in the correct
juxtaposition.

The graphics bindingcomponent receives all notifications
about the state of the artists’ graphical objects and translates them
into calls to a window system. User events, such as a key press,
are translated into requests to the artist components.

Fig. 10. Conceptual C2 architecture for KLAX. Note that the Logic and Artist lay-
ers do not communicate directly and are in fact siblings. The Artist layer is shown
below the Logic layer since the components in the Artist layer perform functions
closer to the user (See Footnote 2).

The KLAX architecture is intended to support a family of
“falling-tile” games. The components were designed as reusable
building blocks to support different game variations. One such
variation on KLAX is discussed below, following the discussion
of implementation issues.

To support the implementation of the KLAX architecture, a
C++ framework consisting of classes for C2 concepts such as
components, connectors, and messages was developed. The size
of this reusable framework is approximately 3100 commented
lines of C++ code and it supports a variety of implementations,
discussed below, for a single conceptual architecture. This frame-
work is also significant since it allowed us to cut our ties with
Chiron-1 as a testbed for C2 concepts and to integrate an external
component, the Xlib toolkit, by wrapping it with a C2 compo-
nent, thegraphics binding. The KLAX implementation built
using the framework consists of approximately 8100 additional
lines of commented C++ code.

The framework allowed mappings of the KLAX conceptual
architecture to several implementations, including single-pro-
cess, multi-threaded, and multi-process implementations. The
first implementation placed all components in a single UNIX pro-
cess with a scheduler that distributed a time-slice to each compo-
nent. The second implementation mapped the components into

Clock
Logic

Status
Logic

Tile
Artist

Graphics
Binding

Palette
Artist

Chute
ADT

Well
ADT

Palette
ADT

Relative Pos
Logic

Status
Artist

Well
Artist

Chute
Artist

Layout
Manager

Tile Match
Logic

Next Tile
Placing Logic

Status
ADT

four separate threads within a single UNIX process. The third
implementation split the architecture into three UNIX processes.
One process contained all of the ADTs, game logic, and artist
components, except for thetile artist, which was placed in its
own process. The last process contained thegraphics binding and
the layout manager components. It is important to note that in
these three implementations the components were never
changed; instead, the end result was obtained by attaching the
components to the appropriate framework classes at architecture
construction time. For instance, the multi-process implementa-
tion was obtained by substituting interprocess connectors for sin-
gle-process connectors.

Fig. 11. A variation on KLAX. By replacing three components from the original
architecture, the game turns into one whose object is to spell words horizontally,
vertically, or diagonally.

The multi-process implementation allowed the exploration of a
multi-lingual implementation. The original C++ tile process was
reimplemented using the Ada programming language.12 The only
functional difference between the Ada tile process and the C++
tile process was that the presentation of tiles was changed from
ovals to rectangles. The Ada tile process can be swapped with the
C++ tile process dynamically. The sole effect of this swap on a
running KLAX application was that the representation of the tiles
on the screen would change from ovals to rectangles or vice-
versa.

A variation of the original architecture, shown in Fig. 11,
involved replacing the original tile matching, tile placing, and tile
artist components with components which instead matched,
placed, and displayed letters. This transformed the objective from
matching the colors of tiles to spelling words. Each time a word
was spelled correctly, it would be removed from the well. The
spelling logic component wrapped an existing spell-checker,
written in C.

Another variation of the original architecture involved incor-

12. A small portion of the C++ framework (multi-process connectors and the C2
message class) was reimplemented in Ada as well.

Clock
Logic

Status
Logic

Letter
Artist

Graphics
Binding

Palette
Artist

Chute
ADT

Well
ADT

Palette
ADT

Relative Pos
Logic

Status
Artist

Well
Artist

Chute
Artist

Layout
Manager

Spelling
Logic

Next Letter
Placing Logic

Status
ADT

Fig. 1. Fig.13. Screenshots from Argo. Left: Conceptual architecture. Center: To-do list with item indicating a problem with Status_Logic. Right: Implementation Archi-
tecture. Small shapes attached to components are user interface affordances for making connections.

10 of 16

porating a research-off-the-shelf constraint management system,
SkyBlue [29], into the application. Constraint-management code,
such as specifying the left and right boundaries of palette’s move-
ment and ensuring that the tiles on the palette move along with
the palette, was dispersed throughout the original application.
This variation replaced that code with SkyBlue constraints. Fur-
thermore, SkyBlue needed to be adapted to communicate with
other KLAX components via C2 messages. This was accom-
plished by placing SkyBlue inside thelayout manager, as shown
in Fig. 12, thus creating a constraint management component in
the C2 style

Fig. 12. The SkyBlue constraint management system is incorporated into KLAX
by placing it inside the Layout Manager component. Layout Manager’s dialog han-
dles all the C2 message traffic.

Performance of the implementations was good on a Sun
Sparc2 workstation, easily exceeding human reaction time if the
clock component used short time intervals. Although we have not
yet tried to optimize performance, benchmarks indicated our cur-
rent framework can send 1200 simple messages per second when
sending and receiving components are in the same process. In the
KLAX system a keystroke typically caused 10 to 30 message
sends, and a tick of the clock component typically caused 3 to 20.

SkyBlueDialog

Tile
Artist

Graphics
Binding

Layout
Manager

...

Several important aspects of the C2 style were explored in this
effort. Three external components, Xlib, SkyBlue, and the spell-
ing checker, were integrated. Dynamic substitution of compo-
nents was demonstrated. Component substitution was used not
only to provide alternative presentations of tiles but also to trans-
form the application into spelling KLAX, another game in the
same application family. This example also demonstrated support
for multi-lingual components in C, C++, and Ada. A reusable C2
framework that supports multiple implementations of a given C2
architecture was also explored.

IV. ARGO: THE C2 DESIGN ENVIRONMENT

The specific architecture formed when components are con-
nected plays as large a role in determining the behavior of the
overall system as the internal logic of the individual components.
For that reason, development tools that operate on architectural
specifications are as important as tools that work on individual
components. This section describes Argo, a design environment
for building C2-style architectures.

The C2 design environment is an editor in which designers
construct an architectural model of a software system, have that
model checked for syntactic and semantic correctness, receive
some domain-specific feedback about various design qualities,
keep track of unfinished steps in the design process, and generate
running programs for that system. Because diagrams are so effec-
tive for describing software architectures, the C2 design environ-
ment uses a graphical front end to a precise internal
representation. The notation used to describe C2 style architec-
tures is a connected graph of software components and connec-
tors. Argo allows for direct manipulation of connected graphs
and various annotations on them. The left side of Fig. 13 shows
the KLAX conceptual architecture represented in Argo: white
rectangles represent software components, black bars represent

11 of 16

connectors, arcs represent communication pathways, small ovals
on the components represent the communication ports of each
component. The right side of Fig. 13 shows the mapping from the
conceptual architecture to an implementation architecture. The
conceptual components and connectors are the leaves of an is-
composed-of tree. Internal nodes in that tree represent operating
system threads and processes which contain components and
connectors.

Dialog boxes provide access to the annotations on the compo-
nents, connectors, and processes. Argo represents the interface of
each component as a collection of message signatures, one for
each notification and request in its domain. Environmental con-
straints on components are represented as a set of attributes:
required memory size, supported operating systems, etc. Argo
associates information used to generate working applications
with each component, including the C++ class that implements
the component, the names of source files used to build the com-
ponent, and the required arguments to the component construc-
tors.

A. Critical Feedback

Critics are active agents in the design environment that help
the designer make better design decisions by delivering advice
which is relevant and timely. The design environment itself does
not prevent the designer from entering invalid designs. Rather,
critics continually advise the designer about potential syntactic
and semantic errors or oversights. Argo allows designers to move
from one valid design state to another, even if invalid design
states must be traversed along the way. The current version of
Argo has roughly twenty critics; more critics are planned for
future versions.

Because critical feedback is continuous and simultaneous with
design manipulation, feedback mechanisms must not disrupt the
designer’s train of thought. Several mechanisms are used in Argo
to limit the execution of critics and manage their feedback. Criti-
cal feedback is presented to the designer via a to-do list in its own
window. Items in the list are prioritized, and selecting an item
gives a brief explanation and selects the offending design ele-
ment. At any given time, the designer will have many items on
his list and is free to act on them on his own initiative.

Our implementation of critics is more object-oriented than
rule-based: the design environment does not critique the design
so much as the objects in the design representation critique them-
selves. Each component representation object in Argo carries its
own critics, and the introduction of a new component representa-
tion object potentially introduces new critics. When the critique
command is issued to a set of components, each of them asks
their critics to check their conditions. When a condition is vio-
lated, the critic posts its item on the user’s to-do list. [27]
describes critics in more detail.

B. Code Generation

In the conceptual architecture of a software system, each com-
ponent has its own thread of control and executes in its own
memory space. When architectures are implemented, those
assumptions may introduce too much overhead if fine-grained
components are used. Thus, Argo and our C2 class framework

allow the designer to specify the mapping from conceptual to
efficient implementation architectures. The diagram shown in
Fig. 13 represents most of that mapping, Argo finishes the map-
ping via default rules.

Argo can generate some of the code needed to build an execut-
able application. Currently, Argo assumes that the components
are implemented as C++ classes which fit into a C2 class frame-
work, but multi-lingual support is a goal of future work. In that
framework, running applications are implemented as instance
graphs where each component and connector is an instance, and
each bidirectional message pathway is a pair of pointers. Argo
finishes the mapping between conceptual and implementation
architectures by replacing each conceptual component with an
instance of the class for that component, and each conceptual
connector with one of two kinds of implementation connectors.
Connectors which provide communication between components
in a single operating system process pass messages in memory as
simple C++ data structures. Connectors which span multiple pro-
cesses are implemented with the Q interprocess communication
mechanism [17].

Argo generates one main procedure for each process in the
implementation architecture. Each main procedure creates, con-
nects, and schedules the implementation components for its pro-
cess. Those processes can be run to form the executing system.
The main procedure of the KLAX example and most of its vari-
ants can be generated by Argo, the exception being the Ada main
program for the Adatile artist. The technical details of Argo and
a number of other issues are discussed in [28].

C. Architecture Analysis

The design environment currently supports several types of
static analysis on the architecture using pro-active design critics.
The analysis performed by these critics include: checking for
conformance to the C2 style rules, checking for completeness by
matching requests with component services, and checking con-
sistency between different views of the architecture.

Supporting broader classes of analyses requires more informa-
tion about the architecture. Incorporating more semantic informa-
tion for components [9] and the overall architecture enables more
specific analyses, like predicting deadlock or starvation.
Dynamic analysis techniques may also be applied independently
or in conjunction with static techniques. These include instru-
menting the architecture to check timing and resource con-
straints, performing runtime consistency checks on components,
and checking assertions at the architecture level.

V. RELATED WORK

The C2 work draws from the work of many other researchers
and systems. We highlight a few of them here, discussing them in
a framework of fundamental concepts which influenced the C2
architectural style.

A. Implicit Invocation

In the C2 style, implicit invocation occurs when a component
reacts to a notification sent down an architecture by invoking
some code. The invocation is implicit because the component
which initially issued the notification did not know if the notifica-

12 of 16

tion would cause any reaction, and the notification certainly did
not explicitly name an entry point into a component below it. An
excellent discussion of the benefits of implicit invocation can be
found in [32, 33], as embodied in their mediators concept. Chi-
ron-1 [34], through its transmission of abstract data type modifi-
cation events to potentially reactive artists, also supports implicit
invocation. This is similar to VisualWorks [11], a Smalltalk GUI
library based on the Model-View-Controller paradigm [15],
where the model broadcasts change of state notifications to views
and controllers. While many systems employ implicit invocation
for its benefits in separating modules, the C2 style extends this by
providing a discipline for ordering components which use
implicit invocation, yielding substrate independence.

B. Messages and Message Mechanisms

Message mechanisms in existing systems transmit either ser-
vice requests, events (notifications), objects, or a combination.
Existing systems are distinguished by the discipline, if any, they
impose on message use, and usage style, which is a result of the
system’s message use discipline. Both Chiron-1 and X windows
[30] use service request and notification messages. However,
their use of notification messages varies: Chiron-1 notifications
come from either the application or the graphics server, yielding
a separation of concerns between application and depiction, a feat
X cannot duplicate. The Field [26] and SoftBench [3] systems
also use service request and notification messages. Messages in
these two systems, however, have no discipline on their use; the
two message types are indistinguishable.

In the Weaves system [10], concurrently executing tool frag-
ments communicate by passing (pointers to) objects. This passing
of objects causes Weaves to be used in a data flow manner.
Weave systems do not, to our knowledge, involve data moving
both forwards and backwards in a weave. Additionally, there is
no notion of reifying service invocations upon an internal
abstract object as messages (or objects).

Experience from the Chiron-1 system indicates that if message
traffic occurs across a process boundary in a non-shared address
space, then interprocess communications (IPC) becomes a key
performance determinant. Experience with the Avoca system [1]
provides confirmation. These observations motivate a key goal of
the C2 style: to provide a discipline for using service request and
notification messages which can be mapped to either inter- or
intra-process message mechanisms as needed.

C. Layered Systems

Concentrating solely on the layering in an architecture, exist-
ing approaches span a wide range. Both Field and SoftBench
have only a single layer, while the client/server spilt of X sup-
ports two. Chiron-1 has three layers: the application, artists, and
graphics server. The Arch Model, which is an extension of the
Seeheim [25] model, and the Slinky User Interface MetaModel
[38] partition the work of supporting user interfaces into five lay-
ers, known as the domain-specific (i.e., “application”) compo-
nent, domain adaptor, dialog, presentation, and interaction toolkit
components. The dialog component may be further subdivided to
arbitrary levels [4].

In contrast to these existing systems, the C2 architectural style

does not assume that a certain number of layers is “magic” and
allows layering to vary naturally with the application domain. In
this, the C2 style is similar to the composable, parameterized
components of the GenVoca style [1], which may also be layered
naturally to handle each specific domain. Furthermore, C2 pro-
vides a layering mechanism based on implicit invocation, rather
than the explicit calls of the GenVoca style. This allows the C2
style to provide greater flexibility in achieving substrate indepen-
dence in an environment of dynamic, multi-lingual components.
In particular, component recompilation and relinking can be
avoided and on-the-fly component replacement enabled through
use of the message mechanisms.

D. Language and Process Support

Many existing systems can support multiple languages, though
they are often skewed heavily towards a single language and pro-
cess subdivision. For example, while there are now many differ-
ent language bindings for the X system, it still remains the case
that C (and C++) is the preferred language for X development. In
the extreme, a particular system is tied to a given language, as
VisualWorks is to Smalltalk. In contrast, C2 embodies no lan-
guage assumptions; components may be written in any conve-
nient language. To support this, C2 employs technology and
embodies wisdom from previous multi-lingual systems [13] for
mapping parameters from one type system to another and avoid-
ing conflicts in runtime language support, heap memory alloca-
tion, and use of operating system resources.

Existing systems tend to be rigid in terms of their process map-
pings. At one extreme, X applications contain exactly two pro-
cesses, a client and a server. While there is greater process
flexibility in VisualWorks and Weaves, both of these systems
assume a shared address space. It is only with systems such as
GenVoca, Field or SoftBench, and C2 that simultaneous satisfac-
tion of arbitrary numbers of processes in a non-shared address
space is achieved.

E. Component Interoperability Models

Existing component interoperability models, such as OLE [2]
and OpenDoc [20], provide standard communication mecha-
nisms for components. Typically, the model provides a standard
format for describing services offered by a component and runt-
ime facilities to locate, load, and execute services of other com-
ponents. Since these models are concerned with low-level
implementation issues and provide little or no guidance in build-
ing a system out of components, their use is neither subsumed by
or restricted by C2. In fact, these models may be used to realize
an architecture in the C2 style.

F. Design Environments

In the terminology of [5], Argo can be summarized as a
domain-oriented design environment for the domain of C2 style
software architectures. Systems developed at the University of
Colorado, such as Janus [6] and Framer [16], use critics to give
designers domain specific feedback. Argo’s interaction paradigm
is similar to that of Janus, although Argo has more ways to con-
trol critics and manage their feedback.

Aesop [7] is a generation tool for software architecture design

13 of 16

environments which focuses on architectural styles. Aesop inter-
operates with external analysis and code generation tools and a
component repository. Aesop’s choice of formalism and external
tools allow it to provide more analysis and code generation abil-
ity than Argo currently provides. However, Aesop is not orga-
nized around critics, and has little support for the designer’s task
beyond graphical support for the design notations and invocation
of the analysis tools.

G. Relating C2 Concepts to Object-Oriented Types

Much of the discussion of component compositionality, reus-
ability, and substitutability can be linked to the terminology of
object-oriented (OO) types [21, 22, 23]. Doing so serves a dual
purpose: (1) it enables readers whose primary expertise is in the
area of OO type theory to relate the concepts and terminology of
C2 to those with which they are familiar, and (2) it helps clarify
the composition properties of components and connectors. For
example, conditions specifying when one component may be
substituted for another is akin to subtyping in OO programming
languages (OOPL). At the same time, the differences between the
presented architectural concepts and typing in OOPL can help
identify the limits of applicability of methods and techniques
developed in one to the other.

A C2 component may be viewed as an OOPL class at the con-
ceptual level, but they are not identical. The services a compo-
nent provides are equivalent to a class specification, and the
requests it sends correspond to OO messages. However, no
OOPL concept corresponds to C2 notifications, whereby state
changes of C2 components are reified as messages and no
assumptions are made about the existence or the number of recip-
ients of those messages. This results in the possibility of mes-
sages being ignored in a C2 architecture, whereas a similar
situation would result in a runtime error in an OOPL. The distinc-
tion between notifications and requests and the topology imposed
by the C2 style on a set of components in an architecture are the
major differentiators between C2 and OOPL.

Nevertheless, the similarities between C2 components and OO
classes allow us to explore the ramifications of OO subtyping on
reusability and substitutability of C2 components. For that rea-
son, we assume that a component is a class in the OO sense,
exporting two interfaces, one corresponding to the top and the
other to the bottom domain. [23] provides a spectrum of types,
from arbitrary subclassing, where methods can be added, deleted,
or redefined, to strictly monotone subclassing, where methods
can only be added, requiring that even a particular implementa-
tion be preserved. An orthogonal distinction is between specifica-
tion types, e.g., requiring interface conformance, and
implementation types, e.g., requiring behavior conformance.

Programming languages generally adopt a single type check-
ing method. On the other hand, C2 allows several subtyping
mechanisms. For example, whileinterface conformance is usu-
ally not restrictive enough, since it does not preserve the behav-
ior, we found it useful in modifying the original KLAX
architecture to create spelling KLAX, as described in
Section III.E.Strictly monotone subclassing is often too restric-
tive, as it disallows different versions of the same functionality.
However, it can facilitate incremental development of applica-
tions and expansion of legacy system functionality in a C2 archi-

tecture. Finally,behavior as a subtyping method ensures both
interface and behavioral conformance, while also allowing par-
ticular implementations to be changed to, e.g., optimize a compo-
nent’s performance. This type checking method can be used to
select from sets of components during automatic implementation
generation.

H. Summary

While individual systems share key features with the C2 archi-
tectural style, the goal of simultaneous satisfaction of implicit
invocation via notifications, inter- and intra-process message
mechanisms, domain-specific architectural layering, and multi-
language and multi-process support differentiates C2 from exist-
ing work, and motivates our future work. Furthermore, as the
central facility for architectural design in C2, Argo builds upon
the state of the art in the area of design environments. Finally, we
can leverage existing and future work in the area of OOPL by
relating the core C2 ideas to OO types.

VI. CREATING AN ARCHITECTURE IN THE C2
STYLE

For the practitioner, a pertinent question is how one arrives at
an architecture in the C2 style. While we do not as yet claim to
have a definitive answer, our experience with the style has
imparted insights useful to other designers. Designing an archi-
tecture involves an iterative process of subdividing functionality
into components, determining the external interfaces of compo-
nents, and positioning components within a C2 architecture.
Implementing an architecture requires reusing or implementing a
message passing infrastructure for connectors and developing a
component template. These design and implementation steps are
discussed below.

Subdivision of system functionality into components in the C2
style is essentially the traditional problem of modular decomposi-
tion. As such, components which encapsulate ADTs, or which
encapsulate functionality likely to change, are appropriate C2
components, and would be appropriate modules in any style. In
particular, the C2 style affords good separation of concerns by
supporting implicit invocation via notification. This is especially
evident in the separation of concerns between an ADT and a
component which visualizes it. To date, our modular decomposi-
tions have been heavily influenced by previous experience with
the Chiron-1 system and its separation between ADTs, artists,
and graphics server; these three elements are visible in all of our
examples.

Specifying the external interface of a component requires a
determination of which notifications and requests the component
will process. This involves making a translation between con-
structs in the component implementation language and requests
or notifications. For example, on a component’s bottom interface,
publicly accessible methods of an object can be translated into
understood requests, and modifications to the object’s data can be
translated into notifications. On the component’s top interface,
calls to another component are translated into issued requests,
and understood notification messages are translated into existing
operations within the component. Seemingly simple once the
component’s functionality is known, this activity is complicated

14 of 16

by an architecture’s desired topology. In the simplest case, a com-
ponent at the top of an architecture will not process notifications
since it will never receive any, while a component on the bottom
will only process notifications; this then affects the design of the
external interface of the component. However, a component in
the middle of an architecture may process both notifications and
requests since it will likely receive both.

When determining the topology of an architecture, there are
several principles which can inform the positioning of a compo-
nent within a hierarchy. The first such principle is the producer-
consumer relationship for requests and notifications. If compo-
nent A emits notifications that component B uses, then B must be
placed below A in an architecture, much as artists are always
below ADTs. This is a direct consequence of the rule that notifi-
cations are always transmitted down an architecture. The second
principle is potential for substitution. In all C2 examples, the
graphics binding is always at or near the bottom because it is eas-
ier to substitute a different graphics component into an architec-
ture if its functionality is accessed solely via implicit invocation.
The third principle is the grouping of like components, as exem-
plified by the grouping of ADTs into a single layer in the KLAX
architecture, shown in Fig. 10. This grouping principle supports
extensions to the architecture, since a layer of like components
provides a location for the addition of new, similar components.

Once the components and architectural topology have been
designed, implementation may begin. Infrastructure support
needed for small- to moderately-sized C2 applications, such as
the ones described in Section III, is minimal. This, coupled with
simple style rules, results in a low-entry barrier for building C2
applications. The object-oriented component and message pass-
ing framework consists of 12 classes for C2 concepts, such as
components, connectors, and messages, as shown in Fig. 14. The
size of the framework is approximately 3100 commented lines of
C++ code and it was built in 150 programmer hours. As dis-
cussed in Section III.E, the framework supports a variety of
implementation configurations for a given conceptual architec-
ture. Furthermore, it provides structure for component implemen-
tations and eliminates many repetitive programming tasks.

Fig. 13. The C++ object-oriented framework used in the development of KLAX.

VII. OPEN ISSUES

Many issues crucial to the C2 style have been explored in
detail and several applications completed. Nonetheless, assessing
any new architectural style takes many years. When pipe and fil-

C2Object
C2Message
C2Port
C2Brick

C2Connector
C2Connector_SameProcess
C2Connector_IPC

C2Component
C2Architecture

C2Architecture_Threads
C2ADT
C2Artist

ter or client/server paradigms were introduced, it was unlikely
that all of the ramifications and required improvements and opti-
mizations could have been forecast in the beginning. Similarly,
we have not yet answered, or even asked, all of the questions
about the style. However, we do recognize that certain areas war-
rant further study.

• As specified in this paper, notifications are reifications of oper-
ations that occurred within a component. As such, they are
equivalent to messages encapsulating deltas to the state of the
component. An alternative is to send out the full state of the
component. There are circumstances when full state broadcast
is beneficial, such as when an operation causes a complex state
change to occur within the component. Without full state
broadcast, this would cause the recipient of the notification to
react by either issuing a series of requests to the component to
ascertain the new state, or to infer the new state by duplicating
much of the semantics of the above component. Thus, for
example, thewell component of the KLAX example broadcasts
full state notifications. Simple well operations, such as remov-
ing a tile, can cause a complex change in state due to the well’s
gravity semantics. If operation-based notifications were used, a
listening component, such as the well artist, would either have
to query the entire state of the well, or duplicate gravity seman-
tics. In this case, full state notifications greatly reduce the com-
plexity of listening components. Choice of the nature of the
notifications is orthogonal to other aspects of the architecture.

• Connectors in the architectural style have properties similar to
software buses. There are numerous existing bus technologies
that may be suitable in the implementation of an architecture.
Examples include Chiron 1.4 dispatchers, ToolTalk [12], Soft-
Bench, and CORBA [20]. We need to determine under what
circumstances these could or should be used.

• A connector could potentially make use of transaction informa-
tion provided by a component to manage the flow of messages
to it. Transactions would be one method of handling the com-
plexity of message sequences between components. This
would relieve a component’s dialog from having to contain
code to handle out-of-order messages and the like. We need to
determine what transaction scheme is appropriate for C2 archi-
tectures and how transaction information is specified by a com-
ponent.

• All of the applications built thus far have been relatively small.
The style, on the other hand, is also intended for large-scale
systems that reuse components and build extensive multi-level
hierarchies. In order to fully support compositionality, is a
mechanism needed to support “recursive” application of the
stylewithin a component?

• One trade-off that is likely to occur is between scalability and
performance. All the trial applications completed thus far have
shown excellent performance, but they have also been smaller-
scale systems. What will happen when the applications start to
grow? Will the threshold of scalability with respect to perfor-
mance be reached, and when? The KLAX example from
Section III.E is one data point on this issue. Even with three
large legacy components integrated, performance of the appli-
cation was acceptable.

• Our work on the trial applications and the design environment
has highlighted the need for suitable architectural description
(ADL) and interface definition (IDL) languages. Early proto-
types of both an ADL and an IDL for C2 exist and have been
used successfully as the design notation during the develop-
ment of the KLAX example from Section III.E. However,

15 of 16

much work remains to be done on both the languages and the
corresponding code generation and analysis tools.

• The new architectural style admits fine-grain distribution,
where each component and connector may be contained in its
own process, may have its own address space, and may be run-
ning on different machines, and even different platforms.
When is this appropriate? What operating systems, program-
ming languages, and interprocess communication mechanisms
will support the performance required?

VIII. CONCLUSION

User interfaces of emerging systems are rich and complex.
Future systems will be increasingly distributed, complex, multi-
media, heterogeneous, and multi-user. Supporting such interfaces
in a cost-effective manner demands the use of open architectures,
architectures that enable a marketplace of components to flourish.
C2 is being developed in an attempt to create the basis for such
architectures. The C2 style exploits and generalizes key tech-
niques from a variety of previous systems to achieve this. One
notable characteristic is the inability for a component to have
dependencies on the technologies upon which it rests. Rather, a
component is “hopeful” that the components below it will per-
form useful work based on notification of actions that it performs.

A variety of small-scale experiments have been conducted to
provide initial assessment of the feasibility of the approach. The
experiments have been successful: the strong separations
enforced by C2 enable radical changes in system structure with-
out significant work. Moreover, the performance of the systems
has been very good.

Current and future work encompasses a wide range of activi-
ties, including assessing key scalability factors, construction of a
design environment, and exploration of how current commercial
and research offerings may be adapted to serve as reusable C2
components.

IX. ACKNOWLEDGEMENTS

We would like to acknowledge the students of UCI’s graduate
course in user interfaces for providing initial proof-of-concept
examples of C2. In particular, we wish to thank G. Wong,
J. Shaw, D. Tonne, L. Palen, and E. Charne. Other members of
the Chiron-1 team also made key contributions, including
C. MacFarlane, G. Johnson, and G. Bolcer. Finally, we thank the
referees of TSE and ICSE-17 for their helpful reviews.

X. REFERENCES

[1] D. Batory and S. O’Malley. “The Design and Implementation of
Hierarchical Software Systems with Reusable Components.”
ACM Transactions on Software Engineering and Methodology,
1(4):355–398, October 1992.

[2] K. Brockschmidt.Inside OLE 2. Microsoft Press, 1994.
[3] M. R. Cagan. “The HP SoftBench Environment: An Architecture

for a New Generation of Software Tools.”Hewlett-Packard
Journal, 41(3):36–47, June 1990.

[4] J. Coutaz. “Architectural Design for User Interfaces.” In
Proceedings of the 3rd European Software Engineering
Conference, ESEC ’91, pages 7–22, Milan, Italy, October 1991.

[5] G. Fischer, A. Girgensohn, K. Nakakoji, and D. Redmiles.
“Supporting Software Designers with Integrated Domain-

Oriented Design Environments.”IEEE Transactions on Software
Engineering, 18(6):511–522, June 1992.

[6] G. Fischer, A. C. Lemke, T. Mastaglio, and A. I. Morch. “Critics:
an Emerging Approach to Knowledge-Based Human-Computer
Interaction.” International Journal of Man-Machine Studies,
35(5):695–721, November 1991.

[7] D. Garlan, R. Allen, and J. Ockerbloom. “Exploiting Style in
Architectural Design Environments.” InProceedings of
SIGSOFT’94: Foundations of Software Engineering, pages 175–
188, New Orleans, Louisiana, USA, December 1994.

[8] D. Garlan and M. Shaw. An Introduction to Software
Architecture: Advances in Software Engineering and Knowledge
Engineering, volume I. World Scientific Publishing, 1993.

[9] J. A. Goguen. “Reusing and Interconnecting Software
Components.”IEEE Computer, pages 16–28, February 1986.

[10] M. M. Gorlick and R. R. Razouk. “Using Weaves for Software
Construction and Analysis.” InProceedings of the Thirteenth
International Conference on Software Engineering, pages 23–34,
Austin, TX, May 1991.

[11] ParcPlace Systems Inc.VisualWorks 2.0 User’s Guide.
Sunnyvale, California, 1994.

[12] A. Julienne and B. Holtz.Tooltalk and Open Protocols: Inter-
Application Communication. SunSoft Press/Prentice Hall, April
1993.

[13] R. Kadia. “Issues Encountered in Building a Flexible Software
Development Environment: Lessons Learned From the Arcadia
Project.” InProceedings of ACM SIGSOFT ’92: Fifth Symposium
on Software Development Environments, pages 169–180,
Tyson’s Corner, Virginia, December 1992.

[14] R. Kazman, L. Bass, G. Abowd, and M. Webb. “SAAM: A
Method for Analyzing the Properties of Software Architectures.”
In Proceedings of the Sixteenth International Conference on
Software Engineering, pages 81–90, Sorrento, Italy, May 1994.

[15] G. E. Krasner and S. T. Pope. “A Cookbook for Using the Model-
View-Controller User Interface Paradigm in Smalltalk-80.”
Journal of Object-Oriented Programming, 1(3):26–49, August/
September 1988.

[16] A. Lemke and G. Fischer. “A Cooperative Problem Solving
System for User Interface Design.” InEighth National
Conference on Artificial Intelligence, pages 479–484, Boston,
MA, USA, July 1990. AAAI.

[17] M. J. Maybee, D. H. Heimbigner, and L. J. Osterweil.
“Multilanguage Interoperability in Distributed Systems:
Experience Report.” In Proceedings of the Eighteenth
International Conference on Software Engineering, Berlin,
Germany, March 1996. Also issued as CU Technical Report CU-
CS-782-95.

[18] N. Medvidovic. “Formal Definition of the Chiron-2 Software
Architectural Style.” UCI–ICS Technical Report UCI-ICS-95-
24, Department of Information and Computer Science,
University of California, Irvine, July 1995.

[19] B. A. Myers. “Encapsulating Interactive Behaviors.” In
Proceedings of the Conference on Human Factors in Computing
Systems, pages 319–324, Austin, May 1989. Association for
Computing Machinery.

[20] R. Orfali, D. Harkey, and J. Edwards.The Essential Distributed
Objects Survival Guide. John Wiley & Sons, Inc., 1996.

[21] J. Palsberg and M. I. Schwartzbach. “Type Substitution for
Object-Oriented Programming.” InProceedings of the ACM
Conference on Object-Oriented Programming: Systems,
Languages, and Applications/European Conference on Object-
Oriented Programming, pages 151–160, Ottawa, Canada,
October 1990.

[22] J. Palsberg and M. I. Schwartzbach. “Object-Oriented Type

16 of 16

Inference.” InProceedings of the ACM Conference on Object-
Oriented Programming: Systems, Languages, and Applications,
pages 146–161, Phoenix, AZ, USA, October 1991.

[23] J. Palsberg and M. I. Schwartzbach. “Three Discussions on
Object-Oriented Typing.”ACM SIGPLAN OOPS Messenger,
3(2):31–38, 1992.

[24] D. E. Perry and A. L. Wolf. “Foundations for the Study of
Software Architecture.”ACM SIGSOFT Software Engineering
Notes, 17(4):40–52, October 1992.

[25] G. E. Pfaff, editor. User Interface Management Systems,
Seeheim, FRG, November 1983. Eurographics, Springer-Verlag.

[26] S. P. Reiss. “Connecting Tools Using Message Passing in the
Field Environment.”IEEE Software, 7(4):57–66, July 1990.

[27] J. E. Robbins and D. F. Redmiles. “Software Architecture Design
from the Perspective of Human Cognitive Needs.” In
Proceedings of the California Software Symposium, Los Angeles,
CA, USA, April 1996.

[28] J. E. Robbins, E. J. Whitehead Jr., N. Medvidovic, and R. N.
Taylor. “A Software Architecture Design Environment for
Chiron-2 Style Architectures.” Arcadia Technical Report UCI-
95-01, University of California, Irvine, January 1995.

[29] M. Sannella. “SkyBlue: A Multi-Way Local Propagation
Constraint Solver for User Interface Construction.” In
Proceedings of the Seventh Annual ACM Symposium on User
Interface Software and Technology, pages 137–146, Marina del
Rey, California, November 1994.

[30] R. W. Scheifler and J. Gettys. “The X Window System.”ACM
Transactions on Graphics, 5(2), April 1986. Actually appeared
June 1987.

[31] J. M. Spivey.The Z Notation: A Reference Manual. Prentice Hall,
New York, 1989.

[32] K. J. Sullivan.Mediators: Easing the Design and Evolution of
Integrated Systems. Ph.D. thesis, University of Washington,
1994. Available as UW technical report UW-CSE-TR-94-08-01.

[33] K. J. Sullivan and D. Notkin. “Reconciling Environment
Integration and Software Evolution.”ACM Transactions on
Software Engineering and Methodology, 1(3):229–268, July
1992.

[34] R. N. Taylor, K. A. Nies, G. A. Bolcer, C. A. MacFarlane, K. M.
Anderson, and G. F. Johnson. “Chiron-1: A Software
Architecture for User Interface Development, Maintenance, and
Run-Time Support.”ACM Transactions on Computer-Human
Interaction, 2(2):105–144, June 1995.

[35] W. Tracz. “DSSA (Domain-Specific Software Architecture)
Pedagogical Example.”Software Engineering Notes, 20(4), July
1995.

[36] D. Ungar and R. Smith. “SELF: The Power of Simplicity.”LISP
and Symbolic Computation, 4(3):187–205, July 1991.

[37] E. J. Whitehead Jr., J. E. Robbins, N. Medvidovic, and R. N.
Taylor. “Software Architectures: Foundation of a Software
Component Marketplace.” In D. Garlan, editor,Proceedings of
the First International Workshop on Architectures for Software
Systems, pages 276–282, April 1995.

[38] The UIMS Tool Developers Workshop. “A Metamodel for the
Runtime Architecture of an Interactive System.”SIGCHI
Bulletin, 24(1):32–37, January 1992.

