An Architecture-Based
Approach to Self-Adaptive
Software

Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gregory Johnson, Nenad Medvidovic,
Alex Quilici, David S. Rosenblum, and Alexander L. Wolf

#ONSIDER THE FOLLOWING SCE+ SELF-ADAPTIVE SOFTWARE REQUIRES HIGH DEPENDABILITY,
nario. A fleet of unmanned air vehicles un-

dertakes a mission to disable an enemy gir- ROBUSTNESS, ADAPTABILITY, AND AVAILABILITY. THIS ARTICLE
field. Pre-mission intelligence indicates that DESCRIBES AN INFRASTRUCTURE SUPPORTING TWO

the airfield is not defended, and mission plan-
ning proceeds accordingly. While the UAVs SIMULTANEOUS PROCESSES IN SELF-ADAPTIVE SOFTWARE. SYSTEM

are en route to the target, new intelligence

indicates that a mobile surface-to-air missile EVOLUTION, THE CONSISTENT APPLICATION OF CHANGE OVER
launcher now guards the airfield. The UAVs TIME, AND SYSTEM ADAPTATION, THE CYCLE OF DETECTING
autonomously replan their mission, dividing

into two groups—a SAM-suppression unit CHANGING CIRCUMSTANCES AND PLANNING AND DEPLOYING
and an airfield-suppression unit—and pro- RESPONSIVE MODIFICATIONS.

ceed to accomplish their objectives. Duripng
the flight, specialized algorithms for detect-
ing and recognizing SAM launchers auto-
matically upload and are integrated into thenight include environment and land-usenew system would perform as intended.
SAM-suppression unit’s software. monitoring, freeway-traffic management, fire Software engineering aims for the syst
In this scenario, new software componentfighting, airborne cellular-telephone relaytematic, principled design and deployment
are dynamically inserted into fielded, heterostations, and damage surveys in times of nadf applications that fulfill software’s origi-
geneous systems without requiring systeraral disaster. How wasteful to construcnal promise—applications that retain full
restart, or indeed, any downtime. Missiorafresh a specific software platform for eactplasticity throughout their lifecycle and that
replanning relies on analyses that includeew UAV application! Far better if software are as easy to modify in the field as they ar
feedback from current performance. Furarchitects can simply adapt the platform|t@n the drawing board. Software enginee
thermore, such replanning can take placthe application at hand, and better yet, if th@ave pursued many techniques for achievin
autonomously, can involve multiple, distrib-platform itself adapts on demand even whil¢his goal: specification languages, high-leve
uted, cooperating planners, and where majaerving some other purpose. For example, gsrogramming languages, and object-oriente
changes are demanded and require humairborne sensor platform designed for envianalysis and design, to name just a few. How
approval or guidance, can cooperate with migonmental and land-use monitoring coyldever, while each contributes to the goal, th
sion analysts. Throughout, system integrityrove useful for damage surveys followingsum total still falls short.
requires the assurance of consistency, coan earthquake or hurricane, provided some- Self-adaptive software will provide the key.
rectness, and coordination of changes. one could change the software quicklyMany disciplines will contribute to its pro-
Other applications for fleets of UAVs enough and with sufficient assurance that thgress, but wholesale advances require a sys-

o —Q 0 o

[¢]

54 1094-7167/99/$10.00 © 1999 IEEE IEEE INTELLIGENT SYSTEMS

tems pespectve based on abadl incusive
adataion methodolgy tha spans a wide
range of adative behaiors. Cental to our
view is the dominantale of softvare achi-
tectue in planningcoorinating, monitoting,
evaluding, and implementing seamless pda
tation. This aticle examines the fundamental
role of software achitectue in self-adptive
systems and outlines temologies we have
consideed for suppating the methodolgy.

What is self-adaptive
software?

Self-adgtive software modifes its avn
behaior in response tol@anges in its oper
ating ervironment. By opetting erviron-
ment,we mean aything obsevable by the
software systemsud as end-user input,
extemal hadware devices and senssyor
program instumentaion.

Applicaion developes nmust anser se-
eral questions Wwen deeloping a self-ada
tive softvare system:

e Under vhat conditions does the syste
undego adatation?A system mightfor
example modify itself to impove system
response timgecover from a subsystem
failure, or incoporate adlitional behaior
during runtime

e Should the system be open-ptae or
closed-adptive?A system is open-aga
tive if nev applicaion behaiors and
adatdion plans can be imiduced dur
ing runtime A systems islosed-adptive
if it is self-contained and nobke to sup
port the adlition of nev behaiors.

* What type of autonom must be sup
ported?A wide range of autonom might
be neededrom fully automéic, self-con
tained adptation to human-in-the-loop.

e Under wha circumstances is agttion
cost-efective?The benefs gained fom a
change nust outveigh the costs assotad
with making the bange. Costs intude the
performance and memyproverhead of
monitoling system behdor, detemining
if a chang would impiove the systenand
paying the assoctad costs of updiag the
system confjuration.

* How often is adptaion consideed?A
wide range of policies can be usgdom
oppotunistic, continuous adptation to
lazy, as-needed agéation.

e What kind of informaion must be col
lected to ma& adgtaion decisions? Ho

ma UAV’'s geneator might force the LAV to

Algorithm _|
selection

Online algorithms
(deterministic, randomized, or —
probabilistic)

Evolutionary programming
(algorithm generation, genetic algorithms,
Al-based learning)

]» Generic or parameterized algorithms

}Conditional expressions

Figure 1. A spectrum of self-adaptability. Generally, approaches near the bottom select among predetermined alterna-
tives, support localized change, and lack separation of concerns. Approaches near the top support unprecedented
changes and provide a clearer separation of software-adaptation concerns.

accugte and curent rmust the inbrma
tion beA wide range of stetegies can be
used from contiruous,precise recent
obsewations to sampledapproximate,
histolical obsevations.

What conditions?A fleet of UAVS might
undego adgtation under a siiety of condi
tions. Mission eplanning is a pme exam
ple because autortead or human mission
plannes redirect the feet in esponse to the
changng batlefield. A medanical &ilure of

rely solely on batery power for its electon-
ics, commnunicaions,and sensa. This in
turn would require substantial agation to
ensue suficient electical paver for the mis
sion’s duetion. A change in force composi
tion (sud as the loss of d€let member to

equipment &ilure) or the detection of an

unanticipaed thea might force apid and
substantial adqaetion.

Open- or tosed-adated?A closed-adp-
tive UAV adats in isolaion, uninfluenced
by the adatations and behaors of other
fleet membes. It has ont a limited umber
of adative behaiors onboad, and no ne
behaiors can be invduced & runtime
Sud a LAV might be caable of a limited
number of ®asive maneugrs in response tg
threds, for example and its epetrtoire of
evasions cannot be moatl or xpanded in
flight. Corversely, an open-adative UAV
accets behwiors introduced fom the out
side so an gasive maneugr knavn to one
fleet member can be conumicaed to oth
ers while in flight.

Type of autonog? Each UAV can be au
tonomous to argder or lesser dgee For
example a UAV coping with an infight sub
system &ilure might equire tha a human-
in-the-loop diect, or & least @prove, an

adatation. A sophisticéed UAV with more
onboad computing paer might be hight
autonomousdnteracting with humans iné
quenty, if at all, over the couse of its
mission.

FrequenciesAdaptation is not without its
cost,and @en a useful or desile adata
tion might equire moe resouces than the
UAV can aford. For example the UAV might
be forced to pananenty discad gpplicaions
or system suppofor the sak of adlitional
memoy to accommoda an adptéion, or
the adataion might cut offuture averues of
chang. Implementing the agidetion might
require piocessorycles better useaf other
more pessing concers,or the adptation,
though desgble, might degrade the BV’'s
performance in otheraspects.

Cost-efectivenessPAdaptation frequeny

also méters. A UAV might be oppadunis

tic, consideing and implementing agée

tions whenever it has sparpiocessor ycles
or adlitional comnunicaions bandvidth

available. It might also adat contiruousy,

allocaing an onging fixed pecentaye of its
computing and comuomicéion resouces to
the adataion processAlternatively, adg-

tation might ony be on demand asawvanted
by the UAV’s condition and arironmental
stae.

Information type and accuarcy? Finally, the
UAV might collect inbrmation from rumer
ous souces on wich to base its agéation
decisions. Inbrmation souces intude

¢ real-time eadings fom intenal sens@
for monitoing subsystem health and-sta
tus (sub as b#ery voltage or fuel leels),

* telemety from extemal sensa@ sud as
radar and mgnetometes,

« sampled obssgations sub as pocessor

MAY/ZJUNE 1999

55

load or mdio signal sength eer mirutes,
or histoical dda sut as the meements
of thred forces @er hous.

Figure 1 illustetes the boad spectrm of
self-adatability. At one extreme conditional
expressions & a brm of self-adatation; the
program &aluges an rpression and altsr
its behaior based on the outcomfdthough
simplistic, conditional epressions a& a
common melsanism ér implementing ada
tive behaior. For example a just-in-time
compiler might inoke aggressve code-opti
mizdion tediniques if a function is called
frequenty.

Online algrithms opeate under the as
sumption thefuture events (inputs) & uncer
tain. Hencethey will occasionaly perform an
expensve opesgtion to moe eficiently
respond to fute opeations?! Online alg-
rithms ae adative in tha they leverage knawl-
edge dout the ppblem and the input domain
to improve eficieng. A memoy-cahe-pa-
ing algorithm, for example leverages the spa
tial and tempaal locality of memoy refer-
ences in detemining which caded pae to
evict when making@om for a nev page.

Geneic and paameteized algrithms
provide behaiors tha are paameteized,
usually through type instanti&on or eter-
nal inputs. Genéc or polymorphic algo-
rithms adat by conforming to diferent daa
types.The C++ StandarTemplde Library,
for example provides geneic iterator dasses
used to taverse a arety of dda stuctures.

Algorithm selection uses ppeties of the
opeiting ervironment to hoose the most
effective algorithm among aixed set of eail-
able algorithms.Thus,a system thaises alg-
rithm selection adats to ©ianges in its opeat-
ing ervironment ly switching among a set of
algorithms.The Self gnamic optimizing com
piler, for ekample uses pogram-puofiling data
collected dung program eecution to select
different code-optimizion algprithms?

At the other gtreme evolutionasy program-
ming and magine-leaning tedniques a&
adative in thathey use popeties of the oper
ating ervironment and kneledge gained fom
previous dtempts to gneete nev algorithms3

Geneally, approades near the speain’s
bottom intetwine concens regarding soft
ware adatation and @plicaion-specifc
behaior. For ekample a conditional gpres
sion combines the aptetion’s speciication
with the agplicaion’s specifcation. Conse
quenty, undestandinganal/zing, and mod
ifying the two indgoendenty is aduous.

descriptions

|

Architectural
model

Plan changes

Deploy change Adaptation
management

Enact changes and
collect observations

Evolution
management

\ Maintain
consistency

and system integrity

Evaluate and
monitor
observations

/

B::\/D Implementation

/

Figure 2. High-level processes in a comprehensive, general-purpose approach to self-adaptive software systems.

Approades near the top medealy sepa
rate software-adgtaion concens and ppli-
caion-specifc functionality For example
algorithm genestion searates the adata
tion’s specifcation from the poduced alg-
rithm. Separating the concers of softvare
adatation from software function &cilitates
their indgpendent angkis and eolution.

Software adaptation in-the-
large

While tedhnical addances in naow areas
of adgtation tecinology provide some ben
efit, the geaest benefwill accrue by devel-
oping a compghensie adgptation methoe
ology tha spans adatation-in-the-small to
adatation-in-the-lage, and then deslops
the tetinolagy tha suppots the entie ange
of adataions. Fgure 2 illustiates just suic
a methodolgy tha we ae investigting.

The upper half of the dgmam, labeled
“adaptaion mangement, descibes the lig-
cycle of adgtive softvare systemsThe life-
cycle can hae humans in the loop or be fyll
autonomous:Evaluge and monitor obser
vations” refers to all brms of e/aluding and
obseving an @plicaion’s execution,nclud-
ing, a a mininum, performance monitang,
sakty inspectionsand constint erifica-
tion. “Plan dhanges” refers to the task of
acceting the galudions,defining an @pro-

priate adatation, and constuicting a ue-
print for executing thaadaptation. “Deploy
chang desaptions”is the coodinated con
veyance of bang desdptions,components,
and possily nev obsevers or ealugors to
the implementton plaform in the feld.
Cornversely, deployment might also>dract
daa,and possily componentsfom the un-
ning gplicaion and coxey them to some
other point &r anaysis and optimiziéon.

Adaptation mangement and consisteyic
maintenance piakey roles in this pproad.
Although metanismsér runtime softvare
chang ae available in opegting systems
(for example dynamic-link libraries in Unix
and MiciosoftWindows),component object
models,and ppgramming languges,these
facilities all shag a major shacoming:they
do not enswe the consisteygcorrectness,
or other desid piopeties of muntime
change. Chang@ mangement is a dfical
aspect of untime-system lution tha
identifies what must be bangd; povides
the contet for reasoning bout,specifying
and implementing fltange; and conwls
chang to peseve system intgrity. With-
out chang mangement,the lisks en@n
dered ly runtime modifcations might out
weigh those assodid with shutting dan
and estating a system.

Software adatation is a comple process
and is futher complicéed by chang divers
rangng from puposeful adjustments in

56

IEEE INTELLIGENT SYSTEMS

Plan
/ changes
Adaptation
Enact changes

Evqutlon

model
management
\ Maintain

conS|stency

B2
/

Ifjvaluate Observers

Deploy change - - and monitor Architecture

descriptions, management observanons " editor
\ / Modification

and collect
. | observanons\
Architectura Implementation

- Enact changes and
collect observations

interpreter
A

Architectural B

model |J_'I |J_'I =

N

T | Architecture evolution manager |

Evolution
management

-

Implementation

2o
/

Mamtaln consistency and system integrity

Figure 3. A high-level architecture diagram for the ArchStudio tool suite.

fielded systems to unanticigd peturbaions
in the opeational evironmentThe dhanges
themseles encompassverything from a
simple eplacement of an isdled component
to wholesale econfgurations tha are peva-
sive and plgsically distibuted Our goproac
addresses these demanding and eocpr
dented equirements { manajing adatation
using alexible infrastucture to suppdra full
range of adgtdaion processesThe infra-
structure relies on

» software agents th& automae tasks
within the pocess,

» explicit representéions of softvare com
ponents,their intedependenciesand
their evironmental assumptions,

e explicit representéions of the ewiron-
ments in theiéld where softvare is de
ployed and

* wide-area messging and gent sevices
tha connect adatation manaers to adp-
tive systems to panit coodinated and
coheent adatation in physically distib-
uted logically decentalized ewironments.

The lover half of kgure 2,labeled“evo-
lution mangement, focuses on the mbe
nisms emplged to hiang the @plication
software. Our pproad is achitectue-based:
changes ae formulated in,and easoned\er,
an eplicit architectual model esiding on the
implementéion plaform. Changs to the
architectual model ae reflected in modif
cations to the pplication’s implementton,

while ensuing tha the model and the imple

mentdion are consistent with one another

Monitoring and galuaion sewices obsere
the goplication and its opeting ervironment
and eed inbrmation bad to the digram’s
upper half

Software achitectues viev systems as
networks of concurent components boun
together ly connectos* An architectual per
spectve shifts bcus avay from souce code
to coase-gained components and their inte
connections. Designgrcan astract avay
obscuing details and concerate on the big
picture:the system sticture, the inteactions
among componentte assignment of com
ponents to @cessing elementand untime
change. Components arresponsile for im-
plementing pplication behaior and main
taining stée information. Connectas ae
transpot and puting sevices br messges
or objects. Components do not knor cae
how their inputs and outputseadelivered or
transmitted oreen what their souces or des
tinations might beOn the other handon
nectos knav exactly who is talking to viaom
and hov—but ae ignoant of the computa
tions of the components theewe. Stiictly
separating computéion from comnunica
tion lets a systers’computtion and com
municdion relaionships &olve indepen
dently of one anotheincluding rearangng

Evolution management

It is not enough thave can earange and
replace poations of an pplicaion while it is
executing Self-adative systems msent a
unique set offeallenges with espect to saty;
religbility, and corectness. & ekampleanill-
d consideed dhang—sut as the accidental
removal of a citical navigation component—
can compomise a WAV'’s saéty, reliability,

rand corectness mpeties. Consequentl
facilities for guiding and &ifying modifica-
tions ae an intgral pat of our achitectue-
centic gpproad. Hgure 3 details ourgproat
to evolution mangement,the pocess b
which change is gplied and contlled® A
variety of tools and aqsaaion mehanisms
evolve an aplication by inspecting andiang
ing its achitectual model. Changs can
include the adition, removal, or replacement
of components and connecgnodifications
to the confyuration or paametes of compe
nents and connectmand alteations in the
component/connector netvk's topolay. As
we shav next, our goproad maintains system
consisteng and intgrity by examining eab
chang and etoing ay changs tharender
the system inconsistent or ursaf

Dynamic software architectures.Suppot-
ing a boad dass of adptive cthanges & the

and eplacing the components and connecarchitectual level requires tha we not ony

tors of an aplicaion while the gplicaion
executes—a necessarbut insuficient,
medanism br self-adative software.

chang components on théyfbut also their
interconnections. Heever, simultaneousy

changng components;onnectos, and top

MAY/ZJUNE 1999

57

| Vehicles |

| Ports |
[

| Warehouses |
[[

Connector 1 |

[

[Planner]

[Telemetry |

Connector 2

[
Warehouse artist
\

[
I
I

|
|

Connector 3
Router artist
[Connector 4 |

Figure 4. A C2-style architecture for a simple cargo-routing logistics system. Ports, vehicles, and warehouses are compo-
nents that store application state. The telemetry component tracks en route cargo shipments. The port artist, vehicle artist,
warehouse artist, and router artist components graphically depict the state of their respective counterparts. The planner
component uses simple heuristics to suggest cargo routes, and the router component handles routing requests initiated by
the end user. The graphics component renders the drawing notifications sent from the artists on the end-user’s display.

Correlate sensors 1 & 2
Ultraviolet returns)
Candidate returns
>R
Time)
synchronized Candidate returns
source Merge candidates
Candidate Candidate
Ultraviolet —3 returns
f/_/-/' = returns 3 Ask f
returns —
ui
Form candidates .
Candidate
B— returns
Ultraviolet returns
Component Correlate
sensors 2 & 3 .
3 fFﬁ] High
= probability
Unpopulated candidates
socket
Connector
B——-73
Generate candidate tracks

Figure 5. A portion of a Weaves architecture for a stereo-tracking system.

ology in a eliable mannerequires distinctie
medanisms and ahitectual formalisms.
Marny systems a dynamic to some limited
degree lut few embace ¢gnamic hang as a
fundamental considation.

There ae two distinct gproaces to
dynamism athe achitectuml level: C28
andWeaves! They have mary fedures in
common:

and connecta,
neither placesastictions on the taru-
larity of the components or their imple

mentdion languae,

both require tha all comnunicaion be
tween components occuy lexchandng
asyntironous mesgges (C2) or objects
(Weares),and

components can erasulde functionality
of arbitrary compleity and eploit multi-
ple thieads of contl.

However, C2 andWeaves tale different

both distinguish beteen components approades to system composition. C2 comwired, expandedor contacted on thely.

poses systems as a lairhy of concurent
components boundgether ly connectas—
messge-routing deices—sub tha a com

ponent within the hierchy can ony be avare
of component$above” it and is completgl
unavare of componentssiding athe same
level or“benedh” it. Figure 4 shavs an gam
ple C2-style ashitectue for a simple cao-
routing lagistics systemA componentplic-
itly utilizes the sefices of componentdbave

it by sending agquest mesga. Commnuni-
cation with components belooccus implic-
itly; wheneer a component@anges its inter
nal stae, it announces thehange by emitting
a notifcation messge, which descibes the
stae dhangg, to the connector belwit. Con
nectos bioadcast noti€ation messges to
every component and connector connecte
on its bottom sideThus,notification mes
sayes povide an implicit ivocgion meha
nism, allowing several components toeact
to a single componest’stde cthange. For
example the“Telemety” component in Ig-
ure 4 is ony aware of the“Clock,” “Ports;
“Vehides; and“Warehousestomponents.
Furthemore, the C2-style components can
not assume thahey will execute in the same
address space as other components oresha
a common tread of contl.

In contiast,Weaves is a ginamig object-
flow-centic architectue designeddr gopli-
cations harmacteized ky contiruous or inter
mittent \oluminous d&a flows and eal-time
deadlines. Components\ileares consume
objects as inputs andqafuce objects as out
puts (“object”is intended in the sense of
C++,Smalltalk,or Java). Hgure 5 d@icts an
exampleWeaves achitectuee for a potion of
a steeo tradker. Weaves embaces a set of
architectuml principles knevn as the las of
blind comnunicéion:

no component in a netwk knows the
sources of its input objects or the desti
naions of its output objects;

no netvork component knes the seman
tics of the connectarthd delivered its
input objects or ansmitted its output
objects; and

no netwrk component knas the loss of
a connection.

These lavs ensue tha no component knves
its locaion in the netwrk, tha every com
ponent is indpendent of the semantics of the
connectos to which it is atached and tha
arny Weaves achitectue can be editede-

Furthemore, Weaves pemits connecta to
be composed of other connesgt@nd com
ponentsallowing connectas to be speciall

58

Al

IEEE INTELLIGENT SYSTEMS

____________ -- Plan changes
Plan -~ Observation and
changes adaptation planners
Evaluate
Deploy change . Adaptation _and monitor
descriptions management observations
\ / Deploy [peployment . Observation | Evaluate and
Enact changes change gge);ns = Adaptatlont ~| analyzers | monitor
and collect descriptions MEEGEmET observations
. observatlons\
Arch|te(;:t:1ral ImpIementatlon 0
e e% Evolution Et:\/ﬂ Observers
management Architecture
editor
Mamtaln Modification
consistency) interpreter
.. Enact changes and
* collect observations

Figure 6. A high-level architecture diagram for adaptation evolution.

adated to the karacteistics of their oper
ating ervironment with caresponding per
formance gins.

Several characteistics of C2 andWeaves
facilitate untime dang. Because compo
nents comranicae asynbronousy, C2 and
Weaves aoid several subtle complbeties
inherent in suppding runtime dang in
applications tha utilize syn&ironous com
municaion. While this estiction occasion
ally males it moe difficult to implement par
ticular component intactions,because g
component mst contile to espond to ser
vice requests sm other componentshite
awaiting responses it has made of o#eur
expeltience demonsdtes thaits beneits for
runtime hang outweigh its costs.

The indgendence beteen hiearchical
layers in a C2-style ahitectue further
reduces componentplendenciesa C2 com
ponent is unaare of components belo
itself, so it is olbivious to untime danges
that involve these componentEonversel,
a component can gnbe afected ly runtime
changes irvolving components siitly above

itself. Because C2 components cannot assumectnessTherefore, facilities for guiding

that they will execute in the same digss space
as other componentspmplex component

dependenciesasulting fom the use of pointey

vatiables and globalatiables ae aroided Sim+
ilarly, because components do not steacom
mon thead of contol, contiol dependencies
are avoided Taken t@ether C2’s style ules
ensue tha eah component is almost con
pletely ignorant of the placemeritinction,and
implementéon of its llow components.
Consequeny, at runtimg C2 can ad,

deleteor rearange components witlemak-

able ease and alaty. In contast, while
Weares suppds like forms of component
manipuldion, it emphasies the ginamic dis
tribution, modification, and earangment
of connectas. This lets deelopes optimiz
intercomponent commmicdion while a
Weaves achitectue is eecuting including
wholesale meement of a subahitectuie
from one host to another along witladrdic

interconnections among components an
connectos and their magpings to imple
mentdion atifacts.The mgping pemits
changes,given in tems of the athitectural
model,to efect coresponding lsanges in
the actual implementian.

To guad against untward changg, we pio-
pose amrchitectuie e/olution manger (AEM)
that medides all dhang opestions diected

changes in the semantics and implementatoward the achitectual model A change is

tions of its connectsr

In shot, C2 has been optimez for flexi-
ble componentsyhile Weares bcuses on
high-perbrmanceflexible connectas. One
reseach issue e face is lending these ta
approades to gnamic achitectues into a
single cohesve whole. One possile ap-
proad is to tea Weaves as an implementa
tion substate for C2 andcompile” C2-style
architectues into laver-level, but more efi-
cient,Weaves achitectues.

Maintaining consistengy and system
integrity. Ongoing adgtaion contiruousy
threaens system safy, reliability, and cof

and dheding modifications ae an intgral
partt of our adatation infrastucture. As an
application adats and eolves,we face the
problem of peseving an accuate and con
sistent model of thepplicaion aichitectue
and its constituent pex—the components
and the connectsrWe nust also maintain
a stict corespondence beten the ahi-
tectual model and thex@cuting imple
mentdion. To deal with these pblems,we
deploy, as an intgral pat of the goplicaion,
an achitectual model tha descibes the

expressed either as a single basic i@ or
as achange transactioncomposed of tev or
more basic opetions.All changs ae @omic;
that is, they either complete without er or
leave the aplicaion untoutied A chang
transaction inludes opeations for forcing
components and connecanto saé or halt
staes; ading, removing, and eplacing com
ponents and connectrand bandng the
architectual topolagy.

The AEM maintains the consisteyc
between the ahitecturl model and the
implementéion as banges ae gplied re-
ifies hanges in the ahitectual model to the
implementéion, and pevents dianges fom
violating architectual constaints. or exam
ple, it can enbrce the gneic constaint tha
all components st be connected to least
one connectorut not moe than tv. The
AEM is also tailoed by applicaion- and
domain-deendent bang policies thadic-
tate the brms of accptable chang. Within
the VAV domain,the AEM can equir tha
the UAV system containtdeast one naga-
tion componenfTheAEM, which maintains
the maping betveen the athitectual model
and the implement®n, uses this maping
to cary out modifcations by mgpping model

MAY/ZJUNE 1999

59

components and connecanto implemen
tation atifacts and @nslding change oper
ations into implement#n actions.

Enacting changes.There ae maly possitte
soures of athitectual changg, including the
applicaion itself, extemal tools and eplan
ning ayents. Softvare architects can use &
visual,interactive, architecture editorto corr
struct achitectues and desitre modifca-
tions.A vaiiety of anaysis tools can accom
pary the editor—br example a design
wizard tha critiques an ashitectule as a
designer consticts it,or goplicaion- and
domain-d@endent design wizds tha, by
exploiting specialied knavledge, can pe-
vent semantic €ors or enswg a mininum
level of perbrmance or sa&fty. The modii-
cation intempreteracts as a seconcbmpan
ion tool to intepret change scipts wiitten in
a dhange-desciption language to pimitive
actions suppaded by theAEM.

Adaptation management

A self-adgtive system obsees its avn
behaior and anajzes these obseations to
detemine gpropriate adgtaions.A cont
panion to the mcess of eolution mange-
ment is the prcess of adatation manae-
ment, illustrated in Fgure 6.Adaptation
mangement monitass and galudes the
application and its opeting ervironment,
plans adptaions,and d@loys chang de
scliptions to the unning gplication.

Viable self-adative systemsaquire long-
temrm contiruity in the face of ¢namic
chang—in other verds, both a standalr
locale Pr the inbrmation and tasksaguired
to cary out the function of agaaion and a
focal point br coodinaing physically dis-
tributed logically decentalized adatdion
tasks. Br example complec interdependen
cies might gist among bangs sub thd the
incomoration of one bang could equire
the indusion of seeral othes for the hlange
to work correctly in its elvironmentA stan
dard locale helps ensertha sud informa
tion is & hand Additionally, an adatation
might require coodination among raltiple
sites vhen the pplication is plysically dis-
tributed and adataion requires hangs a
several sites simltaneoust.

Additionally, manajing self-adative soft
ware requires a arety of egents,sud as
obsewersfor evaluaing the beheaior of the
self-adative gplicaion and monitang its

A

opegting ervironmentplannestha utilize
the obserations to plan adative responses
anddeployersto enact theasponses within
the qplicaion.

Hosting the nmeious @ents and suppbr
ing the \arious actities of adataion man
agement tharesult equires inflastucture
suppot in its avn right in the brm of reg-
istries. Rejistries d eat goplicaion site con
tain resouce desdptions,configurations,and
other detarative information relevant to the
site and the agitive gplicdion. Registries
elsavhere might be dedid¢ad to werseeing
and coodinating the actiities of the indvid-
ual gplicaion site egistries. Eab registry
provides a standdrinterface ly which dis
parate agents and inteysts can qugrand

MANAGING SELF-ADAPTIVE
SOFTWARE REQUIRES A VARIETY
OF AGENTS, SUCH AS OBSERV-
ERS, PLANNERS, AND DEPLOY-
ERS. HOSTING THE NUMEROUS
AGENTS REQUIRES INFRASTRUC-
TURE SUPPORT IN ITS OWN
RIGHT.

manipulde the contents of thegistry, which
acts as albckboad for exchangng infor-
mation. Interegistry comnunicaion takes
mary forms,rangng from directed updies
to wide-aea messging and @ent notifca-
tion. One pomising stating point is the Soft
ware Do, an infrastucture elementdr the
distibuted coniguration and dployment of
software systemsyow under deelopment &
the University of Coloado,Boulder®?

Collecting obsewations. Self-adative soft
ware requires lage rumbes and arieties of
obsevations and measements,rangng
from event-genestion within the @plication
implementaéion to anim&éons suitdle for
human obseers. Futhemore, adjusting the
number extent,and detail of the obsetions
and measw@ments mst be possie as the
applicaion executes andwlves so as ta
reduce measement oerhead and\eid
wasting comrmanicdion bandvidth on un
necessarobsevations.

At a minimum, we require embeded as

setions (inline obserers) within the apli-
caion itself for notification of exceptional
events suh as esouce shotages or the vie
lation of low-level constaints.Additional
required cgabilities indude d/namic con
trol and alteation of the scope of the asser
tions, insetion and emoval of assefons
while the gplication is executing languae-
independent assions,and achitectue-sen
sitive assdions. One potential canditafor
this facility is APP, a tool tha suppots the
automaed dedking of logical asseiions
expressed inifst-oder pedicde logic.1°

Detecting and noting singlevents is not
enough because the oceirice of a pem
of events distibuted in both time and place
will trigger maly adative stategies. One
approadc is to model pplicaion beha&ior
abstractly in tems of patems of eents. In
this way, the achitect’s expectdions ae
expressed as aexpectdion agent!! The
expectdion egent lesponds to the ocaence
of event pdtems, including genegting a
higherlevel abstiact ezent for the benéf of
other (expectdion) agents.The expectdion
agent is a 6rmal specitcation tha, depend
ing upon its compldty, can be tanslaed into
an obserer embeded within the pplicaion
or implemented as amyent tha eavesdops
on the actiity of the local egistry. In adli-
tion, we must monitor gents thaoccur out
side of the pplicaion—sud as the quality
or availability of a network connection—as
well as adptaion events thaarise as a con
sequence ofyhamic achitectural change.

We nust also mak piovision for obser
vation by human obseers in coopegtion
with automaed ayents. One pgpealing teb-
nology is JDist,which exploits standat\Web-
based telenolagies—HTTP and HTML—to
provide a paverful and eficient infrastuc-
ture for remote obsefation of distibuted
applicaions!? Joist embeds a smalilveb
sewer in the @plication’s muntime ewriron-
ment,which then monitos the @plicaion
and githers information. This information is
identified thiough a special URL namespace
and it is pesented in HTML pges thathe
Joist sever geneates and comumicaes to
ary standad Web browser via HTTP

New tedhniques nust emege for reduc
ing the monitoing overheadWeaves em
ploys stdistical monitoing teciniques tha
lets obsevers trade accuagy in favor of
reduced werhead Using this aproac, we
can educe the ivasive efect of instumen
tation on a unning gplication to belav the
noise theshold vhile still obtaining useful

60

IEEE INTELLIGENT SYSTEMS

information. Futhemore, the instumenta

tion can stg pemanenty embeded within
the gplication so thaan obserer can selec
tively measue only behaiors of inteest
without damaing the gplicaion. Applica-

tion developes can use this teaique in a
variety of ways, including perbrmance
anaysis and eal-time animtion of the be
havior of running systems.

Evaluating and monitoring. Adaptive

demands can &e from inconsistencies o
suboptimal behdor within the system. In
patticular, inconsistencies can occuhen
some athitectul element @ngng from a
single component or connector to a subs
tem,or the entie achitectue) behses in a
manner inconsistent with the befiar re-

quired of it or vhen an elemerg'assump

tions dout its opegting ervironment becom
invalid. Maintaining consisterydn these sit
uaions requires monitoing and galuaing

representtive behaiors of the unning sys

tem and compang them to anxplicit for-

mulation of behaioral requirments or en-

ronmental assumptions.

Successful consistepanan@ement e-
quires a lybrid gpoproac tha combines bott
staic and ¢gnamic anafsis. One ppmising
form of staic anaysis eploits dtributed gaph
grammas. Recall thedynamic achitectues
can be bhamacteized as ggphs of component
and connectar Attributed gaph gammas
can epresent the set of all applicaion’s
possile confgurations where achitectuil
changes ae regarded as gaph-rewrite opee-
tions.Analysis tools can deterine if an ivari-
ant is peseved ty all possilte acchitectues
or can etumn an gample gaph (achitectual
configuration) thd violates the imaniant.

Staic analsis might be insdifcient, in
which caseuntime dhedks ae emplyed to
detect inconsistencies. Obgers inspect
both the aplicaion and the erironment in
which the gplication opestes and ealuae
their obsevations for consistengwith rele-
vant annotaons obtained fsm the egistries.
Obsevers ae geneeted and laurfeed aute
matically based on the conaints and pop-
erties etracted fom annottions petaining
to the element under obsetion. Obsevers
post obsered inconsistenciesggregated
obsevations,and anatses to theegistry.

Planning changes.Planning is also a vita
aspect of self-agdive softvare. Self-ada-
tation requires two distinct brms of plan
ning: obsevation planning and agseation

planning Obsevation planning detenines
which obsevations ae necessarfor decid
ing when and Were adptations ae required
The obseration planner taks into account
ervironmental assumptionspected beha
iors, the availability of obsewers and obser
vations,and their cost&Ve can viev this task
as a tassic planning mblem where the gals
are informaion needsthe opeators ae the
obsevers, the peconditions a required
event typesthe postconditions arobsever-

r geneeted event typesand the opetors have
obsevation and notiication costsThis type
of planning is vell within the ange of to
day’s planning telenolagy.

ys Adaptaion planning detenines eactly
which adataions to mak and vihen.The

PLANNING IS A VITAL ASPECT
OF SELF-ADAPTIVE SOFTWARE.
SELF-ADAPTATION REQUIRES
TWO DISTINCT FORMS OF
PLANNING. OBSERVATION
PLANNING AND ADAPTATION
PLANNING.

adagtation planner rast tale into account the
purpose of componentt)eir etvironmental
assumptiongnd knevn popeties of the evi-
ronment.We ae inteested in pplications
(such as WAVS) where adgtaions nust be
planned in miaotes,not hous. One possib
approad relies on the use of edefned solu
tion framevorks thd, by limiting the ange and
varnation of possile adataions,drastically
reduce the computan required for planning

A solution famevork is a patially instan
tiated hiearchical solution athitectue cor
sisting of connectay, sokets (placeholder
for componentsand an equalence tass of
candidd&e componentof eah soket (where
components can themseks be solution
framavorks). Gven sub a famevork, an ink
tial solution achitectue might be éund ty
selecting componentsif eat sodket from
the set of elithle components. Using this &
a stating point,the system can undgrincre-
mental adptation by choosing altemaives
for problemaic components hwose ewiron
mental assumptions no loaghold in the
obseved enironment.

A more eneal goproat explicitly repre-
sents the @conditions and postconditions of
eath component thacould afect, or be
affected ly, other componentsgpresents edrc
sodet in tems of one or m@& required post
conditions; and &as framevork instantigion
as a planning pblem.This gproad requiles
a patial domain model and ddional com
putéion hut no longr requires thacandidae
componentsdrm an equialence tass.We
have alead/ demonstated this @proad in
another domairthe autom#c geneegtion of
simulation scipts for tank taining3

Deploying change desciptions. Chang
agents popagate and mwe out among sites
to cary out their tasks. Ingine a scenan
in which a coodinated dange is equired &
two separate sitesAgents esponsilte for
ead pottion of the coadinated dhange dis
pach from a thid site (which oversees the
other two), taking with them the lrange
desciptions to be installednduded in the
chang desdiptions ae ary new required
components or connecgoand their diliated
annotdéions. These gents,once situted d
the registries of their espectie siteswill
interact with the locahEM, which translaes
the dhange transactions contained within the
chang desdptions into specit modifica-
tions of the systera’implementton.

LTHOUGH EACH INDIVIDUAL
aspect of ourmproac has been theéus
of much reseach, integrating these aspects
into a compehensie self-adative soft
ware methodolgy is unpecedentedn the
near futue, we hope to complete an initial
integration of our d/namic achitectue
technology, event-based monitamg and
evaluaion tecnology, and softvare de
ployment te&inology in suppot of self-
adative software. =

Acknowledgments

We thank Daid M. Hilbert and &son E. Rob
bins for discussions thaontibuted to this werk.
Dennis Heimbingr andAlexander L.Wolf are
sponsoed ty theAir Force Maeriel Command

sRome Ldoratory, and the DefnseAdvanced

Researh PojectsAgeng/ (DARPA) under con
tracts F30602-94-C-0253 and F30602-98-2-0163.
Peyman Oeizy, Richard N. Taylor, Nenad Medi-
dovic, and Daid S. Rosenhum ae sponsad Ly
DARPA and theAir Force Reseah Laboratory, Air
Force Maeriel CommandUSAF, under greement

MAY/ZJUNE 1999

61

F30602-97-2-0021;btheAir Force Ofice of Sci
entific Reseath, Air Force Maerial Command
USAF under gant F49620-98-1-0061; angt the
National Science &unddion under gant CCR-
9701973Alex Quilici was patially suppoted ty
DARPA contract N66001-96-C-850Zhe US Gu-
emment is authdzed to eproduce and disitoute
reprints for govemmental pyposes notwithstard
ing ary copyright annotéion theeon.The vievs
and contusions contained hein ae those of the
authos and should not be infeeted as necessal
ily representing the dicial policies or endae
mentsgither epressed or impliedf DARPA, the
Air Force Reseah Laboratory, theAir Force Ofice
of Scientifc Reseash, or the US Geemment.

References

1. S. Irani andA.R. Kadin, On Online Compu
tation: Approximation Algorithms br NP-
Hard Problems Dorit Hochbaumed, PWS
PuHishing Compay, Boston,1996.

2. U. Holzle, Adgptive Optimizaion for Self:
Reconciling High Brformance with Ex
ploratory Programming PhD dissetation,
Stanbrd Univ., Stanbrd, Calif., 1994.

3. W.M. Speas et al.,"An Ovewiew of Ewolu-
tionary Computdion,” Proc. Euopean Conf
Machine Leaning, Spiinger-Verag, New
York, 1993,pp. 442—-459.

4. D.E. Rery andA.L. Wolf, “Founddions for
the Stug of SoftwareArchitectue,” Softvare
Eng NotesVol. 17,No. 4,1992 pp. 40-52.

5. P. Oreizy, N. Medvidovic, and R.N Taylor,
“Architectue-Based Runtime Softwe Evo-
lution, Proc. Int’'| Conf. Softvare Eng (ICSE
'98), 1998,pp. 117-186.

6. R.N. Taylor et al.,”A Component- and Mes
sage-Based\rchitectul Style br GUI Soft
ware” IEEE Trans. Softare Eng, Vol. 22,
No. 6,1996,pp. 390—406.

7. M.M. Gorlick and R.R. Raauk, “Using
Weaves br Software Constuction andinaly-
sis; Proc. Int'l Conf. Software Eng (ICSE
'91), IEEE CS Pess,LosAlamitos, Calif.,
1991,pp. 23-34

8. R.S Hall et al.,”An Architecture for Post-
Development Confjuration Managgement in
aWide-Area Netvark, Proc. 17th Intl Conf
Distributed Computing System&EE CS
Press1997,pp. 269-278.

9. R. Hall,D. HeimbignerandA.L. Wolf, “A
Coopeetive Approad to Suppar Software
Deployment Using the Softare Dod,” Proc.
Int’l Conf Softvare Eng, (ICSE '99, IEEE
CS Pess,1999.

10. D.S. Rosenhum, “A PracticalApproad to

Programming withAssetions; IEEE Trans.
Software Eng, Vol. 21, No. 1, 1995, pp.
19-31.

11. D.M. Hilbert and DF. Redmiles, “An
Approad to Lage-Scale Collection &fppli-
caion Usa@ye Dda over the Intenet; Proc.
Int'l Conf. Softvare Eng (ICSE '98) IEEE

CS Pess,1998,pp. 136-145.

12. M.M. Gotlick, “Distributed Déugging and
Monitoring on $5 a Dg,” Proc. California
Softvare Symp.Univ. of California, Irvine,

Calif.,1997,pp. 31-39.

13. D. Pautler S. Woods,andA. Quilici, “Exploit-
ing Domain-Spedit Knowledge to Reihe Sim
ulation Speciications; Proc. 12th ConfAuto-

mated Softare Eng, IEEE CS Pess1997.

Peyman Oreizyis a PhD candida & the Unver-
sity of California, Irvine. His reseach interests
include software evolution, customizéion, and
architectues. He eceved his BS and MS in com
puter science &m UCI. He is a member of th
IEEE Computer Society and th&M. Contact
him & UC Irvine, Informaion and Computer Sci
ence Bldg Rm. 444 rvine, CA 92697-3435; pe
mano@ics.uci.edu; wwies.uci.edu/~pgmano/.

Michael M. Gorlick is a eseath scientist athe
Aerospace Cgroration. His eseach interests
include softvare achitectues,large-scale system
and softvare engneeing, and weaible comput

ers. He holds an MSc in computer scienasfr
the Unversity of Biitish ColumbiaCanada. Con
tact him atheAerospace Cqr., Mail Station M1-

102, PO B 92957, Los Angeles, CA 90009;
gorlick@aen.om.

Richard N. Taylor is a ppfessor with the Dgatt-

ment of Inbrmation and Computer ScienddCl,

and is also the dictor of the Ivine Reseah Unit

in Software (IRUS),an alliance beteen Calibr-

nia industy and the uniersity. His reseach inter

ests ae centeed on softare achitectues,hyper

media andWeb protocols,and workflow and
process telenolagies. He eceved his PhD in com
puter science &m the Unversity of Coloado,
Boulder He is arACM Fellow. Contact him &the
Dept. of Information and Computer ScienddCl,

Irving, CA 92697-3425; tdor@ics.uci.edu; www
ics.uci.edu/~tglor.

Dennis M. Heimbigneris a eseath associte pio-
fessor aithe Unversity of Coloado,Boulder His
reseath intelests ag in coniguration mangement,
paradigms br the enmeeing of distibuted soft
ware, distributed computing modelspftware work-
flow, and Bderted daabases. Heeteved a BS in
mahemadics from the Calibria Institute ofTedh-
nology, and an MS and PhD in computer scien
from USC. He is a member of the IEEE &@M,
and is a pncipal investigator in the DARPA EDCS
program. Contact himtahe Dept. of Computer Sei
ence Campus Br 430,Univ. of Colorado,Boul-
der, CO 80309-0430; dennis@cs.caldo.edu;

www.cs.coloado.edu/~dennis.

Gregory Johnsonis a member of the thaical
staf of Concedst Shopping Inc His inteests
include softvare-undestanding tools and abg
rithm visualizdion. He eceived his doctaate in
computer sciencedm the Urnversity of Wiscon

sin-Madison. He is a member of the IEEE and th

ACM. Contact him 8777 Siler Spur Rd Ste
229,Rolling Hills Estdes,CA 90274; gegfjohn-
son@edhlink.net.

Nenad Medvidovic is an assistant pfessor in the
Computer Science patment & the Unversity
of Southen California. He eceved his PhD fom
the Dgatment of Inbrmation and Computer Sci
ence &UCI. He alsoeceved an MS in inbfrma
tion and computer sciencefm UCI,and a BS in
computer sciencedmArizona Stée Uniersity.
His reseach intelests intude softvare engneer
ing, architectuees,evolution, and euse Contact
him & the Computer Science P, Henly Sala-
tori Computer CenteRm. 338 Univ. of Southen
California, Los Angeles,CA 900890781; neno
@uscedu; http://sunset.usgu/~neno.

11’

Alex Quilici is an assocta piofessor of electcal

engneeing & the Unversity of Hawaii, Manoa.
His reseath intetests lie in aplying Al techniques
to software engneeiing, in paticular in the agas

of automaed piogram undestanding and the
automaed synthesis of component-based system

He receved his PhD in computer sciencerfn
UCLA. He is a member &AAl, the IEEE Com
puter Societyand the Cgnitive Science Society
Contact him athe Unv. of Hawaii, Manoa,Dept.
of Electiical Eng, 2540 Dole St.Holmes Bldg,
Rm. 483,Honolulu, HI 96822; ale@wiliki.
enghawaii.edu; www-eeenghawaii.edu/~ale.

David S. Rosenlium is an assocta pofessor in
the Dgatment of Inbrmation and Computer Sci
ence &UCI. His curent leseach is centeed on
problems in the design andhdation of laige-scale
distibuted component-based sofw systems. He
receved a PhD fom Stanérd University. He is a

senior member of the IEEE and a member of th

ACM. Contact him ethe D¢pt. of Information and
Computer Scieng&JClI, Irving, CA 92697-3425;
dsr@ics.uci.edu; wwics.uci.edu/~dsr

Alexander L. Wolf is an assocta professor in
the Dgpatment of Computer Sciencéthe Uni
versity of Coloado & Boulder His reseath inter
ests ae directed taovard the discwery of princi-
ples and deelopment of teknologies for
suppoting the engeeing of laige, comple soft
ware systems. Heeceved a B\ in geology and
computer sciencedm Queens Colgge, City Uni-
versity of New York, and his MS and PhD in com
puter science &m the Unversity of Massabu-
setts Amherst. He is a member of theCM and

ceéhe IEEE Computer Societgnd isVice Chair of
theACM Special Integst Goup in Softvare Eng-
neeing. Contact him athe Det. of Computer
Science Campus B& 430, Univ. of Colordo,
Boulder CO 80309-0430; al@cs.coloado.edu;
www. cs.coloado.edu/useralv.

[

n

62

IEEE INTELLIGENT SYSTEMS

