Principled Design of the Modern
Web Architecture

ROY T. FIELDING

Day Software

and

RICHARD N. TAYLOR
University of California, Irvine

The World Wide Web has succeeded in large part because its software architecture has been de-
signed to meet the needs of an Internet-scale distributed hypermedia application. The modern
Web architecture emphasizes scalability of component interactions, generality of interfaces, inde-
pendent deployment of components, and intermediary components to reduce interaction latency,
enforce security, and encapsulate legacy systems. In this article we introduce the Representational
State Transfer (REST) architectural style, developed as an abstract model of the Web architecture
and used to guide our redesign and definition of the Hypertext Transfer Protocol and Uniform
Resource Identifiers. We describe the software engineering principles guiding REST and the inter-
action constraints chosen to retain those principles, contrasting them to the constraints of other
architectural styles. We then compare the abstract model to the currently deployed Web architec-
ture in order to elicit mismatches between the existing protocols and the applications they are
intended to support.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures;
H.5.4 [Hypertext/Hypermedial: Architectures; H.3.5 [Information Storage and Retrievall:
On-line Information Services—Web-based services

General Terms: Design, Performance, Standardization

Additional Key Words and Phrases: Network-based applications, REST, World Wide Web

This work was partially supported by the Defense Advanced Research Projects Agency and Air Force
Research Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-97-
2-0021, and originated while the first author was at the University of California, Irvine.

An earlier version of this paper appeared in the Proceedings of the 22nd International Conference
on Software Engineering, Limerick, Ireland, June 2000 (ICSE 2000), 407-416.

Authors’ addresses: R. T. Fielding, Day Software, 2 Corporate Plaza, Suite 150, Newport Beach, CA
92660; email: roy.fielding@day.com; R. N. Taylor, Information and Computer Science, University of
California, Irvine CA 92697-3425; email: taylor@ics.uci.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works, requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

© 2002 ACM 1533-5399/02/0500-0115 $5.00

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002, Pages 115-150.

116 . R. T. Fielding and R. N. Taylor

1. INTRODUCTION

At the beginning of our efforts within the Internet Engineering Taskforce to
define the existing Hypertext Transfer Protocol (HTTP/1.0) [Berners-Lee et al.
1996] and design the extensions for the new standards of HTTP/1.1 [Fielding
et al. 1999] and Uniform Resource Identifiers (URI) [Berners-Lee et al. 1998],
we recognized the need for a model of how the World Wide Web (WWW, or
simply Web) should work. This idealized model of the interactions within an
overall Web application—what we refer to as the Representational State Trans-
fer (REST) architectural style—became the foundation for the modern Web
architecture, providing the guiding principles by which flaws in the existing
architecture could be identified and extensions validated prior to deployment.

A software architecture is an abstraction of the runtime elements of a soft-
ware system during some phase of its operation [Fielding 2000]. A system may
be composed of many levels of abstraction and many phases of operation, each
with its own software architecture. An architecture determines how system ele-
ments are identified and allocated, how the elements interact to form a system,
the amount and granularity of communication needed for interaction, and the
interface protocols used for communication. An architectural style is a coordi-
nated set of architectural constraints that restricts the roles and features of
architectural elements, and the allowed relationships among those elements,
within any architecture that conforms to the style. Thus, a style provides a
name by which we can refer to a packaged set of architectural design decisions
and the set of architectural properties that are induced by applying the style.

REST is a coordinated set of architectural constraints that attempts to min-
imize latency and network communication, while at the same time maximiz-
ing the independence and scalability of component implementations. This is
achieved by placing constraints on connector semantics, where other styles
have focused on component semantics. REST enables the caching and reuse of
interactions, dynamic substitutability of components, and processing of actions
by intermediaries, in order to meet the needs of an Internet-scale distributed
hypermedia system.

The first edition of REST was developed between October 1994 and August
1995, primarily as a means for communicating Web concepts while developing
the HTTP/1.0 specification and the initial HTTP/1.1 proposal. It was iteratively
improved over the next five years and applied to various revisions and exten-
sions of the Web protocol standards. REST was originally referred to as the
“HTTP object model,” but that name often led to its misinterpretation as the
implementation model of an HTTP server. The name “Representational State
Transfer” is intended to evoke an image of how a well-designed Web application
behaves: a network of Web pages forms a virtual state machine, allowing a user
to progress through the application by selecting a link or submitting a short
data-entry form, with each action resulting in a transition to the next state of
the application by transferring a representation of that state to the user.

The modern Web is one instance of a REST-style architecture. Although Web-
based applications can include access to other styles of interaction, the central
focus of its protocol and performance concerns is distributed hypermedia. REST

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Modern Web Architecture o 117

elaborates only those portions of the architecture that are considered essential
for Internet-scale distributed hypermedia interaction. Areas for improvement
of the Web architecture can be seen where existing protocols fail to express all
of the potential semantics for component interaction, and where the details of
syntax can be replaced with more efficient forms without changing the archi-
tecture capabilities. Likewise, proposed extensions can be compared to REST to
see if they fit within the architecture; if not, it is usually more efficient to redi-
rect that functionality to a system running in parallel with a more applicable
architectural style.

This article presents REST after many years of work on architectural stan-
dards for the modern (post-1993) Web. It does not present the details of the Web
architecture, since those are found within the standards. Instead, we focus on
the rationale behind the modern Web’s architectural design and the software
engineering principles upon which it is based. In the process, we identify areas
where the Web protocols have failed to match the style, the extent to which
these failures can be fixed within the immediate future via protocol enhance-
ments, and the lessons learned from using an interaction style to guide the
design of a distributed architecture.

2. WWW REQUIREMENTS

Architecting the Web requires an understanding of its requirements. Berners-
Lee [1996] writes that the “Web’s major goal was to be a shared information
space through which people and machines could communicate.” What was
needed was a way for people to store and structure their own information,
whether permanent or ephemeral in nature, such that it could be usable by
themselves and others, and to be able to reference and structure the informa-
tion stored by others so that it would not be necessary for everyone to keep and
maintain local copies.

The intended end-users of this system were located around the world, at var-
ious university and government high-energy physics research labs connected
via the Internet. Their machines were a heterogeneous collection of terminals,
workstations, servers, and supercomputers, requiring a hodge podge of oper-
ating system software and file formats. The information ranged from personal
research notes to organizational phone listings. The challenge was to build a
system that would provide a universally consistent interface to this structured
information, available on as many platforms as possible, and incrementally
deployable as new people and organizations joined the project.

2.1 Low Entry-Barrier

Since participation in the creation and structuring of information was volun-
tary, a low entry barrier was necessary to enable sufficient adoption. This ap-
plied to all users of the Web architecture: readers, authors, and application
developers.

Hypermedia was chosen as the user interface due to its simplicity and gener-
ality: the same interface can be used regardless of the information source, the

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

118 . R. T. Fielding and R. N. Taylor

flexibility of hypermedia relationships (links) allows for unlimited structuring,
and the direct manipulation of links allows the complex relationships within
the information to guide the reader through an application. Since information
within large databases is often much easier to access via a search interface
rather than browsing, the Web also incorporated the ability to perform simple
queries by providing user-entered data to a service and rendering the result as
hypermedia.

For authors, the primary requirement was that partial availability of the
overall system must not prevent the authoring of content. The hypertext au-
thoring language had to be simple and capable of being created using existing
editing tools. Authors were expected to keep such things as personal research
notes in this format, whether directly connected to the Internet or not, so the
fact that some referenced information was unavailable, either temporarily or
permanently, could not be allowed to prevent the reading and authoring of
available information. For similar reasons, it was necessary to be able to cre-
ate references to information before the target of that reference was available.
Since authors were encouraged to collaborate in the development of informa-
tion sources, references needed to be easy to communicate, whether in the form
of email directions or written on the back of a napkin at a conference.

Simplicity was also a goal for the sake of application developers. Since all of
the protocols were defined as text, communication could be viewed and inter-
actively tested using existing network tools. This enabled early adoption of the
protocols to take place in spite of the lack of standards.

2.2 Extensibility

While simplicity makes it possible to deploy an initial implementation of a
distributed system, extensibility allows us to avoid getting stuck forever with
the limitations of what was deployed. Even if it were possible to build a software
system that perfectly matches the requirements of its users, those requirements
will change over time, just as society changes over time. A system intending to
be as long-lived as the Web must be prepared for change.

2.3 Distributed Hypermedia

Hypermedia is defined by the presence of application control information em-
bedded within, or as a layer above, the presentation of information. Distributed
hypermedia allows the presentation and control information to be stored at re-
mote locations. By its nature, user actions within a distributed hypermedia
system require the transfer of large amounts of data from where the data is
stored to where it is used. Thus, the Web architecture must be designed for
large-grain data transfer.

The usability of hypermedia interaction is highly sensitive to user-perceived
latency: the time between selecting a link and the rendering of a usable result.
Since the Web’s information sources are distributed across the global Internet,
the architecture needs to minimize network interactions (round-trips within
the data transfer protocols).

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Modern Web Architecture o 119

2.4 Internet-Scale

The Web is intended to be an Internet-scale distributed hypermedia system,
which means considerably more than just geographical dispersion. The Internet
is about interconnecting information networks across multiple organizational
boundaries. Suppliers of information services must be able to cope with the
demands of anarchic scalability and the independent deployment of software
components.

2.4.1 Anarchic Scalability. Most software systems are created with the
implicit assumption that the entire system is under the control of one entity,
or at least that all entities participating within a system are acting towards a
common goal and not at cross-purposes. Such an assumption cannot be safely
made when the system runs openly on the Internet. Anarchic scalability refers
to the need for architectural elements to continue operating when subjected
to an unanticipated load, or when given malformed or maliciously constructed
data, since they may be communicating with elements outside their organiza-
tional control. The architecture must be amenable to mechanisms that enhance
visibility and scalability.

The anarchic scalability requirement applies to all architectural elements.
Clients cannot be expected to maintain knowledge of all servers. Servers cannot
be expected to retain knowledge of state across requests. Hypermedia data
elements cannot retain “back-pointers,” an identifier for each data element that
references them, since the number of references to a resource is proportional to
the number of people interested in that information. Particularly newsworthy
information can also lead to “flash crowds”: sudden spikes in access attempts
as news of its availability spreads across the world.

Security of the architectural elements, and the platforms on which they op-
erate, also becomes a significant concern. Multiple organizational boundaries
imply that multiple trust boundaries could be present in any communication.
Intermediary applications, such as firewalls, should be able to inspect the ap-
plication interactions and prevent those outside the security policy of the orga-
nization from being acted upon. The participants in an application interaction
should either assume that any information received is untrusted, or require
some additional authentication before trust can be given. This requires that
the architecture be capable of communicating authentication data and autho-
rization controls. However, since authentication degrades scalability, the archi-
tecture’s default operation should be limited to actions that do not need trusted
data: a safe set of operations with well-defined semantics.

2.4.2 Independent Deployment. Multiple organizational boundaries also
mean that the system must be prepared for gradual and fragmented change,
where old and new implementations co-exist without preventing the new imple-
mentations from making use of their extended capabilities. Existing architec-
tural elements need to be designed with the expectation that later architectural
features will be added. Likewise, older implementations need to be easily iden-
tified, so that legacy behavior can be encapsulated without adversely impacting
newer architectural elements. The architecture as a whole must be designed to

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

120 . R. T. Fielding and R. N. Taylor

replicated uniform interface

on-demand g i simple
visible

Fig. 1. REST derivation by style constraints.

ease the deployment of architectural elements in a partial, iterative fashion,
since it is not possible to force deployment in an orderly manner.

2.5 Evolving Requirements

Each of these project goals and information system characteristics fed into the
design of the Web’s architecture. As the Web has matured, additional goals have
been added to support greater collaboration and distributed authoring [Fielding
et al. 1998]. The introduction of each new goal presents us with a challenge:
how do we introduce a new set of functionality to an architecture that is already
widely deployed, and how do we ensure that its introduction does not adversely
impact, or even destroy, the architectural properties that have enabled the Web
to succeed? These questions motivated our development of the REST architec-
tural style.

3. DERIVING REST AS A HYBRID ARCHITECTURAL STYLE

The REST architectural style consists of a set of architectural constraints cho-
sen for the properties they induce on candidate architectures. Although each
of these constraints can be considered in isolation, describing them in terms
of their derivation from common architectural styles makes it easier to un-
derstand the rationale behind their selection. Figure 1 depicts the derivation
of REST’s constraints graphically in terms of the network-based architectural
styles examined in Fielding [2000]. The relevant base styles from which REST
was derived include replicated repository (RR), cache ($), client-server (CS), lay-
ered system (LS), stateless (S), virtual machine (VM), code on demand (COD),
and uniform interface (U).

The null style is simply an empty set of constraints. From an architectural
perspective, the null style describes a system in which there are no distin-
guished boundaries between components. It is the starting point for our de-
scription of REST.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Modern Web Architecture o 121

The first constraints added to our hybrid style are those of the client-server
architectural style (CS). Separation of concerns is the principle behind the
client-server constraints. By separating the user interface concerns from the
data storage concerns, we improve the portability of the user interface across
multiple platforms and improve scalability by simplifying the server compo-
nents. Perhaps most significant to the Web, however, is that the separation
allows the components to evolve independently, thus supporting the Internet-
scale requirement of multiple organizational domains.

We next add a constraint to the client-server interaction: communication
must be stateless in nature, as in the client-stateless-server (CSS) style, such
that each request from client to server must contain all of the information nec-
essary to understand the request, and cannot take advantage of any stored
context on the server. Session state is therefore kept entirely on the client. This
constraint induces the properties of visibility, reliability, and scalability. Visi-
bility is improved because a monitoring system does not have to look beyond a
single request datum in order to determine the full nature of the request. Reli-
ability is improved because it eases the task of recovering from partial failures
[Waldo et al. 1994]. Scalability is improved because not having to store state
between requests allows the server component to quickly free resources, and
further simplifies implementation because the server doesn’t have to manage
resource usage across requests.

Like most architectural choices, the stateless constraint reflects a design
tradeoff. The disadvantage is that it may decrease network performance by
increasing the repetitive data (per-interaction overhead) sent in a series of re-
quests, since that data cannot be left on the server in a shared context. In addi-
tion, placing the application state on the client-side reduces the server’s control
over consistent application behavior, since the application becomes dependent
on the correct implementation of semantics across multiple client versions.

In order to improve network efficiency, we add cache constraints to form
the client-cache-stateless-server style (C$SS). Cache constraints require that
the data within a response to a request be implicitly or explicitly labeled as
cacheable or noncacheable. If a response is cacheable, then a client cache is
given the right to reuse that response data for later, equivalent, requests.

The advantage of adding cache constraints is that they have the potential
to partially or completely eliminate some interactions, improving efficiency,
scalability, and user-perceived performance by reducing the average latency
of a series of interactions. The tradeoff, however, is that a cache can decrease
reliability if stale data within the cache differs significantly from the data that
would have been obtained had the request been sent directly to the server.

The early Web architecture was defined by the client-cache-stateless-server
set of constraints. That is, the design rationale presented for the Web architec-
ture prior to 1994 focused on stateless client-server interaction for the exchange
of static documents over the Internet. The protocols for communicating inter-
actions had rudimentary support for nonshared caches, but did not constrain
the interface to a consistent set of semantics for all resources. Instead, the Web
relied on the use of a common client-server implementation library (CERN
libwww) to maintain consistency across Web applications.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

122 . R. T. Fielding and R. N. Taylor

Developers of Web implementations had already exceeded the early design.
In addition to static documents, requests could identify services that dynam-
ically generated responses, such as image maps and server-side scripts. Work
had also begun on intermediary components, in the form of proxies [Luotonen
and Altis 1994] and shared caches [Glassman 1994], but extensions to the pro-
tocols were needed in order for them to communicate reliably. The remaining
constraints were added to the Web’s architectural style in order to guide the
extensions that form the modern Web architecture.

The central feature that distinguishes the REST architectural style from
other network-based styles is its emphasis on a uniform interface between
components. By applying the software engineering principle of generality to
the component interface, the overall system architecture is simplified and the
visibility of interactions is improved. Implementations are decoupled from the
services they provide, which encourages independent evolvability. The trade-
off, though, is that a uniform interface degrades efficiency, since information
is transferred in a standardized form rather than one which is specific to an
application’s needs. The REST interface is designed to be efficient for large-
grain hypermedia data transfer, optimizing for the common case of the Web,
but resulting in an interface that is not optimal for other forms of architectural
interaction.

In order to obtain a uniform interface, multiple architectural constraints are
needed to guide the behavior of components. REST is defined by four inter-
face constraints: identification of resources; manipulation of resources through
representations; self-descriptive messages; and, hypermedia as the engine of
application state. These constraints are discussed in Section 4.

In order to further improve behavior for Internet-scale requirements, we add
layered system constraints. The layered system style (L.S) allows an architec-
ture to be composed of hierarchical layers by constraining component behavior
such that each component cannot “see” beyond the immediate layer with which
they are interacting. By restricting knowledge of the system to a single layer,
we place a bound on the overall system complexity and promote substrate inde-
pendence. Layers can be used to encapsulate legacy services and to protect new
services from legacy clients, simplifying components by moving infrequently
used functionality to a shared intermediary. Intermediaries can also be used to
improve system scalability by enabling load balancing of services across mul-
tiple networks and processors.

The primary disadvantage of layered systems is that they add overhead and
latency to the processing of data, reducing user-perceived performance [Clark
and Tennenhouse 1990]. For a network-based system that supports cache con-
straints, this can be offset by the benefits of shared caching at intermediaries.
Placing shared caches at the boundaries of an organizational domain can result
in significant performance benefits [Wolman et al. 1999]. Such layers also allow
security policies to be enforced on data crossing the organizational boundary,
as is required by firewalls [Luotonen and Altis 1994].

The combination of layered system and uniform interface constraints induces
architectural properties similar to those of the uniform pipe-and-filter style.
Although REST interaction is two-way, the large-grain dataflows of hypermedia

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Modern Web Architecture o 123

interaction can each be processed like a dataflow network, with filter compo-
nents selectively applied to the data stream in order to transform the con-
tent as it passes [Brooks et al. 1995]. Within REST, intermediary components
can actively transform the content of messages because the messages are self-
descriptive and their semantics are visible to intermediaries.

The final addition to our constraint set for REST comes from the code-on-
demand style (COD). REST allows client functionality to be extended by down-
loading and executing code in the form of applets or scripts. This simplifies
clients by reducing the number of features required to be preimplemented. Al-
lowing features to be downloaded after deployment improves system extensi-
bility. However, it also reduces visibility, and thus is only an optional constraint
within REST.

The notion of an optional constraint may seem like an oxymoron. However,
it does have a purpose in the architectural design of a system that encompasses
multiple organizational boundaries. It means that the architecture only gains
the benefit (and suffers the disadvantages) of the optional constraints when
they are known to be in effect for some realm of the overall system. For ex-
ample, if all of the client software within an organization is known to support
Java™ applets [Flanagan 1999], then services within that organization can
be constructed such that they gain the benefit of enhanced functionality via
downloadable Java™ classes. At the same time, however, the organization’s
firewall may prevent the transfer of Java™ applets from external sources, and
thus to the rest of the Web it will appear as if those clients do not support code-
on-demand. An optional constraint allows us to design an architecture that
supports the desired behavior in the general case, but with the understanding
that it may be disabled within some contexts.

4. REST ARCHITECTURAL ELEMENTS

The Representational State Transfer (REST) style is an abstraction of the ar-
chitectural elements within a distributed hypermedia system. Perry and Wolf
[1992] distinguish three classes of architectural elements: processing elements
(a.k.a., components), data elements, and connecting elements (a.k.a., connec-
tors). REST ignores the details of component implementation and protocol syn-
tax in order to focus on the roles of components, the constraints upon their
interaction with other components, and their interpretation of significant data
elements. It establishes the fundamental constraints upon components, con-
nectors, and data that define the basis of the Web architecture, and thus the
essence of its behavior as a network-based application.

Using the software architecture framework of Perry and Wolf[1992], we first
define the architectural elements of REST and then examine sample process,
connector, and data views of prototypical architectures to gain a better under-
standing of REST’s design principles.

4.1 Data Elements

Unlike the distributed object style [Chin and Chanson 1991], where all data is
encapsulated within and hidden by the processing components, the nature and

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

124 . R. T. Fielding and R. N. Taylor

Table I. REST Data Elements

Data Element Modern Web Examples
resource the intended conceptual target of a hypertext reference
resource identifier URL, URN
representation HTML document, JPEG image
representation metadata media type, last-modified time
resource metadata source link, alternates, vary
control data if-modified-since, cache-control

state of an architecture’s data elements is a key aspect of REST. The rationale
for this design can be seen in the nature of distributed hypermedia.

When a link is selected, information needs to be moved from the location
where it is stored to the location where it will be used by, in most cases, a human
reader. This is in distinct contrast to most distributed processing paradigms
[Andrews 1991; Fuggetta et al. 1998], where it is often more efficient to move
the “processing entity” to the data rather than move the data to the proces-
sor. A distributed hypermedia architect has only three fundamental options:
(1) render the data where it is located and send a fixed-format image to the
recipient; (2) encapsulate the data with a rendering engine and send both to
the recipient; or (3) send the raw data to the recipient along with metadata that
describes the data type, so that the recipient can choose their own rendering
engine.

Each option has its advantages and disadvantages. Option 1, the traditional
client/server style [Sinha 1992], allows all information about the true nature
of the data to remain hidden within the sender, preventing assumptions from
being made about the data structure and making client implementation eas-
ier. However, it also severely restricts the functionality of the recipient and
places most of the processing load on the sender, leading to scalability problems.
Option 2, the mobile object style [Fuggetta et al. 1998], provides information
hiding while enabling specialized processing of the data via its unique render-
ing engine, but limits the functionality of the recipient to what is anticipated
within that engine, and may vastly increase the amount of data transferred.
Option 3 allows the sender to remain simple and scalable while minimizing the
bytes transferred, but loses the advantages of information hiding and requires
that both sender and recipient understand the same data types.

REST provides a hybrid of all three options by focusing on a shared un-
derstanding of data types with metadata, but limiting the scope of what is
revealed to a standardized interface. REST components communicate by trans-
ferring a representation of the data in a format matching one of an evolving
set of standard data types, selected dynamically based on the capabilities
or desires of the recipient and the nature of the data. Whether the repre-
sentation is in the same format as the raw source, or is derived from the
source, remains hidden behind the interface. The benefits of the mobile object
style are approximated by sending a representation that consists of instruc-
tions in the standard data format of an encapsulated rendering engine (e.g.,
Java™). REST therefore gains the separation of concerns of the client/server
style without the server scalability problem, allows information hiding through

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Modern Web Architecture o 125

a generic interface to enable encapsulation and evolution of services, and
provides for a diverse set of functionality through downloadable feature-
engines.

4.1.1 Resources and Resource Identifiers. The key abstraction of informa-
tion in REST is a resource. Any information that can be named can be a resource:
a document or image, a temporal service (e.g., “today’s weather in Los Angeles”),
a collection of other resources, a nonvirtual object (e.g., a person), and so on.
In other words, any concept that might be the target of an author’s hypertext
reference must fit within the definition of a resource. A resource is a conceptual
mapping to a set of entities, not the entity that corresponds to the mapping at
any particular point in time.

More precisely, a resource R is a temporally varying membership function
M r(t), which for time ¢ maps to a set of entities, or values, which are equivalent.
The values in the set may be resource representations and/or resource identifiers.
A resource can map to the empty set, which allows references to be made to a
concept before any realization of that concept exists—a notion that was foreign
to most hypertext systems prior to the Web [Grgnbaek and Trigg 1994]. Some
resources are static in the sense that, when examined at any time after their
creation, they always correspond to the same value set. Others have a high
degree of variance in their value over time. The only thing that is required to
be static for a resource is the semantics of the mapping, since the semantics is
what distinguishes one resource from another.

For example, the “authors’ preferred version” of this paper is a mapping
that has changed over time, whereas a mapping to “the paper published in
the proceedings of conference X” is static. These are two distinct resources,
even if they map to the same value at some point in time. The distinction is
necessary so that both resources can be identified and referenced independently.
A similar example from software engineering is the separate identification of
a version-controlled source code file when referring to the “latest revision,”
“revision number 1.2.7,” or “revision included with the Orange release.”

This abstract definition of a resource enables key features of the Web ar-
chitecture. First, it provides generality by encompassing many sources of in-
formation without artificially distinguishing them by type or implementation.
Second, it allows late binding of the reference to a representation, enabling con-
tent negotiation to take place based on characteristics of the request. Finally,
it allows an author to reference the concept rather than some singular repre-
sentation of that concept, thus removing the need to change all existing links
whenever the representation changes.

REST uses a resource identifier to identify the particular resource involved
in an interaction between components. REST connectors provide a generic in-
terface for accessing and manipulating the value set of a resource, regardless
of how the membership function is defined or the type of software that is han-
dling the request. The naming authority that assigned the resource identifier,
making it possible to reference the resource, is responsible for maintaining the
semantic validity of the mapping over time (i.e., ensuring that the membership
function does not change when its values change).

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

126 . R. T. Fielding and R. N. Taylor

Traditional hypertext systems [Grgnbaek and Trigg 1994], which typically
operate in a closed or local environment, use unique node or document identi-
fiers that change every time the information changes, relying on link servers to
maintain references separately from the content. Since centralized link servers
are anathema to its immense scale and multiorganizational domain require-
ments, REST relies instead on the author choosing a resource identifier that
best fits the nature of the concept being identified. Naturally, the quality of an
identifier is often proportional to the amount of money spent to retain its valid-
ity, which leads to broken links as ephemeral (or poorly supported) information
moves or disappears over time.

4.1.2 Representations. REST components perform actions on a resource by
using a representation to capture the current or intended state of that resource
and transferring that representation between components. A representation is
a sequence of bytes, plus representation metadata to describe those bytes. Other
commonly used but less precise names for a representation include document,
file, and HTTP message entity, instance, or variant.

A representation consists of data, metadata describing the data, and, on
occasion, metadata to describe the metadata (usually for verifying message
integrity). Metadata is in the form of name-value pairs, where the name corre-
sponds to a standard that defines the value’s structure and semantics. Response
messages may include both representation metadata and resource metadata: in-
formation about the resource that is not specific to the supplied representation.

Control data defines the purpose of a message between components, such
as the action being requested or the meaning of a response. It is also used
to parameterize requests and override the default behavior of some connecting
elements. For example, cache behavior can be modified by control data included
in the request or response message.

Depending on the message control data, a given representation may indicate
the current state of the requested resource, the desired state for the requested
resource, or the value of some other resource, such as a representation of the
input data within a client’s query form, or a representation of some error condi-
tion for a response. For example, remote authoring of a resource requires that
the author send a representation to the server, thus establishing a value for
that resource which can be retrieved by later requests. If the value set of a re-
source at a given time consists of multiple representations, content negotiation
may be used to select the best representation for inclusion in a given message.

The data format of a representation is known as a media type [Postel 1996].
A representation can be included in a message and processed by the recipient
according to the control data of the message and the nature of the media type.
Some media types are intended for automated processing, some to be rendered
for viewing by a user, and a few are appropriate for both. Composite media
types can be used to enclose multiple representations in a single message.

The design of a media type can directly impact the user-perceived perfor-
mance of a distributed hypermedia system. Any data that must be received
before the recipient can begin rendering the representation adds to the latency
of an interaction. A data format that places the most important rendering

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Modern Web Architecture o 127

information up front, such that the initial information can be incrementally
rendered while the rest of the information is being received, results in much
better user-perceived performance than a data format that must be received
entirely before rendering can begin.

For example, a Web browser that can incrementally render a large HTML
document while it is being received provides significantly better user-perceived
performance than one that waits until the entire document is received prior
to rendering, even though the network performance is the same. Note that
the rendering ability of a representation can also be impacted by the choice of
content. If the dimensions of dynamically-sized tables and embedded objects
must be determined before they can be rendered, their occurrence within the
viewing area of a hypermedia page will increase its latency.

4.2 Connectors

REST uses various connector types to encapsulate the activities of accessing re-
sources and transferring resource representations. The connectors present an
abstract interface for component communication, enhancing simplicity by pro-
viding a clean separation of concerns and hiding the underlying implementation
of resources and communication mechanisms. The generality of the interface
also enables substitutability: if the users’ only access to the system is via an
abstract interface, the implementation can be replaced without impacting the
users. Since a connector manages network communication for a component,
information can be shared across multiple interactions in order to improve ef-
ficiency and responsiveness.

All REST interactions are stateless. That is, each request contains all of the
information necessary for a connector to understand the request, independent
of any requests that may have preceded it. This restriction accomplishes four
functions: (1) it removes any need for the connectors to retain application state
between requests, thus reducing consumption of physical resources and im-
proving scalability; (2) it allows interactions to be processed in parallel without
requiring that the processing mechanism understand the interaction seman-
tics; (3) it allows an intermediary to view and understand a request in isolation,
which may be necessary when services are dynamically rearranged; and (4) it
forces all of the information that might factor into the reusability of a cached
response to be present in each request.

The connector interface is similar to procedural invocation, but with impor-
tant differences in the passing of parameters and results. The in-parameters
consist of request control data, a resource identifier indicating the target of
the request, and an optional representation. The out-parameters consist of re-
sponse control data, optional resource metadata, and an optional representa-
tion. From an abstract viewpoint the invocation is synchronous, but both in-
and out-parameters can be passed as data streams. In other words, processing
can be invoked before the value of the parameters is completely known, thus
avoiding the latency of batch processing large data transfers.

The primary connector types are client and server. The essential difference
between the two is that a client initiates communication by making a request,

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

128 . R. T. Fielding and R. N. Taylor

Table II. REST Connector Types

Connector Modern Web Examples
client libwww, libwww-perl
server libwww, Apache API, NSAPI
cache browser cache, Akamai cache network

resolver bind (DNS lookup library)
tunnel SOCKS, SSL after HTTP CONNECT

whereas a server listens for connections and responds to requests in order to
supply access to its services. A component may include both client and server
connectors.

A third connector type, the cache connector, can be located on the interface
to a client or server connector in order to save cacheable responses to current
interactions so that they can be reused for later requested interactions. A cache
may be used by a client to avoid repetition of network communication, or by a
server to avoid repeating the process of generating a response, with both cases
serving to reduce interaction latency. A cache is typically implemented within
the address space of the connector that uses it.

Some cache connectors are shared, meaning that its cached responses may
be used in answer to a client other than the one for which the response was
originally obtained. Shared caching can be effective at reducing the impact of
“flash crowds” on the load of a popular server, particularly when the caching
is arranged hierarchically to cover large groups of users, such as those within
a company’s intranet, the customers of an Internet service provider, or univer-
sities sharing a national network backbone. However, shared caching can also
lead to errors if the cached response does not match what would have been ob-
tained by a new request. REST attempts to balance the desire for transparency
in cache behavior with the desire for efficient use of the network, rather than
assuming that absolute transparency is always required.

A cache is able to determine the cacheability of a response because the inter-
face is generic rather than specific to each resource. By default, the response
to a retrieval request is cacheable and the responses to other requests are
noncacheable. If some form of user authentication is part of the request, or if
the response indicates that it should not be shared, then the response is only
cacheable by a nonshared cache. A component can override these defaults by
including control data that marks the interaction as cacheable, noncacheable,
or cacheable for only a limited time.

A resolver translates partial or complete resource identifiers into the net-
work address information needed to establish an intercomponent connection.
For example, most URI include a DNS hostname as the mechanism for iden-
tifying the naming authority for the resource. In order to initiate a request,
a Web browser will extract the hostname from the URI and make use of a
DNS resolver to obtain the Internet protocol address for that authority. An-
other example is that some identification schemes (e.g., URN [Sollins and
Masinter 1994]) require an intermediary to translate a permanent identi-
fier to a more transient address in order to access the identified resource.
Use of one or more intermediate resolvers can improve the longevity of

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Modern Web Architecture o 129

Table III. REST Component Types

Component Modern Web Examples

origin server Apache httpd, Microsoft IIS

gateway Squid, CGI, Reverse Proxy

proxy CERN Proxy, Netscape Proxy, Gauntlet

user agent Netscape Navigator, Lynx, MOMspider

resource references through indirection, though doing so adds to the request
latency.

The final form of connector type is a tunnel, which simply relays communi-
cation across a connection boundary, such as a firewall or lower-level network
gateway. The only reason it is modeled as part of REST and not abstracted
away as part of the network infrastructure is that some REST components
may dynamically switch from active component behavior to that of a tunnel.
The primary example is an HTTP proxy that switches to a tunnel in response
to a CONNECT method request, thus allowing its client to directly commu-
nicate with a remote server using a different protocol, such as TLS, which
doesn’t allow proxies. The tunnel disappears when both ends terminate their
communication.

4.3 Components

REST components (processing elements) are typed by their roles in an overall
application action.

A user agent uses a client connector to initiate a request and becomes the
ultimate recipient of the response. The most common example is a Web browser,
which provides access to information services and renders service responses
according to the application needs.

An origin server uses a server connector to govern the namespace for a re-
quested resource. It is the definitive source for representations of its resources
and must be the ultimate recipient of any request that intends to modify the
value of its resources. Each origin server provides a generic interface to its ser-
vices as a resource hierarchy. The resource implementation details are hidden
behind the interface.

Intermediary components act as both a client and a server in order to forward,
with possible translation, requests and responses. A proxy component is an
intermediary selected by a client to provide interface encapsulation of other
services, data translation, performance enhancement, or security protection.
A gateway (a.k.a., reverse proxy) component is an intermediary imposed by the
network or origin server to provide an interface encapsulation of other services,
for data translation, performance enhancement, or security enforcement. Note
that the difference between a proxy and a gateway is that a client determines
when it will use a proxy.

5. REST ARCHITECTURAL VIEWS

Now that we have an understanding of the REST architectural elements in
isolation, we can use architectural views [Perry and Wolf 1992] to describe how

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

130 . R. T. Fielding and R. N. Taylor

Origin Servers

Proxy Gateway

Client Connector: (J) Client+Cache: Server Connector: (_() Server+Cache:

Fig.2. Processview of a REST-based architecture at one instance in time. A user agent is portrayed
in the midst of three parallel interactions: a, b, and c. The interactions were not satisfied by the user
agent’s client connector cache, so each request has been routed to the resource origin according to the
properties of each resource identifier and the configuration of the client connector. Request (a) has
been sent to a local proxy, which in turn accesses a caching gateway found by DNS lookup, which
forwards the request on to be satisfied by an origin server whose internal resources are defined by
an encapsulated object request broker architecture. Request (b) is sent directly to an origin server,
which is able to satisfy the request from its own cache. Request (c) is sent to a proxy that is capable
of directly accessing WAIS, an information service that is separate from the Web architecture, and
translating the WAIS response into a format recognized by the generic connector interface. Each
component is only aware of the interaction with their own client or server connectors; the overall
process topology is an artifact of our view.

the elements work together to form an architecture. All three types of view—
process, connector, and data—are useful for illuminating the design principles
of REST.

5.1 Process View

A process view of an architecture is primarily effective at eliciting the interac-
tion relationships among components by revealing the path of data as it flows
through the system. Unfortunately, the interaction of a real system usually in-
volves an extensive number of components, resulting in an overall view that is
obscured by the details. Figure 2 provides a sample of the process view from
a REST-based architecture at a particular instance during the processing of
three parallel requests.

The client/server [Andrews 1991] separation of concerns simplifies compo-
nent implementation, reduces the complexity of connector semantics, improves
the effectiveness of performance tuning, and increases the scalability of pure
server components.

Since the components are connected dynamically, their arrangement and
function for a particular application action has characteristics similar to a
pipe-and-filter style. Although REST components communicate via bidirec-
tional streams, the processing of each direction is independent and therefore

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Modern Web Architecture o 131

susceptible to stream transducers (filters). The generic connector interface al-
lows components to be placed on the stream based on the properties of each
request or response.

Services may be implemented using a complex hierarchy of intermediaries
and multiple distributed origin servers. The stateless nature of REST allows
each interaction to be independent of the others, removing the need for an
awareness of the overall component topology, an impossible task for an Internet-
scale architecture, and allowing components to act as either destinations or
intermediaries, determined dynamically by the target of each request. Con-
nectors need only be aware of each other’s existence during the scope of their
communication. A connector may cache the existence and capabilities of other
components for performance reasons.

5.2 Connector View

A connector view of an architecture concentrates on the mechanics of the com-
munication between components. For a REST-based architecture, we are par-
ticularly interested in the constraints that define the generic resource interface.

Client connectors examine the resource identifier in order to select an ap-
propriate communication mechanism for each request. For example, a client
may be configured to connect to a specific proxy component, perhaps one act-
ing as an annotation filter, when the identifier indicates that it is a local re-
source. Likewise, a client can be configured to reject requests for some subset of
identifiers.

Although the Web’s primary transfer protocol is HTTP, the architecture in-
cludes seamless access to resources that originate on many pre-existing network
servers, including FTP [Postel and Reynolds 1985], Gopher [Anklesaria et al.
1993], and WAIS [Davis et al. 1990]. However, interaction with these services is
restricted to the semantics of a REST connector. This constraint sacrifices some
of the advantages of other architectures, such as the stateful interaction of a
relevance feedback protocol like WAIS, in order to retain the advantages of a
single, generic interface for connector semantics. This generic interface makes
it possible to access a multitude of services through a single proxy connection. If
an application needs the additional capabilities of another architecture, it can
implement and invoke those capabilities as a separate system running in par-
allel, similar to how the Web architecture interfaces with “telnet” and “mailto”
resources.

5.3 Data View

A data view of an architecture reveals the application state as information flows
through the components. Since REST is specifically targeted at distributed in-
formation systems, it views an application as a cohesive structure of information
and control alternatives through which a user can perform a desired task. For
example, an online dictionary is one application, as is a museum tour or a set
of class notes.

Component interactions occur in the form of dynamically-sized messages.
Small- or medium-grain messages are used for control semantics, but the bulk

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

132 . R. T. Fielding and R. N. Taylor

of application work is accomplished via large-grain messages containing a com-
plete resource representation. The most frequent form of request semantics is
retrieving a representation of a resource (e.g., the “GET” method in HTTP),
which can often be cached for later reuse.

REST concentrates all of the control state into the representations received
in response to interactions. The goal is to improve server scalability by elim-
inating any need for the server to maintain an awareness of the client state
beyond the current request. An application’s state is therefore defined by its
pending requests, the topology of connected components (some of which may be
filtering buffered data), the active requests on those connectors, the dataflow
of representations in response to those requests, and the processing of those
representations as they are received by the user agent.

An application reaches a steady-state whenever it has no outstanding re-
quests; i.e., it has no pending requests and all of the responses to its current
set of requests have been completely received or received to the point where
they can be treated as a representation data stream. For a browser application,
this state corresponds to a “web page,” including the primary representation
and ancillary representations, such as in-line images, embedded applets, and
style sheets. The significance of application steady-states is seen in their im-
pact on both user-perceived performance and the burstiness of network request
traffic.

The user-perceived performance of a browser application is determined by
the latency between steady states: the period of time between the selection of
a hypermedia link or submit button on one Web page and the point when us-
able information has been rendered for the next Web page. The optimization of
browser performance is therefore centered around reducing this latency, which
leads to the following observations:

—The most efficient network request is one that doesn’t use the network. In
other words, reusing a cached response results in the best performance. Al-
though use of a cache adds some latency to each individual request due to
lookup overhead, the average request latency is significantly reduced when
even a small percentage of requests result in usable cache hits.

—The next control state of the application resides in the representation of the
first requested resource, so obtaining that first representation is a priority.

—Incremental rendering of the first nonredirect response representation can
considerably reduce latency, since then the representation can be rendered
as it is being received rather than after the response has been completed.
Incremental rendering is impacted by the design of the media type and the
early availability of layout information (visual dimensions of in-line objects).

The application state is controlled and stored by the user agent and can
be composed of representations from multiple servers. In addition to freeing
the server from the scalability problems of storing state, this allows the user to
directly manipulate the state (e.g., a Web browser’s history), anticipate changes
to that state (e.g., link maps and prefetching of representations), and jump from
one application to another (e.g., bookmarks and URI-entry dialogs).

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Modern Web Architecture o 133

The model application is therefore an engine that moves from one state to the
next by examining and choosing from among the alternative state transitions
in the current set of representations. Not surprisingly, this exactly matches the
user interface of a hypermedia browser. However, the style does not assume
that all applications are browsers. In fact, the application details are hidden
from the server by the generic connector interface, and thus a user agent could
equally be an automated robot performing information retrieval for an indexing
service, a personal agent looking for data that matches certain criteria, or a
maintenance spider busy patrolling the information for broken references or
modified content [Fielding 1994].

6. RELATED WORK

Garlan and Shaw [1993] provide an introduction to software architecture re-
search and describe several “pure” styles. Their work differs significantly from
the framework of Perry and Wolf [1992] used in this article due to a lack of
consideration for data elements. As observed above, the characteristics of data
elements are fundamental to understanding the modern Web architecture—it
simply cannot be adequately described without them. The same conclusion can
be seen in the comparison of mobile code paradigms by Fuggetta et al. [1998],
where the analysis of when to go mobile depends on active comparison of the
size of the code that would be transferred versus the preprocessed information
that would otherwise be transferred.

Bass et al. [1998] devote a chapter on architecture for the World Wide Web,
but their description only encompasses the implementation architecture within
the CERN/W3C-developed libwww (client and server libraries) and Jigsaw soft-
ware. Although those implementations reflect some of the design constraints of
REST, having been developed by people familiar with the intended architectural
style, the real WWW architecture is independent of any single implementation.
The Web is defined by its standard interfaces and protocols, not how those in-
terfaces and protocols are implemented in a given piece of software.

The REST style draws from many preexisting distributed process paradigms
[Andrews 1991; Fuggetta et al. 1998], communication protocols, and software
fields. REST component interactions are structured in a layered client-server
style, but the added constraints of the generic resource interface create the
opportunity for substitutability and inspection by intermediaries. Requests and
responses have the appearance of a remote invocation style, but REST messages
are targeted at a conceptual resource rather than an implementation identifier.

Several attempts have been made to model the Web architecture as a form of
distributed file system (e.g., WebNF'S) or as a distributed object system [Manola
1999]. However, they exclude various Web resource types or implementation
strategies as being “not interesting,” when in fact their presence invalidates
the assumptions that underlie such models. REST works well because it does
not limit the implementation of resources to certain predefined models, allow-
ing each application to choose an implementation that best matches its own
needs and enabling the replacement of implementations without impacting
the user.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

134 . R. T. Fielding and R. N. Taylor

The interaction method of sending representations of resources to consum-
ing components has some parallels with event-based integration (EBI) styles
[Barrett et al. 1996; Rosenblum and Wolf 1997; Sullivan and Notkin 1992]. The
key difference is that EBI styles are push-based. The component containing
the state (equivalent to an origin server in REST) issues an event whenever
the state changes, whether or not any component is actually interested in or
listening for such an event. In the REST style, consuming components usually
pull representations. Although this is less efficient when viewed as a single
client wishing to monitor a single resource, the scale of the Web makes an
unregulated push model infeasible.

The principled use of the REST style in the Web, with its clear notion of com-
ponents, connectors, and representations, relates closely to the C2 architectural
style [Taylor et al. 1996]. The C2 style supports the development of distributed,
dynamic applications by focusing on structured use of connectors to obtain sub-
strate independence. C2 applications rely on asynchronous notification of state
changes and request messages. As with other event-based schemes, C2 is nom-
inally push-based, though a C2 architecture could operate in REST’s pull style
by only emitting a notification upon receipt of a request. However, the C2 style
lacks the intermediary-friendly constraints of REST, such as the generic re-
source interface, guaranteed stateless interactions, and intrinsic support for
caching.

7. EXPERIENCE AND EVALUATION

In anideal world, the implementation of a software system would exactly match
its design. Some features of the modern Web architecture do correspond exactly
to their design criteria in REST, such as the use of URI [Berners-Lee et al.
1998] as resource identifiers and the use of Internet media types [Postel 1996]
to identify representation data formats. However, there are also some aspects of
the modern Web protocols that exist in spite of the architectural design, due to
legacy experiments that failed (but must be retained for backwards compatibil-
ity) and extensions deployed by developers unaware of the architectural style.
REST provides a model not only for the development and evaluation of new
features, but also for the identification and understanding of broken features.

REST is not intended to capture all possible uses of the Web protocol stan-
dards. There are applications of HTTP and URI that do not match the applica-
tion model of a distributed hypermedia system. The important point, however,
is that REST does capture all of those aspects of a distributed hypermedia
system that are considered central to the behavioral and performance require-
ments of the Web, such that optimizing behavior within the model will result in
optimum behavior within the deployed Web architecture. In other words, REST
is optimized for the common case, so that the constraints it applies to the Web
architecture will also be optimized for the common case.

7.1 Rest Applied to URI

Uniform Resource Identifiers (URI) are both the simplest element of the
Web architecture and the most important. URI have been known by many

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Modern Web Architecture o 135

names: WWW addresses, Universal Document Identifiers, Universal Resource
Identifiers [Berners-Lee 1994], and finally the combination of Uniform Resource
Locators (URL) [Berners-Lee et al. 1994] and Names (URN) [Sollins and
Masinter 1994] that are collectively referred to as URI. Aside from its name,
the URI syntax has remained relatively unchanged since 1992. However, the
specification of Web addresses also defines the scope and semantics of what we
mean by resource, which has changed since the early Web architecture. REST
was used to define the term resource for the URI standard [Berners-Lee et al.
1998], as well as the overall semantics of the generic interface for manipulating
resources via their representations.

7.1.1 Redefinition of Resource. The early Web architecture defined URI
as document identifiers. Authors were instructed to define identifiers in terms
of a document’s location on the network. Web protocols could then be used to
retrieve that document. However, this definition proved to be unsatisfactory for
anumber of reasons. First, it suggests that the author is identifying the content
transferred, which would imply that the identifier should change whenever the
content changes. Second, there exist many addresses that corresponded to a
service rather than a document—authors may be intending to direct readers
to that service, rather than to any specific result from a prior access of that
service. Finally, there exist addresses that do not correspond to a document at
some periods of time, as when the document does not yet exist or when the
address is being used solely for naming, rather than locating, information.

The definition of resource in REST is based on a simple premise: identifiers
should change as infrequently as possible. Because the Web uses embedded
identifiers rather than link servers, authors need an identifier that closely
matches the semantics they intend by a hypermedia reference, allowing the
reference to remain static even though the result of accessing that reference
may change over time. REST accomplishes this by defining a resource to be
the semantics of what the author intends to identify, rather than the value cor-
responding to those semantics at the time the reference is created. It is then
left to the author to ensure that the identifier chosen for a reference does indeed
identify the intended semantics.

7.1.2 Manipulating Shadows. Defining resource such that a URI identifies
a concept rather than a document leaves us with another question: how does
a user access, manipulate, or transfer a concept such that they can get some-
thing useful when a hypertext link is selected? REST answers that question by
defining the things that are manipulated to be representations of the identified
resource, rather than the resource itself. An origin server maintains a mapping
from resource identifiers to the set of representations corresponding to each
resource. A resource is therefore manipulated by transferring representations
through the generic interface defined by the resource identifier.

REST’s definition of resource derives from the central requirement of the
Web: independent authoring of interconnected hypertext across multiple trust
domains. Forcing the interface definitions to match the interface requirements
causes the protocols to seem vague, but that is just because the interface being

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

136 . R. T. Fielding and R. N. Taylor

manipulated is only an interface and not an implementation. The protocols are
specific about the intent of an application action, but the mechanism behind the
interface must decide how that intention affects the underlying implementation
of the resource mapping to representations.

Information hiding is one of the key software engineering principles that
motivates the uniform interface of REST. Because a client is restricted to the
manipulation of representations rather than directly accessing the implemen-
tation of a resource, the implementation can be constructed in whatever form
is desired by the naming authority without impacting the clients that may
use its representations. In addition, if multiple representations of the resource
exist at the time it is accessed, a content selection algorithm can be used to
dynamically select a representation that best fits the capabilities of that client.
The disadvantage, of course, is that remote authoring of a resource is not as
straightforward as remote authoring of a file.

7.1.3 Remote Authoring. 'The challenge of remote authoring via the Web’s
uniform interface is due to the separation between the representation that can
be retrieved by a client and the mechanism that might be used on the server
to store, generate, or retrieve the content of that representation. An individual
server may map some part of its namespace to a filesystem, which in turn
maps to the equivalent of an inode that can be mapped into a disk location, but
those underlying mechanisms provide a means of associating a resource to a set
of representations rather than identifying the resource itself. Many different
resources could map to the same representation, while other resources may
have no representation mapped at all.

In order to author an existing resource, the author must first obtain the
specific source resource URI: the set of URI that bind to the handler’s under-
lying representation for the target resource. A resource does not always map
to a singular file, but all resources that are not static are derived from some
other resources, and by following the derivation tree an author can eventu-
ally find all of the source resources that must be edited in order to modify the
representation of a resource. These same principles apply to any form of de-
rived representation, whether it be from content negotiation, scripts, servlets,
managed configurations, versioning, etc.

7.1.4 Binding Semantics to URI. Semantics are a byproduct of the act of
assigning resource identifiers and populating those resources with represen-
tations. At no time whatsoever do the server or client software need to know
or understand the meaning of a URI—they merely act as a conduit through
which the creator of a resource (a human naming authority) can associate rep-
resentations with the semantics identified by the URI. In other words, there
are no resources on the server; just mechanisms that supply answers across an
abstract interface defined by resources. It may seem odd, but this is the essence
of what makes the Web work across so many different implementations.

It is the nature of every engineer to define things in terms of the charac-
teristics of the components that will be used to compose the finished product.
The Web doesn’t work that way. The Web architecture consists of constraints

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Modern Web Architecture o 137

on the communication model between components, based on the role of each
component during an application action. This prevents the components from
assuming anything beyond the resource abstraction, thus hiding the actual
mechanisms on either side of the abstract interface.

7.1.5 REST Mismatches in URI. Like most real-world systems, not all
components of the deployed Web architecture obey every constraint in its archi-
tectural design. REST has been used both as a means to define architectural im-
provements and to identify architectural mismatches. Mismatches occur when,
due to ignorance or oversight, a software implementation is deployed that vi-
olates the architectural constraints. While mismatches cannot be avoided in
general, it is possible to identify them before they become standardized.

Although the URI design matches REST’s architectural notion of identifiers,
syntax alone is insufficient to force naming authorities to define their own
URI according to the resource model. One form of abuse is to include infor-
mation that identifies the current user within all of the URI referenced by a
hypermedia response representation. Such embedded user ids can be used to
maintain session state on the server, to track user behavior by logging their
actions, or carry user preferences across multiple actions (e.g., Hyper-G’s gate-
ways [Maurer 1996]). However, by violating REST’s constraints, these systems
also cause shared caching to become ineffective, reduce server scalability, and
result in undesirable effects when a user shares those references with others.

Another conflict with the resource interface of REST occurs when software
attempts to treat the Web as a distributed file system. Since file systems expose
the implementation of their information, tools exist to “mirror” that information
across to multiple sites as a means of load balancing and redistributing the
content closer to users. However, they can do so only because files have a fixed
set, of semantics (a named sequence of bytes) that can be duplicated easily. In
contrast, attempts to mirror the content of a Web server as files will fail because
the resource interface does not always match the semantics of a file system, and
because both data and metadata are included within, and significant to, the
semantics of a representation. Web server content can be replicated at remote
sites, but only by replicating the entire server mechanism and configuration, or
by selectively replicating only those resources with representations known to
be static (e.g., content distribution networks contract with Web sites to replicate
specific resource representations to the “edges” of the overall Internet in order
to reduce latency and distribute load away from the origin server).

7.2 REST Applied to HTTP

The Hypertext Transfer Protocol (HTTP) has a special role in the Web architec-
ture as both the primary application-level protocol for communication between
Web components and the only protocol designed specifically for the transfer of
resource representations. Unlike URI, there were a large number of changes
needed in order for HTTP to support the modern Web architecture. The de-
velopers of HTTP implementations have been conservative in their adoption of
proposed enhancements, and thus extensions needed to be proven and subjected

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

138 . R. T. Fielding and R. N. Taylor

to standards review before they could be deployed. REST was used to identify
problems with the existing HTTP implementations, specify an interoperable
subset of that protocol as HTTP/1.0 [Berners-Lee et al. 1996], analyze proposed
extensions for HT'TP/1.1 [Fielding et al. 1999], and provide motivating rationale
for deploying HTTP/1.1.

The key problem areas in HTTP that were identified by REST include plan-
ning for the deployment of new protocol versions, separating message parsing
from HTTP semantics and the underlying transport layer (TCP), distinguish-
ing between authoritative and nonauthoritative responses, fine-grained control
of caching, and various aspects of the protocol that failed to be self-descriptive.
REST has also been used to model the performance of Web applications based
on HTTP and anticipate the impact of such extensions as persistent connec-
tions and content negotiation. Finally, REST has been used to limit the scope of
standardized HTTP extensions to those that fit within the architectural model,
rather than allowing the applications that misuse HT'TP to influence the stan-
dard equally.

7.2.1 Extensibility. One of the major goals of REST is to support the grad-
ual and fragmented deployment of changes within an already deployed archi-
tecture. HTTP was modified to support that goal through the introduction of
versioning requirements and rules for extending each of the protocol’s syntax
elements.

Protocol versioning. HTTP is a family of protocols, distinguished by major
and minor version numbers, which share the name primarily because they
correspond to the protocol expected when communicating directly with a service
based on the “http” URL namespace. A connector must obey the constraints
placed on the HTTP-version protocol element included in each message [Mogul
et al. 1997].

The HTTP version of a message represents the protocol capabilities of the
sender and the gross-compatibility (major version number) of the message being
sent. This allows a client to use a reduced (HTTP/1.0) subset of features in
making a normal HTTP/1.1 request, while at the same time indicating to the
recipient that it is capable of supporting full HTTP/1.1 communication. In other
words, it provides a tentative form of protocol negotiation on the HTTP scale.
Each connection on a request/response chain can operate at its best protocol
level in spite of the limitations of some clients or servers that are parts of the
chain.

The intention of the protocol is that the server should always respond with
the highest minor version of the protocol it understands within the same ma-
jor version of the client’s request message. The restriction is that the server
cannot use those optional features of the higher-level protocol that are forbid-
den to send to such an older-version client. There are no required features of
a protocol that cannot be used with all other minor versions within that major
version, since that would be an incompatible change and thus require a change
in the major version. The only features of HTTP that can depend on a minor
version number change are those interpreted by immediate neighbors in the

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Modern Web Architecture o 139

communication, since HTTP does not require that the entire request/response
chain of intermediary components speak the same version.

These rules exist to assist in deploying multiple protocol revisions and pre-
venting the HTTP architects from forgetting that deployment of the protocol is
an important aspect of its design. They do so by making it easy to differentiate
between compatible changes to the protocol and incompatible changes. Com-
patible changes are easy to deploy and communication of the differences can
be achieved within the protocol stream. Incompatible changes are difficult to
deploy because they require some determination of acceptance of the protocol
before the protocol stream can commence.

Extensible protocol elements. HTTP includes a number of separate names-
paces, each of which has differing constraints, but all of which share the re-
quirement of being extensible without bound. Some of the namespaces are
governed by separate Internet standards and shared by multiple protocols
(e.g., URI schemes [Berners-Lee et al. 1998], media types [Freed et al. 1996],
MIME header field names [Freed and Borenstein 1996], charset values, lan-
guage tags), while others are governed by HTTP, including the namespaces
for method names, response status codes, nonMIME header field names, and
values within standard HTTP header fields. Since early HTTP did not define
a consistent set of rules for how changes within these namespaces could be
deployed, this was one of the first problems tackled by the specification effort.

HTTP request semantics are signified by the request method name. Method
extension is allowed whenever a standardizable set of semantics can be shared
among client, server, and any intermediaries that may be between them. Un-
fortunately, early HTTP extensions, specifically the HEAD method, made the
parsing of an HTTP response message dependent on knowing the semantics
of the request method. This led to a deployment contradiction: if a recipient
needs to know the semantics of a method before it can be safely forwarded by
an intermediary, then all intermediaries must be updated before a new method
can be deployed.

This deployment problem was fixed by separating the rules for parsing and
forwarding HTTP messages from the semantics associated with new HTTP pro-
tocol elements. For example, HEAD is the only method for which the Content-
Length header field has a meaning other than signifying the message body
length, and no new method can change the message length calculation. GET
and HEAD are also the only methods for which conditional request header fields
have the semantics of a cache refresh, whereas for all other methods they have
the meaning of a precondition.

Likewise, HTTP needed a general rule for interpreting new response status
codes, such that new responses could be deployed without significantly harm-
ing older clients. We therefore expanded upon the rule that each status code
belonged to a class signified by the first digit of its three-digit decimal num-
ber: 100-199, indicating that the message contains a provisional information
response; 200-299, indicating that the request succeeded; 300-399, indicating
that the request needs to be redirected to another resource; 400—499, indi-
cating that the client made an error that should not be repeated; and 500-599,

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

140 . R. T. Fielding and R. N. Taylor

indicating that the server encountered an error, but that the client may get a bet-
ter response later (or via some other server). If a recipient does not understand
the specific semantics of the status code in a given message, then they must
treat it in the same way as the x00 code within its class. Like the rule for method
names, this extensibility rule places a requirement on the current architecture
such that it anticipates future change. Changes can therefore be deployed onto
an existing architecture with less fear of adverse component reactions.

Upgrade. The addition of the Upgrade header field in HT'TP/1.1 reduces the
difficulty of deploying incompatible changes by allowing the client to advertise
its willingness for a better protocol while communicating in an older protocol
stream. Upgrade was specifically added to support the selective replacement
of HTTP/1.x with other, future protocols that might be more efficient for some
tasks. Thus, HTTP not only supports internal extensibility, but also complete
replacement of itself during an active connection. If the server supports the
improved protocol and desires to switch, it simply responds with a 101 status
and continues on as if the request were received in that upgraded protocol.

7.2.2 Self-Descriptive Messages. REST constrains messages between com-
ponents to be self-descriptive in order to support intermediate processing of
interactions. However, there were aspects of early HT'TP that failed to be self-
descriptive, including the lack of host identification within requests; failure
to syntactically distinguish between message control data and representation
metadata; failure to differentiate between control data intended only for the
immediate connection peer versus metadata intended for all recipients; lack
of support for mandatory extensions; and the need for metadata to describe
representations with layered encodings.

Host. One of the worst mistakes in the early HTTP design was the decision
not to send the complete URI that is the target of a request message, but rather
send only those portions that were not used in setting up the connection. The
assumption was that a server would know its own naming authority based on
the IP address and TCP port of the connection. However, this failed to anticipate
that multiple naming authorities might exist on a single server, which became a
critical problem as the Web grew at an exponential rate and new domain names
(the basis for naming authority within the http URL namespace) far exceeded
the availability of new IP addresses.

The solution defined and deployed for both HTTP/1.0 and HTTP/1.1 was to
include the target URLs host information within a Host header field of the
request message. Deployment of this feature was considered so important that
the HTTP/1.1 specification requires servers to reject any HTTP/1.1 request that
doesn’t include a Host field. As a result, there now exist many large ISP servers
that run tens of thousands of name-based virtual host Websites on a single IP
address.

Layered encodings. HTTP inherited its syntax for describing representation
metadata from the Multipurpose Internet Mail Extensions (MIME) [Freed and
Borenstein 1996]. MIME does not define layered media types, preferring instead

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Modern Web Architecture o 141

to only include the label of the outermost media type within the Content-Type
field value. However, this prevents a recipient from determining the nature
of an encoded message without decoding the layers. An early HTTP extension
worked around this failing by listing the outer encodings separately within the
Content-Encoding field and placing the label for the innermost media type in
the Content-Type. That was a poor design decision, since it changed the seman-
tics of Content-Type without changing its field name, resulting in confusion
whenever older user agents encountered the extension.

A better solution would have been to continue treating Content-Type as the
outermost media type, and use a new field to describe the nested types within
that type. Unfortunately, the first extension was deployed before its faults were
identified.

REST did identify the need for another layer of encodings: those placed on a
message by a connector in order to improve its transferability over the network.
This new layer, called a transfer-encoding—in reference to a similar concept in
MIME—allows messages to be encoded for transfer without implying that the
representation is encoded by nature. Transfer encodings can be added or re-
moved by transfer agents, for whatever reason, without changing the semantics
of the representation.

Semantic independence. As described above, HTTP message parsing has
been separated from its semantics. Message parsing, including finding and cob-
bling the header fields, occurs separately from the process of parsing the header
field contents. In this way, intermediaries can quickly process and forward
HTTP messages, and extensions can be deployed without breaking existing
parsers.

Transport independence. Early HTTP, including most implementations of
HTTP/1.0, used the underlying transport protocol as the means for signaling
the end of a response message. A server would indicate the end of a response
message body by closing the TCP connection. Unfortunately, this created a
significant failure condition in the protocol: a client had no means for distin-
guishing between a completed response and one that was truncated by network
failure. To solve this, the Content-Length header field was redefined within
HTTP/1.0 to indicate the message body length in bytes, whenever the length
was known in advance, and the “chunked” transfer encoding was introduced to
HTTP/1.1.

The chunked encoding allows a representation whose size is unknown at
the beginning of its generation (when the header fields are sent) to have its
boundaries delineated by a series of chunks that can be individually sized before
being sent. It also allows metadata to be sent at the end of the message as
trailers, enabling the creation of optional metadata at the origin while the
message is being generated, without adding to response latency.

Size limits. A frequent barrier to the flexibility of application-layer proto-
cols is the tendency to over-specify size limits on protocol parameters. Although
some practical limits within implementations of the protocol always exist (e.g.,
available memory), specifying those limits within the protocol restricts all

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

142 . R. T. Fielding and R. N. Taylor

applications to the same limits, regardless of their implementation. The re-
sult is often a lowest-common-denominator protocol that cannot be extended
much beyond the vision of its original creator.

In the HTTP protocol there is no limit on the length of the URI, the length
of header fields, the length of a representation, or the length of any field value
that consists of a list of items. Although older Web clients have a well-known
problem with URI that consist of more than 255 characters, it is sufficient to
note that problem in the HTTP specification rather than require that all servers
be so limited. The reason that this does not make for a protocol maximum is
that applications within a controlled context (such as an intranet) can avoid
those limits by replacing the older components.

Although we did not need to invent artificial limitations, HTTP/1.1 did need
to define an appropriate set of response status codes for indicating when a
given protocol element is too long for a server to process. Such response codes
were added for the following conditions: Request-URI too long, header field too
long, and body too long. Unfortunately, there is no way for a client to indicate
to a server that it may have resource limits, which leads to problems when
resource-constrained devices, such as PDAs, attempt to use HTTP without a
device-specific intermediary adjusting the communication.

Cache control. Because REST tries to balance the need for efficient, low-
latency behavior against the desire for semantically transparent cache behav-
ior, it is critical that HTTP allow the application to determine the caching re-
quirements rather than hard-code it into the protocol itself. The most important
thing for the protocol to do is to fully and accurately describe the data being
transferred, so that no application is fooled into thinking it has one thing when
it actually has something else. HTTP/1.1 does this through the addition of the
Cache-Control, Age, Etag, and Vary header fields.

Content negotiation. All resources map a request (consisting of method,
identifier, request-header fields, and sometimes a representation) to a response
(consisting of a status code, response-header fields, and sometimes a represen-
tation). When an HTTP request maps to multiple representations on the server,
the server may engage in content negotiation with the client in order to deter-
mine which one best meets the client’s needs. This is really more of a “content
selection” process than negotiation.

Although there were several implementations of content negotiation de-
ployed, they were not included in the specification of HT'TP/1.0 because there
was no interoperable subset of implementations at the time it was published.
This was partly due to a poor implementation within NCSA Mosaic, which
would send 1 KB of preference information in the header fields on every re-
quest, regardless of the negotiability of the resource [Spero 1994]. Since far
less than 0.01% of all URI are negotiable in content, the result was substan-
tially increased request latency for very little gain, which led to later browsers
disregarding the negotiation features of HTTP/1.0.

Preemptive (server-driven) negotiation occurs when the server varies the
response representation for a particular request method*identifier*status-code

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Modern Web Architecture o 143

combination according to the value of the request header fields, or something
external to the normal request parameters above. The client needs to be notified
when this occurs, so that a cache can know when it is semantically transparent
to use a particular cached response for a future request, and also so that a user
agent can supply more detailed preferences than it might normally send once it
knows they are having an effect on the received response. HT'TP/1.1 introduced
the Vary header field for this purpose. Vary simply lists those request header
field dimensions under which the response may vary.

In preemptive negotiation, the user agent tells the server what it can accept.
The server is then supposed to select the representation that best matches what
the user agent claims to be its capabilities. However, this is a nontractable
problem because it requires not only information on what the UA will accept,
but also how well it accepts each feature and to what purpose users intend
to put the representation. For example, users who want to view an image on
screen might prefer a simple bitmap representation, but the same users with
the same browsers may prefer a PostScript representation if they intend to
send it to a printer instead. It also depends on the users correctly configuring
their browsers according to their own personal content preferences. In short, a
server is rarely able to make effective use of preemptive negotiation, but it was
the only form of automated content selection defined by early HTTP.

HTTP/1.1 added the notion of reactive (agent-driven) negotiation. In this
case, when a user agent requests a negotiated resource, the server responds
with a list of the available representations. The user agent can then choose
which one is best according to its own capabilities and purposes. The infor-
mation about the available representations may be supplied via a separate
representation (e.g., a 300 response), inside the response data (e.g., condi-
tional HTML), or as a supplement to the “most likely” response. The latter
works best for the Web because an additional interaction only becomes neces-
sary if the user agent decides one of the other variants would be better. Re-
active negotiation is simply an automated reflection of the normal browser
model, which means it can take full advantage of all the performance benefits
of REST.

Both preemptive and reactive negotiation suffer from the difficulty of com-
municating the actual characteristics of the representation dimensions (e.g.,
how to say that a browser supports HTML tables but not the INSERT ele-
ment). However, reactive negotiation has the distinct advantages of not having
to send preferences on every request, having more context information with
which to make a decision when faced with alternatives, and not interfering
with caches.

A third form of negotiation, transparent negotiation [Holtman and Mutz
1998], is a license for an intermediary cache to act as an agent, on behalf of other
agents, for selecting a better representation, and initiating requests to retrieve
that representation. The request may be resolved internally by another cache
hit, and thus it is possible that no additional network request will be made.
In so doing, however, they are performing server-driven negotiation, and must
therefore add the appropriate Vary information so that other outbound caches
won’t be confused.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

144 . R. T. Fielding and R. N. Taylor

7.2.3 Performance. HTTP/1.1 was focused on improving the semantics of
communication between components, but there were also some improvements
to user-perceived performance, albeit limited by the requirement of syntax com-
patibility with HTTP/1.0.

Persistent connections. Although early HTTP’s single request/response per
connection behavior made for simple implementations, it resulted in inefficient
use of the underlying TCP transport, due to the overhead of per-interaction
set-up costs and the nature of TCP’s slow-start congestion control algorithm
[Heidemann et al. 1997; Spero 1994]. As a result, several extensions were pro-
posed to combine multiple requests and responses within a single connection.

The first proposal was to define a new set of methods for encapsulating mul-
tiple requests within a single message (MGET, MHEAD, etc.) and returning
the response as a MIME multipart. This was rejected because it violated sev-
eral REST constraints. First, the client would need to know all of the requests
it wanted to package before the first request could be written to the network,
since a request body must be length-delimited by a content-length field set in
the initial request header fields. Second, intermediaries would have to extract
each of the messages to determine which ones it could satisfy locally. Finally,
it effectively doubles the number of request methods and complicates mecha-
nisms for selectively denying access to certain methods.

Instead, we adopted a form of persistent connections, which uses length-
delimited messages in order to send multiple HTTP messages on a single con-
nection [Padmanabhan and Mogul 1995]. For HT'TP/1.0, this was done using the
“keep-alive” directive within the Connection header field. Unfortunately, this
did not work in general because the header field could be forwarded by interme-
diaries to other intermediaries that do not understand keep-alive, resulting in
a dead-lock condition. HTTP/1.1 eventually settled on making persistent con-
nections the default, thus signaling their presence via the HTTP-version value,
and only using the connection-directive “close” to reverse the default.

It is important to note that persistent connections became possible only after
HTTP messages were redefined to be self-descriptive and independent of the
underlying transport protocol.

Write-through caching. HTTP does not support write-back caching. An
HTTP cache cannot assume that what gets written through it is the same as
what would be retrievable from a subsequent request for that resource, and
thus it cannot cache a PUT request body and reuse it for a later GET response.
There are two reasons for this rule: (1) metadata might be generated behind-
the-scenes; and