
Abstract

In order to support architecture-centric tool inte-
gration within the ArchStudio 2.0 Integrated Develop-
ment Environment (IDE), we adopted Extensible
Markup Language (XML) to represent the shared archi-
tecture-in-progress. Since ArchStudio is an architec-
tural style-based development environment that
incorporates an extensive number of tools, including
commercial off-the-shelf products, we developed a new,
vendor-neutral, ADL-neutral interchange format called
Extensible Architecture Description Language (xADL),
as well as a “vocabulary” specific to the C2 style
(xC2). This paper outlines our vision for representing
architectures as hypertext, the design rationale behind
xADL and xC2, and summarizes our engineering expe-
rience with this strategy.

Keywords: Software environments, software architec-
tures, architecture description language (ADL), off-the-
shelf tool integration, XML

1. Introduction

The widespread adoption of Software Engineering
Environments (SEE) predates the term itself. The ratio-
nal decomposition of the development process and its
artifacts can arguably be traced back to the advent of
separate compilation. The zeroth generation of SEE
integration took files as its primary unit of discourse
between various tools. The well-known UNIX pipe-
and-filter architectural style was entirely based on the
concept that one tool’s output data could be used as an
input to another [12].

The first step, then, was a repository-centric
approach for managing these artifacts. In such an Inte-
grated Development Environment (IDE), different tools
would work upon a central, shared database represent-
ing the product-in-progress. The archetype of this gen-
eration was the Stoneman reference model for the Ada
Program Support Environment [7]. Interlisp [28] can be

seen as one instance of this approach with suite of tools
operating on a shared parse-tree. A versioned filesystem
was another popular variant, notably Revision Control
System (RCS) [29].

Continuing the ascent, a second generation of pro-
cess-centric IDEs emerged in the 1980s which took
relations between these artifacts and their associated
workflows as its unit of discourse. Tools such as Marvel
[3] assisted developers by automating basic process
steps and coordinating the work of tools “outside” the
development path proper. In the extreme, IDE support
tools maintained only those relations, as in the Chimera
Linkbase [2].

Finally, we see the current era as the advent of
architecture-centric IDEs that control the evolution of
software throughout its lifecycle using architecture
descriptions as its primary unit of discourse. As an
example, ArchStudio 2.0 assumes the existence of ver-
sioned repositories and process automation in its foun-
dation, and so focuses on the design, evaluation,
instantiation, and editing of C2-style architectures. Sup-
porting tool integration in this generation now requires
an open, hypertext web representing the entire product,
from architecture down to development artifacts.

We developed an Extensible Markup Language
(XML) syntax for Architecture Description Languages
(xADL) and customizations to the C2 style in particular
(xC2) in support of these goals. Furthermore, we inte-
grated our XML Abstract Syntax Tree (AST) and an
Abstract Data Type (ADT) representing the architec-
ture-in-progress to the ArchStudio 2.0 environment on
the fly, thereby highlighting the ease of dynamism in an
IDE itself designed in the C2 style. By wrapping a
parsed, shared representation of the work at hand
behind a (potentially-distributed) event notification
interface, our approach technologically updates the
basic strategy of Field [25].

The balance of this paper focuses particularly on
the role XML played in the integration of several tools
within ArchStudio 2.0. We shall outline the origins and

xADL: Enabling Architecture-Centric Tool Integration With XML

Rohit Khare Michael Guntersdorfer Peyman Oreizy

Nenad Medvidovic Richard N. Taylor

 Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

{rohit,mgunters,peymano,taylor}@ics.uci.edu

 Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781, USA
neno@usc.edu

promise of XML broadly, our detailed design of xADL
and xC2, our implementation experience with it, and a
discussion of its implications for broader and deeper
tool integration within architecture-centric IDEs.

2. Extensible Markup Language (XML)

The HyperText Markup Language (HTML) allows
the structural markup of World Wide Web documents.
Now, HTML’s evolutionary successor, XML, takes doc-
ument markup to the next level, by offering human-
readable semantic markup that is also machine-read-
able. As a result, XML makes it dramatically easier to
develop and deploy new mission-specific markup,
enabling the automation of the authoring, parsing, and
processing of networked data.

Broadly speaking, the XML 1.0 standard [6] is a
simplification of the Standard Generalized Markup
Language (SGML) which itself dates back to the mid-
1960s. XML should be seen as a toolkit for creating
new elements (also known as “tags”) and attributes
upon them, as well as grammar rules governing the
parse tree. All of these rules are captured in a Document
Type Definition (DTD), which can be used to formally
validate any XML instance (file) against it.

More usefully, though, XML defines a lower level
of conformance known as “well-formed.” This level
merely assures that all the elements open and close
properly, and so on. Such purely mechanical checking
allows designers to “mix and match” elements from
several DTDs. In particularly, the XML Namespaces
facility allows us to interpret unknown element names
as URLs which can be further investigated automati-
cally or by hand. Namespaces thus disambiguate poten-
tially conflicting tag semantics.

Our data integration strategy for ArchStudio 2.0
adopted XML for several of the properties introduced
above:

• A text format governed by an open standard prom-
ised future-proof file formats. Furthermore, the
advent of hybrid XHTML modules already pro-
vided a rich tagset for human-readable documenta-
tion and presentation of the architecture-in-
progress.

• Well-formed XML accommodated multiple tools’
own subtrees within the data model, as well as tool-
specific attributes decorating existing elements.

• Namespaces explicitly articulated separate control
over the vocabulary for describing high-level archi-
tectures in common (xADL), style-specific features
(xC2), and tool-specific additional data.

• Intrinsic support for hypertext linking encouraged
future refactoring of architecture description into
separate resources describing individual compo-
nents and types, potentially published remotely by
several developers (hyperlinked reuse).

• Finally, rich protocols for accessing, managing,
and versioning XML repositories already existed,
in the form of WebDAV (Web Distributed Author-
ing and Versioning) extensions to HTTP and the
XPointer language for hyperlinking directly within
XML documents.

3. Approach

ArchStudio [22] is an architecture-centric IDE,
based on the C2 architectural style [27]. The C2 style is
an event- and component-based style that allows
dynamic evolution of the software system at runtime
[13]. C2 does so by enforcing system decomposition
into units of computation and data store, called compo-
nents, and units that enable the interaction among com-
ponents, called connectors, as suggested by Garlan and
Shaw [11]. The highly dynamic nature of the C2 style is
primarily caused by a central rule of the style, which
does not allow direct links between two components,
but rather requires the involvement of a connector in
between. Hence components may be plugged in and out
of the system without leaving another component
behind with a dangling link. The separation of architec-
tural units into components and connectors may be
regarded analog to the nodes and transitions concept of
Petri nets [23], where direct links may only exist from
nodes to transitions and vice versa, but not within each
domain. However, the C2 concept differs insofar as
connector may be linked directly to other connectors.

ArchStudio not only supports the development of
C2 style software, but was itself implemented in the C2
style. Such support for software evolution made Arch-
Studio itself an excellent target for incremental tool
integration. Version 2.0 built upon a suite of tools
already developed for ArchStudio 1.0 to add a new
shared repository format (xADL), new style-checking
tools, and several commercial- and research-grade off-
the-shelf technologies, including Rational Rose [24],
Armani [20], Metamata [15], and JavaBeans [26] as
shown in Figure 1.

The first step required introducing an abstract data
type representing the architecture-in-progress,
ArchADT, quite apart from its new representation in an
XML-based abstract syntax tree (AST). Each step had a
beneficial consequence:

1. Since the message-based C2 style transmits by-
copy rather than by-reference, globally sharing an

ArchADT replaced the habit of sending enormous
messages representing the entire architecture-in-
progress. Furthermore, the new technique removed
artificial sequence dependencies for tools that
modified disjoint aspects of the architecture.

2. While ArchStudio 1.0 tool integration was either
limited to tools that understood its internal applica-
tion programming interface (API) or were mapped
to it using component wrappers, the advent of
XML at least eased data integration with off-the-
shelf tools. Since the AST supported lowest-com-
mon-denominator access for tools which added
new subtrees of information, or new attributes of
existing objects, an XML AST enabled integration
of tool-specific information transparently, within
the ArchADT.

In particular, we designed xADL to be a shared
language for representing a variety of possible ADLs. It
introduces five basic tags, namely <Architecture>,
<Component>, <Connector>, <ComponentType>, and
<ConnectorType>, each with its own subtrees as well as
hyperlinks between them.

• xADL
• Architecture

• Links
• Component

• Supports
• ComponentType

• Interface
• Parameter

• Connector

• Supports
• ConnectorType

• Interface
• Parameter

where

• xADL->Architecture->Links specifies a list of
directed hyperlinks between component and con-
nector instances (links to <Component> and <Con-
nector> tags, respectively),

• Component->Supports specifies name and type(s)
supported by a component instance,

• ComponentType->Interface specifies name and
method interfaces for each component type,

• ComponentType->Interface->Parameter specifies
input and output parameters of a component inter-
face,

• Connector->Supports specifies name and type(s)
supported by a connector instance,

• ConnectorType->Interface specifies name and
method interfaces for each connector type, and

• ConnectorType->Interface->Parameter specifies
input and output parameters of the connector inter-
face.

xADL may be extended to support a particular
architectural style, such as C2, by mixing-in additional
XML Namespaces. In our case, xC2 added C2-specific
tags, attributes, and constraints to the specification, as
shown in the example in Figure 2.

Figure 1. ArchStudio 2.0 integrates several tools according to the principles of the C2 style.

xADL also supports the storage of tool-specific
information as well-formed XML data, though at the
expense of formal validation against a single, unified
DTD. Leaving the interpretation of data to participating
tools still allows ArchStudio to centrally manage and
monitor the architecture-in-progress, even if it does not
“understand” the data it stores.

4. Implementation Issues

The first tool to be upgraded was DRADEL [19].
As the hub of the first-generation system, it was used to
model architectures in the C2 style, check and enforce
style constraints, manage heterogeneous subtyping, and
generate application skeleton code. The central artifact
representing the architecture-in-progress was a read-
only, edit-externally C2SADEL text file.

Our new repository strategy was implemented at
two layers: a “physical” AST that guaranteed storage of
well-formed XML fragments; and a “logical”
ArchADT that enforced the grammar and semantic
rules (validity) of xADL and xC2. For the former ser-
vice, we published a request-response message inter-
face for basic tree manipulation: CreateTree,
AddChildNode, DeleteNode, SetAttribute, GetNodeInfo,
ReadFromFile, SaveToFile, and so on. At the logical
layer, we preserved the existing interface at a higher
level of abstraction, such as NewArchitecture, AddCom-
ponent, BasicSubtypeOf, and so on. Two functions,
toAST and fromAST, were used throughout the class
hierarchy to keep the two levels synchronized; each log-
ical object in the architecture maintained a “shadow
node” in the AST with its current state.

Thus, by contrast to the hand-coded text input
parser of the previous generation, using off-the-shelf
XML parsing technology automatically provided
“round-trip” input and output of the AST at any point.

To dynamically evolve from the existing Architec-
tureSpec object that reflected a C2SADEL-format input
file to the new ArchADT object bound to an XML-for-
mat representation, we applied a transition strategy
which mirrored the notification stream used to construct
the former onto the latter. The central challenge within

that process, in turn, was managing the extreme paral-
lelism of our new XML AST store, since the original
environment was entirely sequential by virtue of pass-
ing the entire ArchitectureSpec object by value from
parser to parser. Naturally, replacing massive copying
of the entire architecture-in-progress with many more
small queries against a shared representation eased
physical distribution of ArchStudio 2.0 across LANs.
Replacing in-process procedure calls with remote ones
has its limits at Internet-scale, however. While we did
not enact ArchStudio 2.0 across high-latency public
Internet links, the “chatty” pattern of AST access could
accumulate into unacceptable overall performance.

Serializing edits to the shared AST was another
difficult problem to address within the C2 event-based
architectural style. Since it does not make any assump-
tions about the order messages are sent and retrieved
within the system, edits must be tracked by unique
identifiers or treated as idempotent (that is, reorder-
able). Of course, one atomicity solution is strict
sequencing of requests and responses with one speaker
at a time, as ArchStudio 1.0 did. This corresponds to a
depth-first construction of the AST, while our parallel
approach permits multiple tools to construct or analyze
portions of the architecture simultaneously.

The problem, then, is that several messages or noti-
fications of the exact same type, sometimes even with
the same parameters, might be outstanding at the same
time. Two notices that ChildAdded 38 <Component> 40
and ChildAdded 38 <Component> 41 cannot be reliably
demultiplexed back to their respective initiators (the
first numerical parameter is a common parent id and the
second is a newly-minted nodeID not initially known to
the requestor).

Our solution was an additional optional parameter
which identified the calling component, ref_com. Send-
ing a pointer to the calling object on a round-trip
through the AST interface was essential to decentraliz-
ing access to it within ArchStudio2 (i.e. multiple paral-
lel readers and writers). Note, though, that the
sequential delivery of requests by the C2 connector

<!-- xC2 adds one parameter to the xADL:ConnectorType tag, namely a message filtering policy with a
default of none -->
<!ELEMENT xADL:ConnectorType(Supports*)>
<!ATTLIST xADL:ConnectorType name CDATA #REQUIRED

 xC2:filter (no_filtering |
notification_filtering |
message_filtering |
prioritized |
message_sink) 'no_filtering'>

Figure 2. An excerpt from the combined xADL and xC2 DTD.

interface wrapping the AST still implicitly serialized all
I/O requests.

The complete decomposition of ArchADT includes
several more classes, as shown in Figure 3. AST, AST-
Node, and ASTAttribute represent the tree anchor (or
root), nodes within the tree, and attributes of the tree
nodes, respectively. Good Java programming style
packaged the constant string values and request names
within an APIConstants class, as well as a central
ASTExceptions class. Finally, the entire suite was
encapsulated by an ASTComponent class which han-
dled the external event interface according to the C2
style.

5. Discussion

There are several interesting implications of our
adoption of XML and our design of xADL and xC2 in
particular. First, adopting a standard syntax for repre-
senting the tool data being integrated within ArchStudio
2.0 should generate compelling “network effects” for
our product. That is to say, there is dramatic potential
for reuse with XML over our previous custom text for-
mat. Already, we have been able to leverage off-the-
shelf parsing technology, user interfaces (Figure 4),
syntax-directed editors (Figure 5), and schema develop-
ment tools.

Most of all, the XML developer community is
already oriented towards enabling “mix-and-match”
reuse of application-specific ontologies. For example,
the World Wide Web Consortium is developing the
Scalable Vector Graphics language (SVG, [8]) for

drawings. A future Unified Modeling Language (UML,
[5]) graphical editor could produce SVG documents
which could be transparently annotated with xADL and
xC2 descriptions of the components and connectors
those boxes and lines represent.

Second, the approach we have adopted in xADL
can be easily extended to support multiple architecture
description languages (ADLs), even within a single
XML schema. Our extensive study of ADLs [17] has
indicated that most all mainstream ADLs agree on the
existence of components, connectors, and their configu-
rations. A small number of ADLs, including Rapide
[13] and Darwin [14], do not explicitly model connec-
tors. However, even these ADLs support simple compo-
nent interconnections; furthermore, Rapide employs
specialized “connection components” to support more
complex interactions. Additionally, all ADLs model
component interfaces and do so in a relatively uniform

Figure 3. ArchADT component architecture in Booch
notation [4].

Figure 4. An example xADL file viewed in Microsoft
Internet Explorer 5.0 rendered by our default XSL stylesheet.

Figure 5. IBM’s Xeena is a DTD-driven editor which can
thus automatically enforce XML validation rules on xADL/
xC2 files.

fashion. Therefore, these shared aspects of ADLs would
become part of the basic xADL schema.

That basic schema could then be extended in a
number of ways to represent the varying parts of archi-
tectural descriptions across ADLs, such as the manner
in which ADLs model architectural semantics, support
evolution (both at system design time and run time),
constrain the architecture (and its evolution), and so
forth. Thus, for example, an xADL schema could
simultaneously describe architectures specified in
C2SADEL [19] and Wright [1]. If a particular tool is
interested in the static model of behavior, it would
access C2SADEL's component invariants and pre- and
postconditions; alternately, if the tool is interested in the
system's dynamic semantics, it would access Wright's
CSP-related items and ignore others. Another possibil-
ity that xADL affords us is the support for multiple con-
figurations of the same set of components, where we
access the part of the schema representing the specific
configuration we are interested in, disregarding all other
configurations.

In order to assess several of the hypotheses out-
lined above, we have performed an initial evaluation of
xADL's ability to represent heterogeneous ADLs and
do so in a single schema. To this end, in addition to
C2SADEL, xADL has been used as the basis for repre-
senting significant portions of ACME [10], Darwin
[14], and SADL [21]. xADL provided an adequate
basis for this exercise. Similarly to the above discussed
C2-specific tags in the DTD (xC2), the DTD resulting
from this exercise also contains pertaining to the other
three ADLs (xACME, xDarwin, and xSADL, respec-
tively). For example, 6 depicts the DTD portions that
deal with SADL's architectural constraints, ACME's
architecture families, and Darwin's component
instances. Several example architectures from the four
ADLs have also been represented in this framework as a
demonstration of xADL's utility.

xADL is not without shortcomings, however. Con-
venient representation of sub-architectures is the big-
gest need; several alternatives for achieving this are
currently under investigation. As a wider circle of
investigators evaluates and uses the technology we
expect to see the schema evolve. We expect that the
very properties of XML that attracted us in the first
place will make this evolution a relatively convenient
process.

6. Conclusions

We adopted XML as a key technology for enabling
architecture-centric tool integration in the ArchStudio
2.0 IDE. The C2 style eased the evolution from the pre-
vious version’s custom text file format, C2SADEL, to a
generic XML AST as the repository. This had immedi-
ate benefits for integrating several tools’ data in the
same file, for annotating existing data without interfer-
ing with its original use, and for hyperlinking to exter-
nal data transparently.

Furthermore, we developed a new ontology for
describing entire families of Architecture Description
Languages (ADLs). By extracting the five most com-
mon abstractions and their relations into a top-level
xADL namespace, we were able to separately represent
data specific to the C2 architectural style and
C2SADEL in a subsidiary xC2 namespace; addition-
ally, we were also able to represent the data specific to
the ACME, Darwin, and SADL languages within their
own namespaces.

These technologies directly aided a strictly distrib-
uted team to integrate a substantial set of research and
commercial tools within ArchStudio 2.0. Our eventual
aim is even wider, to support Internet-scale develop-
ment, with potentially large and varying developer com-
munities composing systems over long times and
distances [9]. Representing architectures as hypertext

<!ATTLIST xSADL:Constraint
name CDATA #REQUIRED
type CDATA #REQUIRED
source CDATA #IMPLIED
destination CDATA #IMPLIED >

<!ELEMENT xAcme:Family
(xAcme:ComponentType | xAcme:ConnectorType | PortType | xAcme:RoleType |
xAcme:PropertyType | Component | Connector | Port | xAcme:Role |
xAcme:Property | Topology | xAcme:Representation)+>

<!ATTLIST xAcme:Family
identifier ID #REQUIRED>

<!ATTLIST xDarwin:Inst
name CDATA #REQUIRED
prop CDATA #IMPLIED
type CDATA #REQUIRED>

Figure 6. An excerpt from the DTD generated in the process of modeling ACME, Darwin, and SADL in xADL.

affords us reach; extracting our ontology in XML prom-
ises depth, through integration with generic, non-ADL-
aware XML applications.

7. Acknowledgments

We wish to acknowledge the following individuals
for their participation in the work described in this
paper. ArchStudio 1.0 was developed by P. Oreizy and
N. Medvidovic. ArchStudio 2.0 was developed by P.
Oreizy, R. Khare, M. Guntersdorfer, K. Nies, E.
Dashofy, Y. Kanomata, R. Natarajan, A. Hitomi, R.
Klashner, L. Pan, M. Dias, M. Vieira, S. Devanathan,
and J. Robbins. Ebru Dincel and Roshanak Roshandel
performed the exercise of modeling ACME, Darwin,
and SADL, in addition to C2SADEL, in xADL.

This effort was sponsored by the Defense
Advanced Research Projects Agency, and Air Force
Research Laboratory, Air Force Material Command,
USAF, under agreement numbers F30602-97-2-0021
and F30602-99-C-0174. The U. S. Government is
authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions con-
tained herein are those of the authors and should not be
interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency, Air
Force Research Laboratory or the U.S. Government.

8. References

[1] R. Allen and D. Garlan. A Formal Basis for Architec-
tural Connection. ACM Transactions on Software
Engineering and Methodology, vol. 6, no. 3, pp. 213-
249, July 1997.

[2] K. M. Anderson, R. N. Taylor, and E. James White-
head, Jr., Chimera: Hypertext for Heterogeneous Soft-
ware Environments, Proceedings of the 1994 European
Conference on Hypermedia Technology ECHT '94,
Edinburgh, Scotland, 1994.

[3] N. S. Barghouti. Supporting Cooperation in the Marvel
Process-Centered SDE, 5th ACM SIGSOFT Sympo-
sium on Software Development Environments, edited
by Weber, H. pp21-31 December 1992.

[4] G. Booch, Object-Oriented Analysis and Design with
Applications, Benjamin/Cummings, Redwood, City,
CA, 1996.

[5] G. Booch, I. Jacobsen, and J. Rumbaugh, The Unified
Modeling Language User Guide, Addison-Wesley,
Reading, MA, 1998.

[6] T. Bray, J. Paoli, and C. M. Sperberg-McQueen, eds.
Extensible Markup Language (XML) 1.0, World Wide
Web Consortium Recommendation, 1998.

[7] DoD. Requirements for Ada Programming Support
Environments: STONEMAN. United States Depart-
ment of Defense, Office of the Under Secretary of
Defense for Research and Engineering, 18 February

1980. NTIS-AD-A100 404/3.

[8] J. Ferraiolo, et al. Scalable Vector Graphics (SVG) 1.0
Specification, World Wide Web Consortium Working
Draft, 1999.

[9] R. T. Fielding, E. J. Whitehead, Jr., K. M. Anderson,
G. A. Bolcer, P. Oreizy, and R. N. Taylor, Web-based
Development of Complex Information Products, Com-
munications of the ACM, 41(8), August 1998.

[10] D. Garlan, R. Monroe, and D. Wile. ACME: An Archi-
tecture Description Interchange Language. In Proceed-
ings of CASCON’97, November 1997.

[11] D. Garlan and M. Shaw, An Introduction to Software
Architecture, Advances in Software Engineering and
Knowledge Engineering, Volume I, World Scientific
Publishing Company, NJ, 1993.

[12] B. Kernighan and R. Pike, The UNIX Programming
Environment, Prentice-Hall, Englewood Cliffs, NJ,
1984.

[13] D. C. Luckham and J. Vera. An Event-Based Architec-
ture Definition Language. IEEE Transactions on Soft-
ware Engineering, vol. 21, no. 9, pp. 717-734,
September 1995.

[14] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying Distributed Software Architectures. In Pro-
ceedings of the Fifth European Software Engineering
Conference (ESEC’95), Barcelona, September 1995.

[15] Metamata IDE, Metamata Corp., http://
www.metamata.com/

[16] N. Medvidovic, Architecture-Based Specification-
Time Software Evolution, Ph. D. Dissertation, Univer-
sity of California, Irvine, 1998.

[17] N. Medvidovic and R. N. Taylor. A Classification and
Comparison Framework for Software Architecture
Description Languages. IEEE Transactions on Soft-
ware Engineering, 26(1), January 2000.

[18] N. Medvidovic, P. Oreizy, R. N. Taylor, R. Khare, and
M. Guntersdorfer, An Architecture-Centered Approach
to Software Environment Integration. Technical Report
UCI-ICS-00-11, Department of Information and Com-
puter Science, University of California, Irvine, March
2000.

[19] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A
Language and Environment for Architecture-Based
Software Development and Evolution. In Proceedings
of the 21st International Conference on Software Engi-
neering (ICSE’99), Los Angeles, CA, May 1999.

[20] R. T. Monroe, Armani Language Reference Manual,
Technical Report CMU-CS-98-163, Carnegie Mellon
University, School of Computer Science, 1998.

[21] M. Moriconi, X. Qian, and R. A. Riemenschneider.
Correct Architecture Refinement. IEEE Transactions
on Software Engineering, 21(4), pages 356-372, April
1995.

[22] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosen-
blum, and A. L. Wolf. An Architecture-Based
Approach to Self-Adaptive Software, IEEE Intelligent
Systems, 14(3), pages 54-62. May/June 1999.

[23] J. L. Peterson. Petri Nets, ACM Computing Surveys,
9(3):223-252, September 1977.

[24] Rational Software Corp., Rational Rose 98: Using
Rational Rose, 1998.

[25] S. P. Reiss, Connecting Tools Using Message Passing

in the Field Environment, IEEE Software, July 1990.

[26] Sun Microsystems, Inc., Enterprise JavaBeans 1.1,
Draft Specification, http://java.sun.com/products/ejb/
newspec.html.

[27] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J.
Whitehead Jr., J. E. Robbins, K. A. Nies, P. Oreizy, and
D. L. Dubrow, A Component- and Message-Based
Architectural Style for GUI Software, IEEE Transac-
tions on Software Engineering, June 1996.

[28] W. Teitelbaum and L. Masinter, The Interlisp Program-
ming Environment, IEEE Computer, April 1981.

[29] W. F. Tichy. RCS: A System for Version Control, Soft-
ware Practice and Experience, 15(7):637-54, July
1985.

Appendix: The xADL / xC2 Document Type
Definition (DTD)

<?xml version=”1.0” encoding=”US-ASCII”?>
<!-- Revision 1 of xADL/1.0 -->
<!-- xADL

This is an arbitrary parent/container element that
demarcates the beginning of a “xADL block” of
information.

In the future, we want xADL webs of documents spun
from individual XML instances describing single
instances, interfaces, or architectural configurations.
However, initial implementations will use a single file,
so we created a “surrogate parent” element which
functions as the root for XML purposes -->

<!ELEMENT xADL (ComponentType |
ConnectorType |
Architecture)*>

<!-- ARCHITECTURE
The Architecture tag represents a single configuration
of instances by the directed edges between them.
Thus, the content model is a list of Link tags. -->

<!ELEMENT Architecture (Component |
Connector)* ,
Topology>

<!ATTLIST Architecture name CDATA
#REQUIRED>
<!ELEMENT Topology (Link*)>

<!-- LINK
The Link Element represents a single directed edge
between any two instances (Components or
Connectors). In particular, the edge endpoint can be
specified as a particular Port by using XLink Fragment
identifiers, e.g., gameboard#Top, or
vault#DepositorySlot. -->

<!ELEMENT Link EMPTY>
<!ATTLIST Link from CDATA #REQUIRED
 to CDATA #REQUIRED
 name CDATA #IMPLIED >

<!-- COMPONENT TYPE
This tag has only one xADL attribute, name. At the
basic xADL level, the only salient feature of a
ComponentType is its Methods. A type hierarchy, if
any, can be constructed with the Supports child
element

C2, in particular DRADEL, adds analysis of
“behavior”, for which see the optional child tag
Behavior -->

<!ELEMENT ComponentType (Supports*,
Method*,
xC2:Behavior?)>

<!ATTLIST ComponentType name CDATA
#REQUIRED>

<!-- CONNECTOR TYPE
This tag has only one xADL attribute, name. At the
basic xADL level, there are no further refinements on a
Connector except its type relations (if any).

C2 adds the attribute filter, specifying one of several
predefined choices. The default setting is no_filtering--
>

<!ELEMENT ConnectorType (Supports*)>
<!ATTLIST ConnectorType

name CDATA #REQUIRED
xC2:filter (no_filtering|
notification_filtering |
message_filtering |
prioritized |
message_sink) 'no_filtering'>

<!-- METHOD
The Method tag describes a single operation upon
several Parameters (which can represent inputs,
outputs, or both).

C2 adds the direction attribute.
C2, in particular DRADEL, referred to these as
InterfaceElements.
C2, in particular DRADEL, maps each Method to an
Operation for behavioral analysis.
xC2:mapToOper cites a value for uid which occurs on
an Operation (since it is not clear if Operation names
are unique enough) -->

<!ELEMENT Method (Parameter*)>
<!ATTLIST Method

name CDATA #REQUIRED
xC2:direction (provide | require) #REQUIRED
xC2:mapToOper IDREF #IMPLIED >

<!-- PARAMETER
To support arbitrary method signatures in xADL,
parameter roles (in, out, inout; default of 'in') are
specified separately for each parameter. This allows
multiple results, for examples. The Parameter tag is an
empty element. Its type attribute is an opaque string
for our purposes (e.g. “Int”)

C2, in particular DRADEL, maps each Parameter to a
Variable for behavioral analysis. xC2:mapToVar cites a
value for uid which occurs on an Variable (since it is
not clear if Variable names are unique enough) -->

<!ELEMENT Parameter EMPTY>
<!ATTLIST Parameter

name CDATA #REQUIRED
type CDATA #REQUIRED
role (in | out | inout) 'in'
xC2:mapToVar IDREF #IMPLIED >

<!-- COMPONENT
The Component tag is a named instance that can point
to one (or more) ComponentTypes it supports. It can
expose these functions over one (or more) named
Ports.

NOTE: C2 LINK SETS
C2 data structures traditionally put all of a brick's
connections to other bricks on this one, but we have
chosen to entirely externalize this responsibility to the
Link tags, leaving it as a simple computation over the
hyperweb to compute sets such as “aboveCompLinks”.
-->

<!ELEMENT Component (Port*,Supports*)>
<!ATTLIST Component name CDATA #REQUIR>

<!-- CONNECTOR
The Connector tag is a named instance that can point
to one (or more) ConnectorTypes it supports. It can
expose these functions over one (or more) named
Ports. -->

<!ELEMENT Connector (Port*,Supports*)>
<!ATTLIST Connector name CDATA #REQUIRED >

<!-- PORT
The Port tag is a qualifier for naming Link endpoints
within a given Component or Connector.

NOTE: C2 USAGE
C2-style architectures will have to explicitly add <Port
type=”Top”> and <Port type=”Bottom”> to every single
Component and Connector, and also specify #Top and
#Bottom on every link. -->

<!ELEMENT Port EMPTY>
<!ATTLIST Port type CDATA #REQUIRED >

<!-- SUPPORTS
The Supports tag specifies type-compatibility for
Component and Connector. However, the downside is
that XML verification alone can not enforce type-
coherency (i.e. that a Component's Supports child can
only link to ComponentTypes rather than
ConnectorTypes).

The “type” attribute must be a unique string occuring in
some other ComponentType or ConnectorType's
“name” attribute. -->

<!ELEMENT Supports EMPTY>
<!ATTLIST Supports type CDATA #REQUIRED >

<!-- xC2:BEHAVIOR
The following xC2:prefixes tags all support C2, in
particular DRADEL, in specifying component behavior.
It also adds mapToOper and mapToVar attributes to
Method and Parameter, respectively, to link behavioral
specifications to interfaces.

The xC2:Behavior tag has only one xADL attribute,
name, which is implied as the name of the enclosing
ComponentType. Its children map onto C2SADEL

specifications for state variables, invariants, and
operations. -->

<!ELEMENT xC2:Behavior (xC2:State,
 xC2:Invariant,
 xC2:Operation*)>
<!ATTLIST xC2:Behavior name CDATA #IMPLIED>

<!ELEMENT xC2:State (xC2:Variable | xC2:Function)* >

<!ELEMENT xC2:Variable EMPTY>
<!ATTLIST xC2:Variable

name CDATA #REQUIRED
type CDATA #REQUIRED
uid CDATA #REQUIRED >

<!-- xC2:FUNCTION
From and To values are supposed to be types, either
language built-ins (Integer, etc.) or custom types -->

<!ELEMENT xC2:Function EMPTY>
<!ATTLIST xC2:Function

name CDATA #REQUIRED
from CDATA #REQUIRED
to CDATA #REQUIRED >

<!ELEMENT xC2:Invariant (xC2:Expression)*>

<!-- xC2:EXPRESSION
Expression is an anonymous grouping tag to bracket
unparsed expression text from the original C2SADEL
spec.
E.g. <xC2:Expression> x \eqgreater y </
xC2:Expression> -->

<!ELEMENT xC2:Expression ANY>

<!-- xC2:OPERATION
Operation is a named, uniquely identified grouping tag
to bracket related information from the original
C2SADEL spec. In particular, it may include at most
one Let, Pre, and Post sections. -->

<!ELEMENT xC2:Operation
(xC2:Let?, xC2:Pre?, xC2:Post?)>

<!ATTLIST xC2:Operation
name CDATA #REQUIRED
direction (provide | require) #REQUIRED
uid CDATA #REQUIRED >

<!ELEMENT xC2:Let (xC2:Variable)*>
<!ELEMENT xC2:Pre (xC2:Expression)>
<!ELEMENT xC2:Post (xC2:Expression)>

