1. Introduction

[An overview of the system as specified in the Design assignment, followed by the discussion of the high-level architecture and style of the system]

The high-level architecture for the system is shown in Figure 1-1.

Administrative Client

The description of this module has been left out in this design example.

User Client

Please see Chapter 3 for a detailed description of this module.

Server

Please see Chapter 2 for a detailed description of this module.

2. Server Design

SERVER MODULE

Purpose

The purpose of this module is to provide a centralized place where information for the system can be stored, manipulated, and accessed.

Rationale

This module is created to centralize and encapsulate all data storage and retrieval duties on the system. This includes user profiles, success stories, banner ads, pictures, and messages. It also provides some services, such as authentication, network communication and search.

High-Level Server Design

The server module is broken down into lower-level modules, as shown in Figure 2-1.

As is obvious, all communications from the client come through the communications module. The provided interface of the high-level server component and the server communications module are thus identical. Two modules in the server handle administrator and user functions, respectively. Each of these modules will be described in detail in following sections.

Required Interface

This module has no required interface.

Provided Interface

The provided interface of this module is the union of the provided interfaces of the following submodules:

· Communications

For more detail, please see these modules’ descriptions.

2.1 COMMUNICATIONS MODULE

Purpose

The purpose of this module is to provide communication services between the clients of the system (both administrative and user clients) and the server. This module represents the part of the communications link that resides on the server.

Rationale

This module is created to centralize and encapsulate network communication duties between clients and the server.

Required Interface

This module’s required interface is the union of the provided interfaces of the following components:

· Administrative Module

· User Module

Provided Interface

The provided interface of this module is the same as its required interface, except that the interface is made available for network calls. As such, it cannot be represented by procedure calls, as this would unnecessarily constrain the underlying representation to be Remote Procedure Call (RPC) oriented.
2.2 USER MODULE

Purpose

The purpose of this module is to authenticate users, to provide user message boxes and management functions for them.

Rationale

This module is created to centralize services related to users.

High-Level Module Design

The user module is broken down into high-level modules, as shown in Figure 1-1.

Required Interface

This module has no required interface.

Provided Interface

The provided interface of this module is the union of the provided interfaces of the following submodules:

· Profiles

· Passwords and Authentication

· Messaging

For more detail, please see these modules’ descriptions.

2.2.1 Profiles Module

Purpose

The purpose of this module is to provide access to and a persistent data store for all user profiles in the system.

Rationale

This module is created to centralize and encapsulate data storage and retrieval duties and related to users.

Required Interface

This module has no required interface.

Provided Interface

void putUserProfile(UserProfile p);

Description:

Stores a user profile, overwriting the existing one with the same user ID (if any).

Parameters:

p: User profile to store in data store. If profile’s username is already stored, this profile overwrites the existing one.

UserProfile getUserProfile(UserID userID) throws NoSuchUserException;

Description:

Gets a user profile given the user’s ID.

Parameters:

userID: The User ID of the profile to retrieve.

Returns:

The requested user profile.

Exceptions:

NoSuchUserException: If the userID did not represent an existing profile.

UserProfile[] getAllUserProfiles();

Description:

Gets all user profiles.

Returns:

All user profiles.

boolean userExists(UserID userID);

Description:

Determines if a user profile exists in the data store.

Returns:

True if the user exists, false otherwise.

Parameters:

userID: The User ID of the profile to check.

void removeUserProfile(UserID userID) throws NoSuchUserException;

Description:

Removes a user profile from the system.

Parameters:

userID: The User ID of the profile to remove.

Exceptions:

NoSuchUserException: If the userID did not represent an existing profile.

int getNumProfiles();

Description:

Gets the number of profiles stored on the system.

Returns:

An integer indicating the number of profiles on the system.

Module ADTs

typedef UserID String;

UserProfile{

UserID nickname;

int age;

String countryOfResidence;

int zipCode;

Enum sex {male, female};

Int heightInInches;

Enum hairColor {bald, gray, black,

darkBrown, lightBrown, darkBlond,

lightBlond, red, purple, blue, green};

Enum hairStyle {traditional, spiky, wavy,

curly, punk, Mohawk, shaved, and none};

String hobbiesAndInterests;

String otherInformation;

float ratings[];

}

2.2.2 Passwords and Authentication Module

Purpose

The purpose of this module is to provide an authentication service, allowing callers to determine whether a username/password combination is valid, and a change-password service, allowing users to change their passwords.

Rationale

This module is created to centralize and encapsulate password management and authentication services.

Required Interface

boolean userExists(UserID userID);

Provided Interface

void setPassword(UserID userId, Password password) throws NoSuchUserException;

Description:

Stores a user password of the given user ID.

Parameters:

userID: User ID of the user whose password is being stored.

password: The password for that user.

Exceptions:

NoSuchUserException: If the given user does not exist.

boolean logon(UserID userID, Password password) throws BannedUserException;

Description:

Determines whether a given user/password combination is valid or not. For security reasons, the incorrect portion of the combination (i.e. user or password) is not given.

Parameters:

userID: User ID of the user whose password is being checked.

password: The presumed password for that user.

Returns:

True if the user ID/password combination is correct, false otherwise.

Exceptions:

BannedUserException: If the given user has been banned.

void logoff(UserID userID) throws NoSuchUserException, UserNotLoggedOnException;

Description:

Logs a user off the system.

Parameters:

userID: User ID of the user who is logging off.

Exceptions:

NoSuchUserException: If the given user does not exist.

UserNotLoggedOnException: If the given user is not logged on.

Module ADTs

UserID: See Profiles Module

typedef Password String;

2.2.3 Messaging Module

Purpose

The purpose of this module is to provide access to and a persistent data store for all messages and user message boxes in the system. In this version, each user can store up to fifty messages.

Rationale

This module is created to centralize and encapsulate message management services.

Required Interface

boolean userExists(UserID userID);

Provided Interface

void putMessage(UserID userID, Message message) throws NoSuchUserException, MailboxFullException;

Description:

Stores a given message in the specified user’s mailbox. Also sets their hasNewMail flag.

Parameters:

userID: The userID who is the recipient of the message being stored.

message: The message being stored.

Exceptions:

NoSuchUserException: If the given user does not exist.

MailboxFullException: If the mailbox of the recipient is full.

boolean hasNewMail(UserID userID) throws NoSuchUserException;

Description:

Determines if a given user’s hasNewMail flag is set.

Parameters:

userID: The userID of the user being checked for new mail.

Exceptions:

NoSuchUserException: If the given user does not exist.

Message getMessage(UserID userID, int messageNumber) throws NoSuchUserException, MessageNumberOutOfBoundsException;

Description:

Gets a user message given a user ID and a message number. Clears their hasNewMail flag.

Parameters:

userID: User ID of the user whose message is being retrieved.

messageNumber: The index number of the message being retrieved. Must be between 0 and 49, inclusive.

Returns:

The message, if it exists, or null if the user exists but the user has stored no message in the given message number’s slot.

Exceptions:

NoSuchUserException: If the given user does not exist.

MessageNumberOutOfBoundsException: If the message number is out of the 0-49 bound.

Message[] getAllMessages(UserID userID) throws NoSuchUserException;

Description:

Gets all of a user’s messages given a user ID. Clears their hasNewMail flag.

Parameters:

userID: User ID of the user whose messages are being retrieved.

Returns:

The set of messages, if any exist, or an empty array if the user exists but the user has stored no messages.

Exceptions:

NoSuchUserException: If the given user does not exist.

void removeMessage(UserID userID, int messageNumber) throws NoSuchUserException, MessageNumberOutOfBoundsException;

Description:

Removes a message given a user ID and a message number. If there is no message at that message number, this function does nothing.

Parameters:

userID: User ID of the user whose message is being removed.

messageNumber: The index number of the message being removed.

Exceptions:

NoSuchUserException: If the given user does not exist.

MessageNumberOutOfBoundsException: If the message number is out of the 0-49 bound.

Module ADTs

UserID: See Profiles Module

Message{

UserID senderID;

Date dateSent;

String text;

}

2.3 ADMINISTRATOR MODULE

The description of the administrator module has been left out in this design example.

3. User Client Design

User Client Module

Purpose

The purpose of this module is to provide the user interface and view functions for the system. This is the software with which the user directly interacts. It communicates with the server to retrieve and modify persistent data when necessary.

Rationale

This module is created to provide the user interface to the system.

High-Level Module Design

The user client is broken down into lower-level modules, as shown in Figure 5-1.

Provided Interface

This module has no provided interfaces.

Required Interface

The required interface of this module is the same as the required interface of the Communications module (see section 3.2)

3.1 UI Module

The description of this module is not discussed in this design example.

3.2 Communications Module

Purpose

The purpose of this module is to provide communication services between the user client of the system and the server. This module represents the part of the communications link that resides on the user client.

Rationale

This module is created to centralize and encapsulate network communication duties between the user client and the server.

Required Interface

This module’s required interface is the same as its provided interface, but it makes calls to the server’s communication module via an implementation-dependent network protocol.

UserProfile getUserProfile(UserID userID) throws NoSuchUserException;

boolean userExists(UserID userID);

void logoff(UserID userID) throws NoSuchUserException,

UserNotLoggedOnException;

void putUserProfile(UserProfile p);

void removeUserProfile(UserID userID) throws NoSuchUserException;

void putMessage(UserID userID, Message message) throws NoSuchUserException, MailboxFullException;

Message getMessage(UserID userID, int messageNumber) throws NoSuchUserException, MessageNumberOutOfBoundsException;

Message[] getAllMessages(UserID userID) throws NoSuchUserException;

void removeMessage(UserID userID, int messageNumber) throws NoSuchUserException, MessageNumberOutOfBoundsException;

Provided Interface

The provided interface of this module is the same as the required interface of the UI module.

Provided Interface

Required Interface

Server

Provided Interface

Required Interface

Messaging

Figure 2-2: Architecture of the User Module

Required Interface

Passwords & Authentication

Provided Interface

Provided Interface

Provided Interface

Required Interface

Required Interface

Required Interface

Profiles

Communications Module

User Module

Provided Interface

Administrative Module

Required Interface

Provided Interface

User Module

Required Interface

Provided Interface

Figure 2-1:

High-Level Server Architecture

User Client

Required Interface

Provided Interface

1

n

Figure 1-1:

High-Level Architecture

Server

Required Interface

Provided Interface

Administrative Client

Required Interface

Provided Interface

1

n

User Client

Required Interface

Provided Interface

Communications Module

Required Interface

Provided Interface

UI Module

Required Interface

Provided Interface

Figure 3-1:

High-Level User Client Architecture

