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Peer-to-Peer

� Autonomous hosts interacting as equals
� Individuals have their own (unique)

abilities
� Individuals benefit from services

available from their peers
� “Network effect” increases value
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Enablers

� Network connectivity
� Bandwidth
� Processor/memory capacity
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Usages

� File sharing
� Field service repair dispatch
� Cooperative work
� “Home security”
� Virtual communities
� Event-notification applications
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Napster

� File sharing:  mp3’s
� Peers hold the files
� Napster Inc’s servers hold catalog and broker

relationships
� You upload your IP address, music you have, and

requests
� You receive locations where requests can be

satisfied
� File transfer is p2p, using proprietary

protocol



Gnutella, as seen by “Wired”
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Gnutella:  just file sharing

� No servers with catalogs
� Pings the net to locate Gnutella friends
� File request broadcast to friends
� When provider located, file transferred

via HTTP
� Initial interactions were via Gnutella

protocol
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Groove (a.k.a. “Notester”)

� www.groove.net
� Shared workspace (groupware support)
� WYSIWIS support
� A platform for development
� File replication on every peer; XML
� Closed, proprietary protocol
� Secure communication and storage
� MS platform dependent; COM usage



Data Storage and Persistence

� Persistence of a shared space is captured
in an XML document database

� A copy of the shared space document DB
is stored on each member’s device

� Each Tool stores persistent data within
unique tool document

� Tool initiated changes (“Deltas”) are
disseminated to each member on remote
device

(c) Copyright 2000 Groove Networks, Inc.  All rights reserved.
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Groove disconnect/update
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Key Challenges & Characteristics (1)

� Distribution
� Designers must deal with all the issues of

distributed networked applications, including
independent namespaces, synchronization, locating
information,  unreliability, security, latency, …

� Heterogeneity
� Create a new layer of virtual machine?
� Embedded devices

� Differ by order(s?) of magnitude in processing power,
communication bandwidth, memory, power reserves,
persistence of connectivity
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Characteristics (2)

� Mobility and intermittency
� On-line/off-line;  varying IP addresses

� Decentralized control
� No common administrative structure
� Trust, security, unreliability, failure, non-

repeatability
� Incomplete information
� Inconsistent information
� Latency
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Characteristics (3)

� Sharing, Coordination, and Cooperative Work
� Distributed computation & data storage
� Distributed content
� Distributed relationships

� Documents in relationship to each other, to tasks, to
people

� Time varying

� Distributed activities
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Characteristics (4)

� Emergent behavior
� E.g. self-selection to provide services to a group; self-

caching to reduce burden on peers

� Scalability
� Across numbers of devices
� Across device capabilities

� Security
� Authentication
� Authorization
� Encryption

� Ubiquity
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Magi: The Magi Design Decisions

1. Build atop the Web’s infrastructure
2.Provide a platform for others
3.Exploit an asynchronous, event-based,

component architecture
4.Promote “the independence of Peers”
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Build atop the Web’s infrastructure

• Why?
• Utility, scalability, extensibility, performance,

adoption (ubiquity)

• What
• HTTP/1.1 — communication protocol
• WebDAV — collaboration and annotation
• URI — naming and location of resources
• MIME — resource representations
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HTTP/1.1

• Open protocol:  anyone’s implementation
OK

• Standard semantics and defined, on-
the-wire syntax
• Enables value-adding intermediaries, such

as cacheing and proxying
• Wide adoption
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Platform for others

• No user interface constraint
• Open standards
• Open source components
• Platform-independent architecture with

multiple implementations
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Architectural overview of Magi

• A canonical peer
• Network architecture
• Security and authorization
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Incoming Magi events
received via HTTP

Incoming HTTP, DAV, 
servlet requests

Outgoing
Magi events, 
sent via HTTP

Web Server

Magi Express Modules

Servlet Engine

Buddy Manager
Location / Presence / Grouping

Access
Controller

Magi Request Manager

Event Service

Module Container
Holds dynamically loaded modules and

provides access to Magi services and APIs
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Magi peers

� Base infrastructure + plug-ins
� Base:  Web server w/ servelet engine
� Simple parsing of HTTP request

� Request manager invokes services based on
examination of requests

� Event service:  invokes services based upon
their registration of interest in events, and
receipt of those events from the request mgr.
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Magi peer, continued

� Buddy manager
� Tracks location of buddies and their

devices
� On-line/off-line status tracking

� Access manager
� “Module container”



10/4/01 © 2000 Richard N. Taylor

Networks

� Discovery:  who’s there?
� Follow a path of ease/efficiency
� Magi DNS, if it exists
� Known peers, if they exist
� Gnutella-like discovery

� Presence: opening lines of
communication
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Questions

� What distinguishes peer-to-peer from
other architectures?

� When is it appropriate to use a p2p
architecture?

� How do you design a p2p application?
� What tools should you have at your

disposal?
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