
Peer-to-Peer Architectures
and the Magi Open-Source
Infrastructure

Richard N. Taylor
Institute for Software Research
University of California, Irvine
http://www.ics.uci.edu/~taylor

10/4/01 © 2000 Richard N. Taylor

Peer-to-Peer

� Autonomous hosts interacting as equals
� Individuals have their own (unique)

abilities
� Individuals benefit from services

available from their peers
� “Network effect” increases value

10/4/01 © 2000 Richard N. Taylor

Enablers

� Network connectivity
� Bandwidth
� Processor/memory capacity

10/4/01 © 2000 Richard N. Taylor

Usages

� File sharing
� Field service repair dispatch
� Cooperative work
� “Home security”
� Virtual communities
� Event-notification applications

10/4/01 © 2000 Richard N. Taylor

Napster

� File sharing: mp3’s
� Peers hold the files
� Napster Inc’s servers hold catalog and broker

relationships
� You upload your IP address, music you have, and

requests
� You receive locations where requests can be

satisfied
� File transfer is p2p, using proprietary

protocol

Gnutella, as seen by “Wired”

10/4/01 © 2000 Richard N. Taylor

Gnutella: just file sharing

� No servers with catalogs
� Pings the net to locate Gnutella friends
� File request broadcast to friends
� When provider located, file transferred

via HTTP
� Initial interactions were via Gnutella

protocol

10/4/01 © 2000 Richard N. Taylor

Groove (a.k.a. “Notester”)

� www.groove.net
� Shared workspace (groupware support)
� WYSIWIS support
� A platform for development
� File replication on every peer; XML
� Closed, proprietary protocol
� Secure communication and storage
� MS platform dependent; COM usage

Data Storage and Persistence

� Persistence of a shared space is captured
in an XML document database

� A copy of the shared space document DB
is stored on each member’s device

� Each Tool stores persistent data within
unique tool document

� Tool initiated changes (“Deltas”) are
disseminated to each member on remote
device

(c) Copyright 2000 Groove Networks, Inc. All rights reserved.

10/4/01 © 2000 Richard N. Taylor

Groove disconnect/update

10/4/01 © 2000 Richard N. Taylor

Key Challenges & Characteristics (1)

� Distribution
� Designers must deal with all the issues of

distributed networked applications, including
independent namespaces, synchronization, locating
information, unreliability, security, latency, …

� Heterogeneity
� Create a new layer of virtual machine?
� Embedded devices

� Differ by order(s?) of magnitude in processing power,
communication bandwidth, memory, power reserves,
persistence of connectivity

10/4/01 © 2000 Richard N. Taylor

Characteristics (2)

� Mobility and intermittency
� On-line/off-line; varying IP addresses

� Decentralized control
� No common administrative structure
� Trust, security, unreliability, failure, non-

repeatability
� Incomplete information
� Inconsistent information
� Latency

10/4/01 © 2000 Richard N. Taylor

Characteristics (3)

� Sharing, Coordination, and Cooperative Work
� Distributed computation & data storage
� Distributed content
� Distributed relationships

� Documents in relationship to each other, to tasks, to
people

� Time varying

� Distributed activities

10/4/01 © 2000 Richard N. Taylor

Characteristics (4)

� Emergent behavior
� E.g. self-selection to provide services to a group; self-

caching to reduce burden on peers

� Scalability
� Across numbers of devices
� Across device capabilities

� Security
� Authentication
� Authorization
� Encryption

� Ubiquity

10/4/01 © 2000 Richard N. Taylor

Magi: The Magi Design Decisions

1. Build atop the Web’s infrastructure
2.Provide a platform for others
3.Exploit an asynchronous, event-based,

component architecture
4.Promote “the independence of Peers”

10/4/01 © 2000 Richard N. Taylor

Build atop the Web’s infrastructure

• Why?
• Utility, scalability, extensibility, performance,

adoption (ubiquity)

• What
• HTTP/1.1 — communication protocol
• WebDAV — collaboration and annotation
• URI — naming and location of resources
• MIME — resource representations

10/4/01 © 2000 Richard N. Taylor

HTTP/1.1

• Open protocol: anyone’s implementation
OK

• Standard semantics and defined, on-
the-wire syntax
• Enables value-adding intermediaries, such

as cacheing and proxying
• Wide adoption

10/4/01 © 2000 Richard N. Taylor

Platform for others

• No user interface constraint
• Open standards
• Open source components
• Platform-independent architecture with

multiple implementations

10/4/01 © 2000 Richard N. Taylor

Architectural overview of Magi

• A canonical peer
• Network architecture
• Security and authorization

10/4/01 © 2000 Richard N. Taylor

Incoming Magi events
received via HTTP

Incoming HTTP, DAV,
servlet requests

Outgoing
Magi events,
sent via HTTP

Web Server

Magi Express Modules

Servlet Engine

Buddy Manager
Location / Presence / Grouping

Access
Controller

Magi Request Manager

Event Service

Module Container
Holds dynamically loaded modules and

provides access to Magi services and APIs

M
ag

iW
eb

A
ge

nt
 (

H
T

M
L

)

M
ag

iW
eb

A
ge

nt
 (

W
A

P)

M
ag

iD
A

V

M
ag

iC
ha

t

M
ag

iG
U

I

Extension
Modules

Core Magi
Components

Web Server
Foundation

A canonical peer

10/4/01 © 2000 Richard N. Taylor

Magi peers

� Base infrastructure + plug-ins
� Base: Web server w/ servelet engine
� Simple parsing of HTTP request

� Request manager invokes services based on
examination of requests

� Event service: invokes services based upon
their registration of interest in events, and
receipt of those events from the request mgr.

10/4/01 © 2000 Richard N. Taylor

Magi peer, continued

� Buddy manager
� Tracks location of buddies and their

devices
� On-line/off-line status tracking

� Access manager
� “Module container”

10/4/01 © 2000 Richard N. Taylor

Networks

� Discovery: who’s there?
� Follow a path of ease/efficiency
� Magi DNS, if it exists
� Known peers, if they exist
� Gnutella-like discovery

� Presence: opening lines of
communication

10/4/01 © 2000 Richard N. Taylor

Firewalls

Marie’Work

Marie’Home

Firewall

Firewall

Jim’Work

Greg’Work
 Event Relay

10/4/01 © 2000 Richard N. Taylor

Questions

� What distinguishes peer-to-peer from
other architectures?

� When is it appropriate to use a p2p
architecture?

� How do you design a p2p application?
� What tools should you have at your

disposal?

10/4/01 © 2000 Richard N. Taylor

Credits and Contacts

� http://www.endtech.com/html/index.html/
� http://www.magisoft.net/html/index.html
� http://conferences.oreilly.com/p2p/

� Greg Bolcer, Michael Gorlick, Arthur
Hitomi, Peter Kammer, Brian Morrow,
Peyman Oreizy

