
Maintaining Security & Privacy
w/in a Peer to Peer Network

Gregory Alan Bolcer

Endeavors Technology, Inc.

http://endeavors.com

How is P2P Different?

Client-server P2P
Network traffic asymmetric, e.g.,

cable modem, ADSL
symmetric (threatens
cable & ADSL)

Intellectual
property

under the control of
the server

under the control of
each and every peer
(threatens copyright)

Intranet control firewalls protect
servers, port 80 used
by Web clients

firewalls restrict peer
behavior, port 80
subverted

Addressing primarily static DNS,
Network Address
Translation (NAT) for
clients is transparent

uses dynamic
real-time registries in
place of DNS, NAT
can be restrictive

Nothing inherently client-server in Web protocols;
just most commonly deployed network
architecture

Analyst Predictions for P2P

• IDC - 23.6% of large corporations will install an
instant messaging system in the next year.

• Gartner - By 2002, >50% of global Internet users will
regularly sign on to at least 2 P2P Internet
applications

• Forrester - By 2002, 3 million households will use
P2P applications to make their digital photos
available to family and friends.

• Forrester - By 2004, 33% of the online population will
use P2P services for storing and retrieving personal
data.

• Forrester - By 2005, P2P services will come bundled
in premium broadband fees and personal
information-sharing applications from Adobe, Palm,
and AOL.

Why Decentralize? It’s Where the Data Is.

• 70% of enterprise data is not located in a centralized server or
database,(Gartner/Bear-Stearns)

– It’s on the desktops, laptops, palmtops, PDAs, smartphones, etc.
– Need to centrally scale the business logic with access to information “in place”

• Decentralizing IT Administration is difficult
– Users don’t have the skills to secure their own data
– Preventing access is extremely difficult
– Revocations difficult to update

• It is an expensive operation to centralize data,

– It’s constantly changing
– Centralizing metadata is a much cheaper operation

– ERP & Large Database systems have discovered this

• Tracking, Status, Audit, Search is difficult

– Human nature, I want to copy it and do it myself

– Human work not easily segmentable, overlap of work leads to social and political
problems

Why Magi P2P?
• Searching is as crucial to P2P as it is to the Web
• Scale Web Protocols to billions instead of millions

– Nothing inherently client-server in Web protocols
– Just the most commonly deployed architecture
– Internet-Scale architecture versus Enterprise-Scale architecture

• Not pure P2P, but can be
– Thin-server on every device to speak HTTP and WebDAV
– Naming, security, registration, tracking can all be centralized

• Smart Proxying and Value added Web Svcs.
• Similar to Freenet, Gnutella, Napster but doesn’t reinvent

the Web;
– Apache or Tomcat HTTP server & plugins & other p2p protocols
– Extensible Java/Python/C interoperable protocol implementations
– XML-based access controls using user controlled “Buddy lists”
– Dynamic authentication controls; IT friendly, parseable vocabulary
– Public & Private Key certificates & OpenSSL
– WML and X.10 modules

Open GUI w/ Multiple Pathways to
Data

Dozens of
Commercial
Tools that are
WebDAV
compliant

Magi is Standards “Smart”

• Deep involvement in standards groups and efforts
• HTTP RFC 1945, 2068, 2616
• WebDAV RFC 2291, 2518
• XML, Java, Python
• OpenSSL, RSA keys, X509 certificates, X509 CRLs
• Universal Resource Identifiers RFC 1630, 2396

– Locators RFC 1736,1738,1808
– Names RFC 1737,2141

P2P Searching

• Gnutella

• Napster

• Magi/Web

• Filtered Search

• Network Architectures

• Unique Features

Gnutella/Infrasearch Queries

• Dynamic Content Queries
• Ping Flooding

– Liveness issues
– Guaranteed connection

issue

• Query Flooding
– Increased bandwidth

usage
– From dialup access point,

64k queries on 56k
connection

– Slow hosts as hubs

• Bugs in Software
• Scaling Problems

– Broadcast “Push” requests

• Tool Integration
• Freeloading

3. Query is passed along decrementing time-to-live

Request

Response

Response

Response

Response

Response

1. Peer notifies others of presence on the Network

2. Peer sends Query to immediate peers

5. File is returned via direct call to Responder

4. Peer responds to request based on file naming;
returns location through query peers

Napster Searching

• Metadata “Push” model
– File names & sizes
– No content indexing
– No keyword

searching
– Channel metadata

• User namespace
– Identification only
– No protected spaces
– Dynamic IP matching
– Collisions handled by

demaind

• Centralized
– Registration
– Searching
– File transfer done

peer to peer

• Search Space
– Segmented by

registration server
– No cross server

queries

Central Cache &
Registration

MP3
Cache

MP3
Cache

MP3
Vache MP3

Cache

2. Compiled list of
Filenames pushed to
central search store

3. Other Peers come
online; search queries
return named locations

4. Transfer of MP3 files is
done peer to peer

1. Users register with
central cache

Groove Searching

• Users invite individuals
into a group workspace

• Initial user
authentication is done
out of channel

• All data must be kept
consistent across all
participants

• Removing users leaves
user with full
permissions to copy of
workspace data

• Adding users to
workspace or large
amount of content to
workspace requires

– High bandwidth
requirements

– High upfront
synchronization costs

• Social changes to work
habits required to take
advantage of
collaboration

• Searching is done on
assumption that local
workspace is
consistent

Greg

Art

Dick

Peter

Additional Users add
inordinate amount of
overhead to maintain
consistency.

4. Groups allow strongly authenticated shared
access and file storage; Groups are controlled by
creator & synchronized to central server and
devices.

3. Users share a virtual workspace by
ownership of multiple devices; Public,
Private, and Shared authentication and
access control is automated via “buddy lists”;
Shared spaces allow read/write access to
shared files.

Greg’s Home

Greg’s iPAQ

Greg’s Work

Searching with Magi
1. Users Register with Central
Registration Server & are assigned
unique symmetric key pair based on
user identifiers & X.509 certificates

2. Keys allow strong authentication
and persistency of identification--
even across IP sessions; User
devices are identified by static
URLs, I.e. Greg’s Laptop

•Indexing is done on capable peers;

•Small footrprint or limited peers allow proxy
indexing

•Metadata is pushed to central search cache

•Search results are up-to-the-minute

•Search results return static “named” URL,
not URL or IP where it was indexed

•All file transfers are done peer to peer using
standard Web protocols

•Documents can be edited “in place” across
the Web using Standard Adobe, Microsoft,
other tools

Searching with Magi

Magi Supports Group Filtering

• Groups can be managed centrally or locally
– Endeavors@Greg’Work
– Shared folder automatically created
– Shared views automatically created

• Search results are filtered according to
exhaustive access control

• Search metadata can be stored centrally for
efficiency or locally for confidentiality and
privacy.

Magi Unique Search Features

• Authentication, authorization, security
– Mobile computing concerns
– Strong authentication using X.509 symmetric keys
– Access.xml access control & Web paths
– Crawling over SSL

• Automated search space partitioning
– Dynamic enrollment
– Up to the minute search filtering
– No lag between crawl and results
– Push to Altavista central cache

Magi Unique Search Features

• Static naming; Dynamic IP addressing
– Static naming across IP sessions

– User friendly namespace, I.e. Greg’s Laptop

– Index on one session, results point to live session

• Document Metadata
– WebDAV Properties

– Microsoft Office metadata

– Web caching & metadata searches

Magi Unique Search Features

• Heterogenous document types
– Full support for hundreds of file types using Altavista

• Unique Device Characteristics
– Device.xml for device-friendly crawling
– Sensitive to bandwidth constraints

• Resource and Web Service Proxying
– Proxy services, indexing, crawling to more capable peers

• Intermittent access to the network
– Can interrupt and continue crawling & caching

• Resource Caching
– Browsing of offline directory structures
– Access to last known copy via caching

P2P Collaboration

• Media Sharing

• Standards “Smart”

• Ad Hoc Collaboration/Collaborative Authoring

• Writable/Two-Way Web

• Plugin Architecture

• Smart Network Services

• Caching

• Workflow

Media Sharing

• Public – Read only, public viewable with
browser or DAV client

• Private – Read/Write for owner of namespace
only

• Shared – Read/Write for any Buddy
– Shared/Group provides automated group

permissions for sub-resources

• Dynamic Search Model
– Configurable crawler pushes metadata
– Filename, metadata tags, and indexed searches

Media Sharing - Photos

• Thumbnails may be used as
metadata

• Metadata can be centralized
for efficient searching or
decentralized for ease of use
– Thumbnails
– Img tags
– Small photo
– Large photo

• Photo owners may want to
retain control by keeping
large photo or thumbnails on
own machine

• May centralize thumbnails or
small photos to provide
offline searching capabilities

Ad Hoc Collaboration

• SSL between any two points in the network
• Web File System

– Double click to Open,
– Cut/Copy/Paste,
– Drag-and-Drop to Web, Save to Web,
– File locking

• Collaboration across peers:
– WebDAV file locking
– CoBrowsing
– NetMeeting link & launch
– Other collaborative browser & server plugins (VNC, Citrix, Placeware,

Exceed, etc.)

• User has own namespace, I.e. “Greg”; Greg’s
Laptop, Greg’s Home Computer, etc.

• Public, Private, and Shared folders
• Groups require invitation
• Symmetric trust model for Read/Write

Web Authoring

• Evolving WebDAV IETF working groups & standards

• WebDAV, DASL, DeltaV, DAV ACL

• Resource locking, overwrite prevention, metadata mgt.

• Integration with any WebDAV compliant client tool
• Magi Apache 1.3.x/2.0 or Tomcat/Jakarta architecture

WebDAV Access.XML

Magi Server

Incoming
Requests:
HTTP, DAV &
Other Method
Extensions or
named
services

<resource type="directory">
 <pathname>C:\My Documents\Magi/Shared</pathname>
 <name>Shared</name>
 <creation-date/>
 <modified-date/>
 <size>n/a</size>
 <authentication method="basic">
 <dav-auth allow-overwrite="true">
 <allowed-method>DELETE</allowed-method>
 <allowed-method>MKCOL</allowed-method>
 <allowed-method>PROPFIND</allowed-method>
 <allowed-method>PROPPATCH</allowed-method>
 <allowed-method>COPY</allowed-method>
 <allowed-method>LOCK</allowed-method>
 <allowed-method>UNLOCK</allowed-method>
 <allowed-method>GET</allowed-method>
 <options>followsymlink</options>
 <options>multiviews</options>
 </dav-auth>
 <buddy-file>file:///Magi/buddy.xml</buddy-file>
 <soap-auth>
 <allowed-method>SoapAction:Copy</allowed-method>
 </soap-auth>
 <user>
 <username>Greg</username>
 <password>YtWp4g9nMw</password>
 </user>
 </authentication>
</resource>

Magi
Service

IP, Session ID,
Keys, Buddy NameLDAP,

Kerberos,
NDS

IP, Session ID,
Keys, Buddy Name

Access.xml

Certificates ensure
identity

Access.xml ensures
what they see

Pluggable Architecture

• Every peer is both a client and a server
• Client side based on IE 5.5 on Win platforms;

Mozilla/Netscape 6.x engines and tools for other
platforms
– Supports standard browser plugins

• Server side based on Apache Module interface &
CGI-based scripting languages and packages
– Large number of packages and modules available

through commercial, shareware, open source
• GUI independent of Peer

– HTTP/XML interface to Peer

Smart Network Services

• Any Magi peer can serve as a store & forward service
• Can be used when two peers unlikely to be online at the same

time
• Also used for overcoming firewalls that don’t allowing incoming

HTTP traffic
• Event Store & Forward

– Property set in config file
– Works for instant messaging, notification, pending file
– Application and End User events

• File Store & Forward
– General purpose subject to EULA & copyright restrictions, a.k.a.

“touching the file”
– Event service combined with S&F cache

• “Push” file to S&F cache
• Notify peer that there is a file pending
• Peer “Pulls” file from S&F cache

– SSL between cache and peers; restricted pickup access

Efficient Web Doc Management

• Both GET and PUT
• Magi Web Folder view allows Right-Click and

“Download” monitoring or drag to buddy icon
• Support for one-time tickets & multi-issue

• Compression using
mod_gzip & others

• Xfers are done using
HTTP and DAV

– Support for byte range “GET”
using HTTP

– DAV “PUT”

– Incremental downloads

– HTTPR & SRMP for reliable
& resume

Caching

• Any Magi peer can serve as a cache
• Caching is done at 3 levels:

– Search cache supports file download & comparison with
offline peers

– Peer-side Web caching controlled through Web browser
integration

– Enterprise Web caching through traditional Web caching
models

• Web caching model supports
– Resources reference by URLs
– Domain is the authority on resolution
– Allows resource naming by reference, comparison using

HTTP HEAD method, conditional GET, and metadata
– Avoids resource spoofing of other p2p file systems

Wide Area Web Services

• Workflow
components work in
concert:

– Process.xml
– Shared Work Across

Peers WebDAV derived
protocol

– Endeavors Java workflow
engine

• Services are network
loadable servlet
plugins

• Individual Magi peers
can advertise
services

• Template and JSP to
provide end user
views

• eProcesses can be
built across peers
using network editor

P2P Security

• Media Sharing

• Standards “Smart”

• Ad Hoc Collaboration/Collaborative Authoring

• Writable/Two-Way Web

• Plugin Architecture

• Smart Network Services

• Caching

• Workflow

Overview of Security Concerns

• Authentication/Authorization
– Who are you?
– What do you get to look at?

• Integrity
– Has the message been tampered with?

• Confidentiality
– Is the message hidden from others?

• Auditing/Logs
– Who’s been here?

 Generic Interface & Properties w/

Web Resource

Body
(primary
state)

Properties
(name, value)

pairs
LOCK
UNLOCK
COPY
MOVE†

DELETE†

MKCOL†

(PUT†)

PROPFIND

PROPPATCH†

GET

PUT†

† - affected by
LOCK

Access.xml & Filtering

Magi Server

Incoming
Requests:
HTTP, DAV &
Other Method
Extensions or
named
services

<resource type="directory">
 <pathname>C:\My Documents\Magi/Shared</pathname>
 <name>Shared</name>
 <creation-date/>
 <modified-date/>
 <size>n/a</size>
 <authentication method="basic">
 <dav-auth allow-overwrite="true">
 <allowed-method>DELETE</allowed-method>
 <allowed-method>MKCOL</allowed-method>
 <allowed-method>PROPFIND</allowed-method>
 <allowed-method>PROPPATCH</allowed-method>
 <allowed-method>COPY</allowed-method>
 <allowed-method>LOCK</allowed-method>
 <allowed-method>UNLOCK</allowed-method>
 <allowed-method>GET</allowed-method>
 <options>followsymlink</options>
 <options>multiviews</options>
 </dav-auth>
 <buddy-file>file:///Magi/buddy.xml</buddy-file>
 <soap-auth>
 <allowed-method>SoapAction:Copy</allowed-method>
 </soap-auth>
 <user>
 <username>Greg</username>
 <password>YtWp4g9nMw</password>
 </user>
 </authentication>
</resource>

Magi
Service

IP, Session ID,
Keys, Buddy NameLDAP,

Kerberos,
NDS

IP, Session ID,
Keys, Buddy Name

Access.xml

Certificates ensure
identity

Access.xml ensures
what they see

Magi Security Machinery

• Magi Certificate Authority
– The authority on who’s who in Magi space.

• Issues certificates.
• Issues CRLs.
• Keeps a database of all certificates and all revoked certificates.

• Magi Public Key Infrastructure
– RSA keys, X509 certificates, X509 CRLs
– Magi certificate authority server
– Run time configuration

• RSA keys, X509 certificates, X509 CRLs
– Magi generates its own key pair.

• RSA key pair 1024 bit.
• Private key is stored in Triple DES encoded PEM file.

– Magi registers the public key with the Magi certificate authority.
• Magi CA establishes name space for this Magi.

– Magi uses custom X509 CRLs.
• At regular intervals Magi queries the Magi CA for a CRL.

Communication Machinery

• SSL
– Accepted Standard

• Choice of cipher suites
• Timestamps, nonce values, hashes, signatures…

– Limitations
• Point to point
• Store and forward
• Chat and Instant messaging

• SSL alternatives
– Signed Events

• Secure Authentication
• Tamperproof

– Shared Symmetric Keys
• Content based encryption

Magi Security Machinery

• HTTP Event Service using SSL – It’s really that simple!
– public static HttpEvent sendRequest(String host, HttpEvent evt, int ssl)

– SSL limits itself to contracts with known entities with fixed IP

– Store and Forward or Chat & IM break model

– Really need signed Content-based encryption and signed events

• Content-based Encryption & Signed Events
– Authentication/Authorization – Who are you? What do you get to see?

– Integrity – Has the message been tampered with? During transport?

– Confidentiality – Is the message hidden from others?

– Auditing – Who’s been here? What did they want?

<EVENT>
 <EVENT_TYPE>Yes</EVENT_TYPE>
 <EVENT_BEHAVIOR>NOTIFICATION_EVENT</EVENT_BEHAVIOR>
 <EVENT_VERSION>1.0</EVENT_VERSION>
 <IP>192.168.0.108</IP>
 <TIMESTAMP>985155300289</TIMESTAMP>
 <EVENT_ID>192.168.0.108:985155300289:20131:-1029658595</EVENT_ID>
 <EVENT_COUNT>20131</EVENT_COUNT>
 <PRIORITY>0</PRIORITY>
 <SOURCE>jim'tomcat1</SOURCE>
 <PARAMETERS><Username>jim'tomcat1</Username></PARAMETERS>
 <SIGNATURE>8F754FBCD2833A95746345D10350BC233FA95E520523C93348BCB656A18F17F8
A1B41BB64C12B2E79E71F8648CF9ECDD7BB8DB1E7086C2F4F46F3150D80C8A53E9A5EDE63BF053F276F
772F7F7BB4D7D5135E2D6FECBEF1E3BDD314D88722B2B4284BDD43DAD83F286413305D670C04D9C0177
98A3A2F9940B80CDC44698B8A9</SIGNATURE>
 <X509>E3D45B14F2551F4754F367D3C7DA47525A06F8AD</X509>
</EVENT>

Communication Machinery

• Audit/Logging
– Corporate environments demand accountability
– Permanent records must be maintained regarding

who or what accessed or modified critical data,
services, or systems configuration

– System infrastructure must maintain its own log as
well as provide facilities for applications to log events

• Intrusion Detection
– Real-time event monitoring and analysis to detect

abuse

CryptoManager

• Manages cryptographic functionality
– Manages all key material

– Performs all cryptographic manipulations

• Provides services to other parts of Magi
– CryptoManager presents itself as a service

CryptoManager Services

public static HttpEvent sendRequest(String host, HttpEvent evt, int ssl)

public HttpEvent(MagiContext context, String type, String behavior, String parameters, HttpEvent responseTo,
 HttpEvent[] eventList, boolean signed)

public int getSignatureStatus() { return signatureStatus; }

public static final int SIGNED_AND_VALID = 1;
public static final int SIGNED_AND_NOT_VALID = 2;
public static final int NOT_SIGNED = 3;
public static final int SIGNED_MISSING_CERTIFICATE = 4;
public static final int UNKNOWN = 5;

//Inside an event instance requesting CryptoManager for a signature
MagiLog.log("=====>>>> Querying for CryptoManager Service.");
CryptoManagerInterface cryptoManagerInstance = (CryptoManagerInterface)
MagiServiceManager.queryService("org.endeavors.magi.services.secure.CryptoManagerInterface");
//various code to make sure cryptoMangerInstance is not null.
String[] retVals = cryptoManagerInstance.signEvent(this.context, this.toXML());
if (retVals != null)
{
 this.shaRSASignature = retVals[0];
 this.x509Cert = retVals[1];
 MagiLog.log("=====>>>> Signing was successfull.");
}

CryptoManager Interface

Examples

• What would you use?
– File transfers

– HTTP Events

– Chat

– Instant Messages

