
Rationality and Strongly Polynomial Solvability of

Eisenberg-Gale Markets with Two Agents

Deeparnab Chakrabarty ∗ Nikhil R. Devanur † Vijay V. Vazirani ‡

Abstract

Inspired by the convex program of Eisenberg and Gale which captures Fisher markets
with linear utilities, Jain and Vazirani [STOC, 2007] introduced the class of Eisenberg-
Gale (EG) markets. We study the structure of EG(2) markets, the class of Eisenberg-
Gale markets with two agents.

We prove that all markets in this class are rational, that is, they have rational
equilibrium, and they admit strongly polynomial time algorithms whenever the poly-
tope containing the set of feasible utilities of the two agents can be described via a
combinatorial LP. This helps resolve positively the status of two markets left as open
problems by Jain and Vazirani: the capacity allocation market in a directed graph with
two source-sink pairs and the network coding market in a directed network with two
sources.

Our algorithms for solving the corresponding nonlinear convex programs are fun-
damentally different from those obtained by Jain and Vazirani; whereas they use the
primal-dual schema, our main tool is binary search powered by the strong LP-duality
theorem.

1 Introduction

A convex program given by Eisenberg and Gale [EG59] captures, as its optimal solution,
equilibrium allocations for the linear case of Fisher’s market model. This program has
several interesting properties, including the fact that it is rational, i.e., always has rational
(as in a rational number) solutions if all the input parameters are rational. Rationality
of solutions is of course an important property in mathematics; from a computer science
perspective, rationality is often essential in input/output representation of values.

Recently, Jain and Vazirani [JV07] initiated a systematic study, both structural and
algorithmic, of convex programs having the same basic structure as the one by Eisenberg and
Gale. They called such programs, Eisenberg-Gale-type programs. They defined Eisenberg-
Gale markets, or simply EG markets, as any market whose equilibrium allocations can be
captured via an Eisenberg-Gale type convex program. A detailed discussion is in Section 2.
∗Department of Combinatorics and Optimization, University of Waterloo, Email:

deepc@math.uwaterloo.ca
†Microsoft Research, Redmond. Email: ndevanur@gmail.com
‡College of Computing, Georgia Tech. Email :vazirani@cc.gatech.edu Supported in part by NSF

Grant CCF-0728640 and ONR Grant N000140910755.

1

Apart from the linear utilities, EG markets contain Fisher markets with more general
utility functions including scalable utilities [Eis61], Leontief utilities [CV04], linear substi-
tution utilities [Ye07] and homothetic utilities with productions [JVY05]. EG markets also
contain the resource allocation market of Kelly [Kel97] used for explaining rate control and
routing in multiservice networks. We describe this market in a little more detail in Section
2.2.

In their investigation of EG markets, [JV07] observed that rationality of Eisenberg-
Gale-type convex programs is not limited to the original Eisenberg-Gale program – they
demonstrated that several other EG-type convex programs, and hence the corresponding
EG markets, are rational. On the other hand, several other EG markets are known to
be irrational even when the number of agents is 3 [GJTV05, JV07]. Furthermore, [JV07]
observed that most of the EG-type programs which were shown to be rational have an
underlying combinatorial problem satisfying a minimax property which is crucial in proving
rationality; these properties also facilitated designing strongly polynomial time algorithms
to give the equilibrium prices and allocations.

[JV07] left the status of two EG markets and the corresponding EG-type programs
unresolved: Kelly’s market in directed networks with two agents and the network coding
market with two agents. We describe these markets in Section 2.2. For both these markets,
[JV07] showed that if the number of agents is three or more, the markets could be irrational.
Moreover, they observed that for both the markets, the underlying combinatorial problem
did not satisfy minimax theorems and were therefore expected to be irrational.

1.1 Our results and techniques

In this paper we show that despite the lack of minimax theorems for their underlying
combinatorial problems, both of the markets above are rational. In fact, we prove a more
general statement: Any EG market with two agents is rational (Theorem 2.3). As stated
above, there are examples of EG markets with 3 agents which are irrational. Furthermore,
if the set of feasible utilities of the two agents can be described by a combinatorial LP
(an LP whose matrix entries have encoding size a polynomial in the dimension), then we
give a strongly polynomial time algorithm to find the equilibrium prices and allocations for
the EG(2) market (an EG market with 2 agents). A strongly polynomial time algorithm
performs a number of elementary operations (+,×,etc) that is polynomial in the number of
input entries, irrespective of the values of the input entries. As a special case, we get strongly
polynomial time algorithms for both the markets mentioned in the previous paragraph.
Our techniques for proving the rationality and designing the polynomial time algorithm for
EG(2) markets are very different from the techniques of [JV07]. We circumvent the re-
quirement of combinatorial minimax theorems by using the more general LP-duality theory
itself; on the flip side, our methods work only for the case of two agents. Whereas [JV07]
use the primal-dual schema and their algorithms can be viewed as ascending price auctions,
we use a carefully constructed binary search. The algorithms of [JV07] are combinatorial
whereas ours require a subroutine for solving combinatorial LP’s. Tardos [Tar86] gave a
strongly polynomial time algorithm to solve combinatorial linear programs.

For linear Fisher markets when restricted to 2 agents, the set of feasible utilities is not

2

described by a combinatorial LP. Even so, we show in Section 6 that equilibrium for this
market can be computed in strongly polynomial time. This raises an exciting question: is
the equilibrium for all EG(2) markets, combinatorial and otherwise, computable in strongly
polynomial time?

1.2 2-agent vs. multi-agent systems

Two agent systems often have special properties which do not carry over to systems with
more agents. A particularly striking case of this phenomenon is Nash equilibrium: 2-player
games have rational equilibria and Nash gave a beautiful example of a 3-player game that
has only irrational ones [Nas50b]. From a computational viewpoint, 2-player Nash is PPAD-
complete [CDT09]; however, 3-player Nash is FIXP-complete [EY07].

Clearly, the dicotomy established for Eisenberg-Gale markets in the present paper and
in [JV07] is also pointing to the same phenomenon. Building on our paper, this dicotomy
was extended by Vazirani [Vaz09] to Nash and nonsymmetric bargaining games [Nas50a].
[Vaz09] considers the class of these games whose solution is captured by a convex program
having only linear constraints, called LNB. The restriction of LNB to the 2-player case
always has a rational solution that can be found in polynomial time using only an LP
solver; moreover, if all the coefficients in the program are “small” then the solution can be
found in strongly polynomial time. On the other hand, there are 3-player games in LNB
that have only irrational solutions, hence disallowing such algorithms.

2 Eisenberg-Gale Markets

2.1 Linear Fisher Markets and the Eisenberg-Gale Convex Program

In the linear Fisher market model, we have a set of agents I with moneys {mi : i ∈ I} and
a set of divisible items J with 1 unit of item j ∈ J . Each agent has a linear utility function
ui : RJ → R given by ui(x) :=

∑
j∈J uijxij , where xij is the amount of item j given to

agent i.
A set of prices {pj : j ∈ J} and a feasible allocation of items {xij : i ∈ I, j ∈ J, ∀j ∈

J,
∑

i∈I xij ≤ 1} is a market equilibrium if it satisfies the following three conditions:

• All positively priced items are fully sold, that is,

∀j ∈ J, pj > 0⇒
∑
i∈I

xij = 1 (1)

• Any item given to an agent must have the highest utility-to-price ratio.

∀i ∈ I, j ∈ J, xij > 0⇒ uij/pj ≥ uij′/pj′ (2)

• Every agent spends her initial endowment.

∀i ∈ I,
∑
j∈J

pj · xij = mi (3)

3

The Eisenberg-Gale [EG59] convex program which captures the equilibrium allocation above
is the following

maximize
∑
i∈I

mi log fi : (4)

∀i ∈ I, fi =
∑
j∈J

uijxij

∀j ∈ J,
∑
i∈I

xij ≤ 1

∀i ∈ I, j ∈ J, xij ≥ 0

In the above convex program, for every agent i ∈ I, fi represents the total utility obtained
by the agent with allocation x. The following theorem of Eisenberg and Gale [EG59] shows
that the optimal solution corresponds to equilibrium allocations. The proof which we sketch
below follows from Karash-Kuhn-Tucker (KKT) conditions characterizing the optimum of
a convex program (see [BV06], Chapter 5, for instance, as a reference) using Lagrangean
dual variables. As it turns out, these dual variables correspond to the equilibrium prices.

Theorem 2.1 [EG59] Let (f, x) be an optimal solution to convex program (4). Then x is
an equilibrium allocation for the linear Fisher market with the parameters defined above.

Proof:The KKT conditions of optimality of convex program (4) tell us there exists dual
variables {αi : i ∈ I} and {pj : j ∈ J, pj ≥ 0} satisfying the following conditions:

∀i ∈ I, j ∈ J, − uijαi + pj ≥ 0 and ∀i, αi ≥
∂

∂fi
(
∑
i∈I

mi log fi) = mi/fi

∀i ∈ I, j ∈ J, xij > 0⇒ − uijαi + pj = 0 and ∀i, fi > 0 ⇒ αi = mi/fi

∀j ∈ J, pj > 0 ⇒
∑
i∈I

xij = 1

We now show that (p, x) satisfies the market equilibrium (ME) conditions, 1 to 3. The third
KKT condition above corresponds to the ME condition 1. The first two KKT conditions
imply the second ME condition 2. This is because xij > 0 ⇒ uij/pj = 1/αi ≥ uij′/pj′ for
any other j′. Finally, for any agent i,∑

j∈J
pj · xij =

∑
j∈J :xij>0

(uijαi)xij = αi
∑
j∈J

uijxij = αifi = mi

2

2.2 Kelly’s Capacity Allocation Market and the Network Coding Market

In Kelly’s capacity allocation market [Kel97], we are given a directed network G = (V,E)
with edge capacities c : E → R+. There are k agents, and the ith agent has initial
endowment mi and wants to send flow from a specified source si to sink ti. The goal is to
find non-negative prices (per unit flow) for edges and find flows fi for these agents satisfying
the following three equilibrium conditions:

4

• All flows paths are minimum priced paths from source to sink.

• Edges with positive price must be saturated, that is the total flow on it must be the
capacity of the edge.

• Every agent spends their entire endowment on these flows.

Let Pi denote the set of paths from si to ti and for all P ∈ Pi, fi(P) denote the flow on
path P .

maximize
n∑
i=1

mi log fi

∀i : fi =
∑
P∈Pi

fi(P);

∀e ∈ E :
n∑
i=1

∑
P∈Pi

fi(P) ≤ c(e)

∀i,∀P ∈ Pi, fi(P) ≥ 0

It is not hard to modify the proof of Theorem 2.1 to see that the above convex program
(the solution and the Lagrangean duals) gives the equilibrium flows and prices for the above
market. A full proof is given in [JV07].

In the network coding market [JV07] we are given, as above, a directed network G = (V,E)
with capacities c : E → R+. The set of vertices V is partitioned into two sets – terminals T
and Steiner nodes S. The agents are a set of terminals, I ⊆ T . Every agent i ∈ I has initial
money mi and wishes to broadcast at rate f to all terminals in T . By the network coding
theorem [ACLY00] (hence the name), this is possible iff a f -generalized branching rooted
at i is provided to the agent i. An f -generalized branching rooted at i is a subgraph of G
specified by {b : E → R+, b(e) ≤ c(e), ∀e ∈ E}, such that a flow of value f is possible from
i to every other terminal with respect to capacities b(e). A set B of generalized branchings
is feasible if for each edge

∑
b∈B b(e) ≤ c(e). An edge is saturated if the inequality is tight.

An equilibrium in this market is given by non-negative prices pe for edges and for each
agent i, an fi-generalized branching bi rooted at i such that the set {bi : i ∈ I} is feasible.
Given pe let the price of any generalized branching b be denoted as p(b) :=

∑
e b(e)pe. In

an equilibrium, the following three conditions are satisfied:

• Only saturated edges have positive prices.

• For every agent i, for any f -generalized branching b rooted at i, p(bi)/fi ≤ p(b)/f .

• For every agent i, p(bi) = mi.

As above, a similar convex program to the above two captures the equilibrium allocations
for the network coding market. Given a set U ⊆ I, let δ(U) denote the set of edges going

5

from U to V \ U . Given i, let Ui denote the subsets U ⊆ T such that i ∈ U and U 6= T .

maximize
n∑
i=1

mi log fi

∀i,∀U ∈ Ui : fi ≤
∑
e∈δ(U)

bi(e)

∀e ∈ E :
∑
i∈I

bi(e) ≤ c(e)

∀i,∀e, bi(e) ≥ 0

Theorem 2.2 Let (f, b) be an optimal solution to the above convex program. Then {bi : i ∈
I} is an equilibrium allocation for the network coding market.

Proof:The KKT conditions of optimality of the above convex program tell us there exists
dual variables {αi,U : i ∈ I, U ∈ Ui} and {pe : e ∈ E, pe ≥ 0} satisfying the following
conditions:

∀i ∈ I, e ∈ E, −
(∑
i,U∈Ui:e∈δ(U)

αi,U

)
+ pe ≥ 0 with equality when b(e) > 0

∀i,
∑
i,U∈Ui

αi,U ≥
∂

∂fi

(∑
i∈I

mi log fi
)

= mi/fi with equality when fi > 0

∀j ∈ J, pj > 0 ⇒
∑
i∈I

xij = 1

We now show that (p, b) satisfies the market equilibrium (ME) conditions above. The third
KKT condition above corresponds to the first ME condition 1. The first two KKT conditions
imply the second ME condition. This is because for any feasible f -generalized matching b
rooted at i, we have

p(b) =
∑
e∈E

peb(e) ≥
∑
e∈E

b(e) ·
(∑
i,U∈Ui:e∈δ(U)

αi,U

)
from KKT condition 1

=
∑
i,U∈Ui

αi,U

(∑
e∈δ(U)

b(e)
)
≥
∑
i,U∈Ui

αi,Uf from feasibility of f

Moreover, in the above analysis, if b is replaced by bi and f by fi, the above holds with
equality. Therefore, p(b)/f ≥

∑
i,U∈Ui

αi,U = p(bi)/fi. This is the second ME condition.
The third ME condition follows from the fact that

∑
i,U∈Ui

αi,U = mi/fi which along with
the equality in the previous line implies p(bi) = mi. 2

2.3 EG Markets

The unifying feature of all the three markets described above is that a similar convex
program captures the equilibrium utilities of the agents. Motivated by this resemblance,

6

Jain and Vazirani [JV07] undertook a systematic study of convex programs which they
termed Eisenberg-Gale type convex programs1.

Definition 1 Given a matrix A ∈ Rn×m and vectors b ∈ Rm, the polytope Π := {Af ≤
b, f ≥ 0} is down-montone in the first k coordinates if for any feasible f ∈ Π with first k
coordinates (f1, · · · , fk), and for any (f ′1, · · · , f ′k) with f ′i ≤ fi, there exists a feasible f ′ ∈ Π
with the first k coordinates (f ′1, · · · , f ′k).

Definition 2 Given a vector m ∈ Rk
+ and a polytope Π(A, b) down-monotone in the first k

coordinates, the following convex program is called an Eisenberg-Gale type convex program:

max{
k∑
i=1

mi log fi : Af ≤ b, f ∈ Rn ≥ 0}

Note that the objective has k terms in its summand while f is in Rn. We will call k to be
the size of the EG-type convex program. We denote the program as CP (A, b,m, k).

Definition 3 [JV07] An Eisenberg-Gale market, or simply EG market, M, consists of a
set of buyers (agents) I (|I| = k) such that the equilibrium utilities {fi : i ∈ I} of the market
given moneys {mi : i ∈ I} is captured by an Eisenberg-Gale type convex program. That is,
there exists A ∈ Rn×m and b ∈ Rm such that the equilibrium utilities of the agents given
money mi’s is the solution to

max{
k∑
i=1

mi log fi : Af ≤ b, f ∈ Rn ≥ 0} (5)

Note that there are no items in this definition. The market will be described by M(A, b, k)
and the particular instance by M(A, b,m, k). We denote the set of EG markets with k
agents as EG(k).

In this paper, we show that any EG(2) market (equivalently any EG-type program of
size 2) has a rational equilibrium (solution). We also give a polynomial time algorithm
for finding the equilibrium (equivalently, solving the convex program). Moreover, if the
entries of A (with no restriction on the size of the entries of b) have binary encoding length
polynomial in the dimension of A, then the running time of this algorithm is polynomial
in the dimension, that is the algorithm is strongly polynomial. We call such a market
or convex program a combinatorial market or convex program. Note that the capacity
allocation market and the network coding market are combinatorial markets. Our main
theorem is the following.

Theorem 2.3 Any EG(2) market is rational and there exists a polynomial time algorithm
to find the equilibrium allocation and prices. Moreover, if the market is combinatorial, the
algorithm runs in strongly polynomial time.

1The definition in [JV07] is worded differently

7

Corollary 2.4 Kelly’s capacity allocation market and the network coding market are ratio-
nal when there are only two agents and the equilibrium allocation and prices can be found
in strongly polynomial time.

In the remainder of the section we provide a roadmap to proving the above theorem.
Before doing so, we state what the KKT conditions applied to the Eisenberg-Gale type
convex program CP (A, b,m, 2).

Suppose f is an optimal solution to the convex program (5) with k = 2. Then the
Karash-Kuhn-Tucker conditions of optimality tells that there must be Lagrangean variables
p ∈ Rm satisfying the following

• ∀j ∈ [m], pj > 0⇒
∑n

i=1Ajifi = bj .

• ∀i ∈ [n] \ {1, 2}, fi > 0⇒
∑m

j=1 pjAji = 0 and
∑m

j=1 pjAji ≥ 0, otherwise.

• i = {1, 2}, mi = fi ·
∑m

j=1 pjAji.

2.4 Roadmap of the proof of Theorem 2.3

The proof of Theorem 2.3 will follow in the following three steps. Firstly, we show that
instead of looking at the polytope

Π := {f ∈ Rn : Af ≤ b, f ≥ 0}

we can look at the projection of the polytope onto the first two coordinates. Since the poly-
tope Π is down-monotone in the first two coordinates and convex, in general the projection
of Π on the two dimensional plane spanned by f1 and f2 is given by

Π2 := {(f1, f2) : f2 ≤ β0; f1 + α`f2 ≤ β`, 1 ≤ l ≤M ; f1, f2 ≥ 0}

where f1 + α`f2 = β` is a facet-inducing inequality for all 1 ≤ l ≤ M . We may assume
WLOG that α`’s are decreasing. We will call the facet f1 + α`f2 = β` the `th facet. We
give details on the projection in Section 3.

Clearly,

max{m1 log f1 +m2 log f2 : f ∈ Π} = max{m1 log f1 +m2 log f2 : (f1, f2) ∈ Π2}

However, applying the Karash-Kuhn-Tucker (KKT) conditions on the latter convex pro-
gram gives rise to Lagrangean variables corresponding to facets of Π2. In Section 3.3, we
show how to “project up” from these prices of facets to prices pj corresponding to rows of
A. For the special case of the capacity allocation market and the network coding market,
the prices of facets is only an abstract quantity while projecting up these prices leads to
prices on edges.

Next we show that there exists Lagrangean duals certifying the optimal solution max{m1 log f1+
m2 log f2 : (f1, f2) ∈ Π2} with the following property: either one facet ` is priced or two
neighboring facets ` and l+ 1 are priced. This is determined by the ratio of the two quanti-
ties m1 and m2. Moreover given facets ` and l + 1 and mi’s, one can check if pricing these

8

facets leads to equilibrium. If so, the prices are just a rational function of α`, β`,m1,m2

and is thus rational. We describe this in Section 4.

The above suggests the following algorithm: go over the facets one-by-one checking if one
can price it (or/and its neighbor) to satisfy the KKT conditions. This will give a poly-
nomial time algorithm if the number of facets of Π2 is polynomial in the dimension of A.
For instance, in the case of capacity allocation markets in undirected graphs, one can show
using Hu’s theorem [Hu63] that there are at most three facets in Π2. However, in general
the number of facets could grow exponentially. In fact even for directed networks this can
be the case which is in contrast to undirected networks. Such an example is non-trivial and
we give one in the appendix. To get a polynomial time algorithm we use a binary search
algorithm instead where we “search” (via solving LPs) for the correct facet to price. We
show that if A is combinatorial (all entries are of size a polynomial in the dimension), the
binary search takes time polynomial in the dimension and by a theorem of Tardos [Tar86],
the LP can be solved in time polynomial in the dimension as well. We describe this in
Section 5.

3 Projection of the polytope Π

Recall the polytope specifying the feasible f ∈ Rn:

Π := {f ∈ Rn : Af ≤ b, f ≥ 0}

which is assumed to be down-montone in the first two dimensions. The two dimensional
polytope Π2 is obtained by projecting Π onto the plane spanned by the first two coordi-
nates. Since Π is down-montone in the first two coordinates, positive and convex, so is Π2.
Therefore, the facets of the polytope Π2 are line segments with increasing negative slope.
In other words,

Π2 := {(f1, f2) : f2 ≤ β0; ∀1 ≤ l ≤M ; f1 + α`f2 ≤ β`; f1, f2 ≥ 0}

We may assume without loss of generality that α`’s are decreasing. We may also assume
for all 1 ≤ l ≤ M , the equation f1 + α`f2 = β` is facet-inducing. We call the `th equality
the `th facet. Here we point out a technicality – the equation f2 = β0 might or might not
be facet inducing. We come to this point shortly when we describe how one obtains the
facet-inducing inequalities of Π2.

3.1 Characterization of facets

We now characterize when f1 + αf2 = β is a facet of Π2, for some α, β ≥ 0. If it is, we say
that α induces a facet. Before doing so, we make a definition. For α ≥ 0, let LΠ2(α) be the
linear program max{f1 +αf2 : (f1, f2) ∈ Π2}. Also, we will let L(∞) be the linear program
max{f2 : (f1, f2) ∈ Π2}. Call f ∈ Rn an extension of (f1, f2) if its first two coordinates are
(f1, f2) and f is in Π. Since Π2 is just a projection of Π, L(α) = max{f1 + αf2 : f ∈ Π}
and moreover the solution f is just an extension to (f1, f2). Henceforth, we will denote this
LP as L(α), as well.

9

Now, since f1 + αf2 ≤ β must be a valid inequality, if f1 + αf2 = β is facet inducing,
we must β = L(α). Since we are in two dimensions, a valid inequality is a facet iff there are
two distinct points in Π2 which satisfy both the inequalities with equality. Thus we have
the claim

Claim 3.1 f1 +αf2 = β is a facet iff β = L(α) and there exists (g1, g2) and (h1, h2) in Π2

such that g1 + αg2 = h1 + αh2 = β.

The same claim also holds for the valid inequality f2 ≤ β0 – it is a facet iff β0 = L(∞)
and there are two distinct points satisfying it with equality.

3.2 Finding facets

In this section we describe a procedure FindFacet which will be useful in our final algorithm.
The procedure takes input an α > 0 and either (A) decides that f1 + αf2 = L(α) is a facet
and return its two end points; or (B) returns α` and α`+1 such that α`+1 ≤ α ≤ α` and α`
and α`+1 induce neighboring facets.

Firstly observe that if α does not induce a facet, then L(α) has a unique solution. For
otherwise we will have two distinct points satisfying f1 + αf2 = L(α). Let this unique
solution be g whose first two coordinates be (g1, g2). Now note that (g1, g2) must be the
intersection of two neighboring facets, ` and (l + 1). Thus, g must maximize L(α`) and
L(α`+1). In fact we have the following theorem.

Theorem 3.2 α` = max{α : g maximizes L(α)}, α`+1 = min{α : g maximizes L(α)}

Proof: It is enough to show that the α∗ which satisfies max{α : g maximizes L(α)} and
α∗ which satisfies min{α : g maximizes L(α)} induce facets. They will be neighboring since
they share a common point (g1, g2).

By definition of α∗, g1+α∗g2 = L(α∗). We show α∗ induces a facet by exhibiting another
point which satisfies f1 +α∗f2 = L(α∗). Let δ := min1≤l≤M (α`−α`+1). Since A is finite, we
can assume δ > 0. Later in this section we give tighter bounds on how small δ can be but
for the time being δ > 0 suffices. Choose 0 < ε < δ. Let (f1, f2) be the first two coordinates
of solution to L(α∗+ ε). By definition, (f1, f2) 6= (g1, g2). Also, f1 + (α∗+ ε)f2 = L(α∗+ ε).
Taking limits of ε → 0, it must be f1 + α∗f2 = L(α). The proof of α∗ inducing a facet is
similar. 2

Thus, if α is not a facet, we can perform part (B) of FindFacet if we can solve the maxi-
mization and minimization above. We now show that α` and α`+1 can be found by solving
two linear programs. Consider the dual of the LP L(α). It is the following LP, D(α):

min{bT · y : yT ·A1 ≥ 1; yT ·A2 ≥ α;

∀j = 3 · · ·n, yT ·Aj ≥ 0; y ≥ 0}

where Aj is the jth column of the matrix A. Since g is an optimal solution also to L(α), by
complementary slackness we must have that any optimal dual solution y to D(α) satisfies

• yT ·A1 = 1

10

• yT ·A2 = α

• ∀j = 3 · · ·n, gj > 0⇒ yT ·Aj = 0

In fact, complementary slackness also gives us that if any (y, α) satisfies the above conditions
with g, then g maximizes L(α). Therefore the following polytope, Q(g) precisely captures
the α’s for which g maximizes L(α). Therefore, α` and α`+1 can be found by maximizing
and minimizing α over the polytope Q(g).

{α : yT ·A1 = 1, yT ·A2 = α, ∀j = 3 · · ·n, yT ·Aj ≥ 0

∀j = 3 · · ·n, gj > 0⇒ yT ·Aj = 0; y ≥ 0}

The above discussion implies the following theorem.

Theorem 3.3 Given α > 0 and g maximizing L(α), let α` = max{α : α ∈ Q(g)} and
αl−1 = min{α : α ∈ Q(g)}. Then αl−1 ≤ α ≤ α` and αl−1 and α` induce neighboring
facets.

If α satisfies any of the inequalities in Theorem 3.3 with equality then it induces a facet.
Otherwise it doesn’t. We state a theorem about the granularity of the α`’s which induce
facets of Π2. Given any rational number α, let ν(α) denote the number of bits in a binary
encoding of α. Such a binary encoding could be the binary representation of the numerator
and the denominator. Given a matrix A, let ν(A) be the number of bits required to encode
it. That is, ν(A) is

∑
i,j ν(Aij) where Aij is the ijth entry of the matrix, assumed to be

rational. Recall a matrix A is combinatorial if ν(A) is a polynomial in the dimensions of A.

Theorem 3.4 There exists a constant c depending only on the dimension of A such that
for every facet α` of Π2, we have ν(α`) = O(ν(A)c).

Proof: The above discussion implies that the α`’s that induce facets are solutions to a
linear program for which the entry matrix is A (refer description of Q(g) above). It follows
from LP theory that the size of the binary encoding of a solution to an LP is bounded by
a polynomial of the dimension of the matrix giving ν(α`) = O(ν(A)c) for some constant c
depending only on dimension of A. Moreover, if ν(A) is a polynomial in the dimension of
A, so is ν(α`) for all `. 2

Theorem 3.5 There exists constants K and ε depending only on A, such that α1 ≤ K and
for any `, α` − α`+1 ≥ ε.

Proof: Let K be the largest integer with encoding O(ν(A)c) where c is as in the above
theorem. In particular, K is larger than the numerators and denominators of the rational
numbers α`. In particular, K ≥ α1. Moreover, if we choose ε = 1/K2, since α` and α`+1

are rational numbers with denominators at most K, their difference is larger than ε. 2

Now we describe given an α which induces a facet, how to find its end points. This will
complete the procedure we started in this section.

11

Theorem 3.6 Let α ≥ 0 induce a facet of Π2. Let (g1, g2) be the solution to L(α+ ε) and
(h1, h2) be the solution to L(α−ε). Then (g1, g2) and (h1, h2) are the end points of the facet
f1 + αf2 = L(α).

Proof: Suppose α = α` is the `th facet. From Theorem 3.5 it follows that neither (α + ε)
nor (α − ε) induce facets. Moreover, αl−1 > (α + ε) > α` > (α − ε) > α`+1. Therefore,
L(α + ε) is maximized uniquely by the intersection of the facets induced by αl−1 and α`,
while L(α − ε) is maximized uniquely by the intersection of the facets induced by α` and
α`+1. 2

The following theorem summarizes the procedure FindFacet which will be used in
Section 5.

Theorem 3.7 The procedure FindFacet takes input a rational α > 0 and either

(A) decides that f1 + αf2 = L(α) is a facet and return its two end points; or
(B) returns α` and α`+1 such that α`+1 ≤ α ≤ α` and α` and α`+1 induce
neighboring facets, and returns the endpoints of these facets.

The time taken by the procedure is T (A) which a polynomial in ν(A) + ν(b) and just a
polynomial in ν(A) if ν(A) is a polynomial in the dimension of A.

Proof: The proof of correctness of the procedure follows from the discussion preceding it.
The fact that T (A) is a polynomial in ν(A) follows from an algorithm of Tardos [Tar86] to
solve a linear program with entries of size polynomial in the dimension, in time a polynomial
in ν(A). 2

3.3 Pricing of Facets

Let us now review the KKT conditions for the convex program:

max{m1 log f1 +m2 log f2 : (f1, f2) ∈ Π2} (6)

If (f∗1 , f
∗
2) is the optimal solution, then there must exist facet prices q0, q1, · · · , qM such

that:

∀l = 0, 1, · · · ,M, q` > 0⇒ f∗1 + α`f
∗
2 = β` (7)

m1 = f∗1 ·
M∑
l=1

q`; m2 = f∗2 · (q0 +
M∑
l=1

α`q`)

In Section 4, we will use the above inequalities to obtain the prices of the facets in terms
of m1 and m2. In the remainder of the section we show how to “project up” the solution
(f∗1 , f

∗
2) and (q1, . . . , qM) to a solution for Π and their corresponding Lagrangean dual

variables. That is, we show how to obtain an extension f of (f∗1 , f
∗
2) and the Lagrangean

prices for the original program, (p1, · · · , pm), which satisfy the KKT conditions of the

12

original program, namely:

∀j ∈ [m], pj > 0⇒
n∑
i=1

Ajifi = bj (8)

∀i ∈ [n] \ {1, 2}, fi > 0⇒
m∑
j=1

pjAji = 0 and
m∑
j=1

pjAji ≥ 0, otherwise

for i = {1, 2}, mi = fi ·
m∑
j=1

pjAji

For every ` such that q` > 0, consider the LP:

max{f1 + α`f2; Af ≤ b; f ≥ 0}

From equation (7) it follows that the optimum of the above LP must be β` = f∗1 + α`f
∗
2 .

Therefore, any extension f of (f∗1 , f
∗
2) is an optimum solution to the above LP. Consider

the dual of the above LP

min{bT · y : yT ·A1 ≥ 1; yT ·A2 ≥ α; ∀i = 3, · · · , n; yT ·Ai ≥ 0; y ≥ 0} (9)

and for every ` consider any optimal solution y(`) to the above dual. Define pj =
∑M

l=1 y
(`)
j q`

for j = 1 · · ·m.

Theorem 3.8 (f, p1, · · · , pm) satisfy the original KKT conditions (8). Moreover they can
be calculated in time a polynomial in the encoding size ν(A) of the matrix A.

Proof: Note that pj > 0 implies y(`)
j > 0 for some `. By complementary slackness this

implies
∑n

i=1Ajifi = bj . Similarly, by complementary slackness, for i ∈ [n] \ {1, 2}, fi >
0⇒

∑m
j=1 y

(`)
j Aji = 0, for every ` such that q` > 0. Thus,

m∑
j=1

pjAji =
m∑
j=1

(
M∑
l=1

y
(`)
j q`)Aji =

M∑
l=1

q`(
m∑
j=1

y
(`)
j Aji) = 0

Lastly, f∗1 > 0 implies
∑m

j=1 y
(`)
j Aj1 = 1 for all l : q` > 0. Moreover if q` > 0 we have

m1 = f∗1
∑M

l=1 q`. The two equations imply m1 =
∑m

j=1 pjAj1. The result for m2 holds
similarly.

The time taken to find p1, · · · , pm is the time taken to solve (9) which is a polynomial
in ν(A) (Note that the right hand side of this LP is only 0 or 1). 2

4 Rationality of EG(2) markets

In this section we show that for any matrix A with rational entries and rational numbers
m1,m2 the solution f to (5) and the Lagrangean prices p1, · · · , pm are rational. From
Theorem 3.8 it suffices to show that the optimum and Lagrangean duals q1, · · · , qM to (6),
are rational.

13

Let us recall the KKT conditions (7) for the optimality of (f1, f2) for (6)

∀l = 0, 1, · · · ,M, q` > 0⇒ f1 + α`f2 = β`

m1 = f1 ·
M∑
l=1

q`; m2 = f2 · (q0 +
M∑
l=1

α`q`)

Claim 4.1 For any m1,m2, at most two of the q`’s are positive.

Proof: From the first condition any q` > 0 implies an equation in two variables. Since all
of these are linearly independent (they induce distinct facets), at most two equations can
be satisfied by (f1, f2). 2

Given the `th facet induced by α`, let (g`1, g
`
2) and (h`1, h

`
2) denote the two end points

of the facet. Without loss of generality we will assume g`1 ≤ h`1 and g`2 ≥ h`2. Note that
(h`1, h

`
2) = (g`+1

1 , g`+1
2). Now we divide the interval [0, 1] into the following 2M −2 intervals:

Definition 4 For 1 ≤ l < M :

I` :=
[

g`1
L(α`)

,
h`1

L(α`)

]
; I`,`+1 :=

[
h`1

L(α`)
,

h`1
L(α`+1)

]
If g1

1 > 0 (implying f2 = β0 is a facet), then

I0,1 =
[
0,

g`1
L(α1)

]
Claim 4.2 Each of the intervals defined above are disjoint and cover [0, 1].

Proof: Note that for each I`, I`,`+1, the right end point is larger than the left and moreover
the right end point of I` is the same as the left of I`,`+1. Moreover the left end point of I0,1

or I1 is 0. Also, hM1 = βM = L(αM) implying the right end point of IM−1,M is 1. 2

The following theorem gives us the one or two facets which we should price.

Theorem 4.3 Let ρ = m1
m1+m2

.

1. If ρ ∈ I` for l > 0, q` = m1+m2
L(α`) and f1 = m1/q` and f2 = m2/(α`q`) satisfy KKT

conditions (7).

2. If ρ ∈ I`,`+1 for l > 0, then (f1, f2) = (h`1, h
`
2) and

q` =
h`1m2 − α`+1h

`
2m1

h`1h
`
2(α` − α`+1)

; ql+1 =
α`h

`
2m1 − h`1m2

h`1h
`
2(α` − α`+1)

satisfy KKT conditions (7).

3. If ρ ∈ I0,1 (that is f2 = L(∞) is a facet), then (f1, f2) = (h0
1, L(∞)) and

q0 =
h0

1m2 − α1L(∞)m1

h0
1L(∞)

; q1 =
m1

h0
1

satisfy KKT conditions (7).

14

Proof:

1. Observe that q` > 0 and that f1 + α`f2 = m1+m2
q`

= L(α`). Also the second KKT
condition is immediate for both m1 and m2.

2. Check that since ρ ∈ I`,`+1, both q` and ql+1 are non-negative. This is because

m1/(m1 +m2) ≥ h`1/L(α`) = h`1/(h
`
1 + α`h

`
2), and

m1/(m1 +m2) ≤ h`1/L(α`+1) = h`1/(h
`
1 + α`+1h

`
2)

which imply h`1/(α`h
`
2) ≤ m1/m2 ≤ h`1/(α`+1h

`
2) and thus q`, ql+1 ≥ 0.

It is also a calculation to check m1 = h`1(q` + ql+1) and m2 = h`2(α`q` +α`+1ql+1) and
we omit it.

3. It is easy to check the KKT conditions for this case. What requires a little work is to
see that q0 ≥ 0. Since ρ ∈ I0,1, we get

m1/(m1 +m2) ≤ g1
1/L(α1) = h0

1/L(α1) implying

m1/m2 ≤ h0
1/(L(α1)− h0

1) = h0
1/(α1L(∞))

where the last equality follows from the fact that (h0
1, L(∞)) lies on the facet induced

by α1 (it is an end point of it).This implies that q0 ≥ 0.

2

Corollary 4.4 The equilibrium solution of any EG(2) market is rational.

Proof: Theorem 4.3 immediately implies the equilibrium utilities (f1, f2) are rational. It
also gives that the facet prices are rational. By Theorem 3.8, the equilibrium prices of the
EG(2) market are just rational combinations of the facet prices and hence rational. 2

The above also suggests an algorithm which runs in time polynomial in the number of
facets. However in Appendix A we show that even for the directed two source-sink flow
market, the number of facets could be exponentially larger than the number of edges. In
the next section we show a binary search algorithm which is efficient.

5 Algorithms for EG(2) markets

We now give an algorithm which finds the prices q` and flow (f1, f2) satisfying KKT condi-
tions (7). Using Theorem 3.8 and the fact that at most two facets are priced (which gives
us an efficient way of getting pj ’s from q`), we will finish the proof of our main theorem,
Theorem 2.3.

We use the machinery developed in Section 3.2 to develop our binary search algorithm.
To remind, we developed a procedure, FindFacet, which given α either decides if α induces
a facet and returns its end points, or returns α` and α`+1 which are neighboring facets and
α` > α > α`+1.

15

From Theorem 4.3, we will be done if we find the interval I` or I`,`+1 in which ρ = m1
m1+m2

lies. However note that I` requires the knowledge of α` which we do not have as input.
From Theorem 3.5, we know that α`’s lie between K and 0. The algorithm starts with a
guess α = K/2 of α`. It runs FindFacet in which case it either gets the end points (and
thus gets I`) or gets α` and α`+1 (and the end points of the facets induced by them) to
get I`, I`,`+1, Il+1. If ρ lies in these intervals, then we are done. If ρ lies to the left of I`,
then we search for α in the first half; and otherwise we search for α in the second half. The
procedure takes time polynomial in log(K) which is a polynomial in the description size of
A. Details are in Algorithm 1 below.

Algorithm 1 Binary Search Algorithm for finding facet prices
Input: m1,m2,K, ε (We assume K, ε have been evaluated as described in Theorem 3.5).
Let ρ = m1/(m1 +m2).
Initialize U = K, L = 0.

Repeat until U − L ≤ ε

1. α = (U + L)/2.

2. Use FindFacet (described in Section 3.2) to check if α induces a facet or find α`, α`+1

which do. Find the end points of these facets as well.

3. Use the end points and the α`’s to get the intervals I`, I`,`+1, Il+1 as described in
Section 4.

4. If ρ ∈ I` ∪ I`,`+1 ∪ Il+1, find prices q`, ql+1 as described in Theorem 4.3. Use Theorem
3.8 to get the solution and prices for the original problem and exit.

5. If ρ < I` (that is less than the left end point of I`), L = α`.
Else U = α`+1.

Let T (A) be the time taken by the procedure FindFacet. By Theorem 3.7 it is bounded
by a polynomial in ν(A) and moreover if the entries of A is bounded by a polynomial in
the dimension of the matrix, then T (A) is a polynomial in the dimension of the matrix as
well. The following theorem completes the proof of Theorem 2.3.

Theorem 5.1 Algorithm 1 always outputs the equilibrium prices of facets and runs in time
O
(
T (A) log

(
K
ε

))
and is thus a polynomial time algorithm. If ν(A) is bounded by a poly-

nomial in the dimension of the matrix, then the Algorithm 1 is a strongly polynomial time
algorithm.

Proof: Suppose m1
m1+m2

∈ Ik ∪ Ik−1,k. Then it is clear that L ≤ αk ≤ U throughout the
algorithm.

Suppose that at the end of an iteration, U − L < ε. Note that after each iteration,
either both U and L have a value equal to one of the α`’s, or one of them is 0 or K and
the other has a value equal to an α`. In either case, U − L < ε =⇒ U = L (follows from

16

the definition of ε in Theorem 3.5), which should equal αk by the first part. Hence we must
have found the equilibrium prices in this iteration.

The number of iterations of the repeat loop is bounded by O
(
log
(
K
ε

))
since we halve

the gap between U and L till the gap is smaller than ε. Since FindFacet can be done in
T (A) time, the theorem follows. 2

Theorem 5.2 (Restatement of Main Theorem 2.3) Any EG(2) market is rational and there
exists a polynomial time algorithm to find the equilibrium allocation and prices. Moreover,
if the EG(2) market is combinatorial, the algorithm runs in strongly polynomial time.

Proof: The proof of rationality follows from Corollary 4.4. The algorithm to find prices
for the EG(2) market is to run Algorithm 1 to get equilibrium utilities and facet prices and
then use Theorem 3.8 to get the original prices from the facet prices.

By Theorem 5.1 and Theorem 3.8, both steps run in polynomial time. Furthermore, if
the market is combinatorial both steps run in strongly polynomial time. 2

6 Strongly polynomial time algorithm for linear Fisher mar-
ket with two agents

Note that the set of feasible utilities of two agents in a linear Fisher market is not described
via a combinatorial LP – the corresponding matrix A in convex program (5) can have entries
much larger than the dimension. Nevertheless, we can obtain a strongly polynomial time
algorithm for this case.

Recall, the agents have moneys m1 and m2 and have utility u1j and u2j for j ∈ J .
Suppose |J | = m. Also recall that the equilibrium prices {pj : j ∈ J} and the allocations
{x1j , x2j : j ∈ J} must satisfy:

• For i = 1, 2, xij > 0 ⇒ uij/pj ≥ uij′/pj′ , ∀j′ ∈ J . The ratio uij/pj is called the
bang-per-buck of item j for agent i.

• pj > 0 ⇒ x1j + x2j = 1.

• For i = 1, 2,
∑

j∈J pj · xij = mi.

Sort the items in decreasing order of ρj := u1j/u2j . Without loss of generality, assume
ρ1 ≥ ρ2 ≥ · · · ≥ ρm. In an equilibrium solution, call an item j shared if for both i = 1, 2,
uij/pj ≥ uij′/pj′ for all items j′. That is, for both these agents, j has the highest bang-per-
buck among all items. Thus, both items can get non-zero amounts of j in the equilibrium.

Claim 6.1 In an equilibrium solution, all shared items j have the same, ρj = ρ. Moreover,
for every item ρ` < ρ, x1l = 1 and for every item ρ` > ρ, x2l = 1.

Proof: Let (x, p) be an equilibrium solution. Suppose two items j and j′ are shared. Then
by definition, uij/pj = uij′/pj′ for both i = 1, 2. Thus, u1j/u1j′ = u2j/u2j′ = pj/pj′ . This
implies, ρj = ρj′ . Thus all shared items have the same ρ.

17

Consider an item ` with ρ` > ρj . Suppose x2l > 0. Then we must have u2l/p` = u2j/pj
since both items can go to agent 2. Multiplying by ρ` on the left and ρj on the right we
get, u1l/p` > u1j/pj . But this is not possible since j is shared and therefore x1j > 0. Thus,
x2l = 0 implying x1l = 1. The other case is similar. 2

Claim 6.2 If there are two items j and j′ with ρj = ρj′ such that x1j and x2j′ are both
strictly greater than 0, then j and j′ are shared.

Proof: Since x1j > 0, j has the highest bang-per-buck for agent 1. Thus, u1j/pj ≥ u1j′/pj′ .
Multiplying by 1/ρj on the left and 1/ρj′ on the right gives u2j/pj ≥ u2j′/pj′ . But, agent
2 has the highest bang-per-buck for item j′ implying the last inequality is an equality.
Therefore agent 2 has the highest bang-per-buck for item j as well, implying j is shared.
The proof of j′ being shared is similar. 2

Given ρ, consider the set of items A(ρ) := {j : ρj > ρ}, X(ρ) = {j : ρj = ρ}, and
B(ρ) := {j : ρj < ρ}. At an equilibrium two cases can occur.
Case 1: There are no shared items. By Claim 6.2 this implies items having the same ρ
have to go completely to one agent. This implies there exists a ρ such that agent 1 gets all
the items with ρj ≥ ρ (A(ρ) ∪X(ρ)) and agent 2 gets all items with ρj < ρ (B(ρ)).
Case 2: There are shared items. By Claim 6.1, this implies there exists a ρ such that
A(ρ) goes to agent 1, B(ρ) goes to agent 2 and items in X(ρ) can go to either agent in any
fraction. We can use this to get the following algorithm.

Algorithm 2 Strongly polynomial time algorithm for linear Fisher markets with 2 agents.

For items j = 1 . . .m, let ρ = ρj . Construct the sets A,X,B as stated above (we
remove the dependency on ρ).

(a) Case 1: Let p1 be the price of item 1 and pm be the price of item m. This
fixes the prices of all items in terms of p1, pm – for j ∈ A ∪X, pj = u1j

u11
p1 and

j ∈ B, pj = u2j

u2m
pm. Using the above, solve for p1 and pm with the equations∑

j∈A∪X pj = m1 and
∑

j∈B pj = m2. If u11
p1
≥ u1m

pm
and u2m

pm
≥ u21

p1
, return this

as the equilibrium solution. Else, go to the next case.

(b) Case 2: Pick any item ` in X arbitrarily. Let its price be p`. This fixes the
price of all items since ` is shared – For items in j ∈ A, pj = u1j

u1l
p` and for

items j ∈ B, pj = u2j

u2l
p`. For items in j ∈ X, we have pj = u1j

u1l
p` = u2j

u2l
p`,

where the second equality follows from ρj = ρ`. Using this, solve for p` using∑
j∈A∪X∪B pj = m1 + m2. Check if

∑
j∈A pj ≤ m1 and

∑
j∈B pj ≤ m2. If both

are true, then since the items in J are shared we can find fractions in which they
are divided so that the equilibrium condition is satisfied. If either of them is
untrue, go to the next iteration.

Theorem 6.3 Algorithm 2 is a strongly polynomial time algorithm for linear Fisher mar-
kets with two agents.

18

Proof: Since we go over all possible values of ρ and check for the two possible cases in an
equilibrium, one of these must satisfy the equilibrium condition. The time taken by the
above algorithm is O(m2) – for every item, we run the two cases which takes time m each
– and is thus strongly polynomial. 2

7 Conclusions

In this paper, we studied Eisenberg-Gale markets with two agents and showed they always
have rational equilibrium. EG markets with three agents are known to have irrational
equilibrium. We also show if the feasible allocations in the market can be described via
a combinatorial polytope, there is a strongly polynomial time algorithm to find the equi-
librium allocation and prices. As an example, we get strongly polynomial time algorithm
for Kelly’s resource allocation markets with two source-sink pairs, and the network coding
market in directed networks, with two sources. We also show a strongly polynomial time
algorithm for the linear Fisher market with two agents; such markets are not combinatorial.
Can this result be extended to all EG(2) markets?

References

[ACLY00] R. Ahlswede, N. Cai, S.Y. R. Li, and R. W. Yeung. Network information flow.
IEEE Trans. on Information Theory, 46:1204–1216, 2000.

[BV06] S. Boyd and L. Vanderberghe. Convex Optimization. Cambridge University
Press, 2006.

[CDT09] X. Chen, X. Deng, and S-H. Teng. Setlling the Complexity of Computing Two-
Player Nash Equilibria. Journal of the ACM, 56(3), 2009.

[CV04] B. Codenotti and K. Varadarajan. Efficient computation of equilibrium prices
for markets with Leontief utilities. In Proceedings of International Colloquium
on Algorithms, Logic and Programming, 371–382, 2004.

[EG59] E. Eisenberg and D. Gale. Consensus of subjective probabilities: the Pari-Mutuel
method. The Annals of Mathematical Statistics, 30:165–168, 1959.

[Eis61] E. Eisenberg. Aggregation of utility functions. Management Sciences, 7:337–350,
1961.

[EY07] K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other
fixed points. SIAM J. on Computing, to appear. Preliminary version in FOCS,
2007.

[GJTV05] D. Garg, K. Jain, K. Talwar, and V. Vazirani. A primal-dual algorithm for
computing Fisher equilibrium in absence of gross substitutability property. In
Theoretical Computer Science, 378(2):143–152, 2005.

19

[Hu63] T.C. Hu. Multicommodity network flows. Operations Research, 14:344–360,
1963.

[JV07] K. Jain and V. V. Vazirani. Eisenberg-gale markets: Algorithms and structural
properties. In Proceedings of ACM Symposium on Theory of Computing, 364–
373, 2007. To appear in Games and Economic Behavior.

[JVY05] K. Jain, V. V. Vazirani, and Y. Ye. Market equilibrium for homothetic, quasi-
concave utilities and economies of scale in production. In Proceedings of ACM
Symposium on Discrete Algorithms, 63–71, 2005.

[Kel97] F. P. Kelly. Charging and rate control for elastic traffic. European Transactions
on Telecommunications, 8:33–37, 1997.

[Nas50a] J. F. Nash. The bargaining problem. Econometrica, 18:155–162, 1950.

[Nas50b] J. F. Nash. Equilibrium points in n-person games. Porceedings National Academy
of Sciences, 36:48–49, 1950.

[Tar86] É. Tardos. A strongly polynomial algorithm to solve combinatorial linear pro-
grams. Operations Research, 34(2):250–256, 1986.

[Vaz09] V. V. Vazirani. 2-player Nash and nonsymmetric bargaining games: algorithms
and structural properties. Submitted, 2009.

[Ye07] Y. Ye. Exchange market equilibria with Leontief’s utility: Freedom of pricing
leads to rationality. Theoretical Computer Science, 378(2):134–142, 2007.

A Projection of two source two sink flow in directed net-
works

Consider a network N(V,A) with two source-sink pairs (s1, t1) and (s2, t2) and capacities
c : A → R+. Let n be the number of vertices and m be the number of arcs. We are
interested in the flow polytope which has variable f1, f2 indicating the total value of flow
from s1 to t1 and s2 to t2 respectively. Also, there is a flow variable on each arc indicating
the flow on the arc with the total flow upper bounded by the capacity c of the arc. Finally
there is a conservation of flow at each vertex – the total flow coming into a vertex which is
not a source or a sink equals the total flow going out. Call this polytope Π. Let Π2 be the
projection of this polytope on to the plane spanned by f1 and f2. The question we ask is
how many facets does Π2 have? In this section we show that Π2 can have an exponential
(in n and m) number of facets in a directed network. This result is in contrast to the case
of undirected graphs where the similar Π2 has at most 3 facets. This result follows from
Hu’s theorem [Hu63] on two source-sink pair flows in undirected graphs.

A description of Π2 is the following. Let P1 and P2 denote the set of paths from s1 to

20

t1 and s2 to t2 respectively. Then

Π2(N) := {(f1, f2) : fi =
∑
P∈Pi

fi(P) for i = 1, 2; (10)

∀e ∈ A :
∑

P∈P1:e∈P
f1(P) +

∑
Q∈P2:e∈Q

f1(Q) ≤ c(e)

f1(P), f2(Q) ≥ 0, ∀P ∈ P1, Q ∈ P2}

However all the inequalities above might not induce facets. Indeed since Π2 is two
dimensional we can describe all the facet inducing inequalities as follows:

Π2(N) := {(f1, f2) : ∀1 ≤ l ≤M : f1 + α`f2 ≤ β`; f1, f2 ≥ 0}

where we may assume ∞ ≥ α1 ≥ · · ·αM ≥ 0, where by α1 = ∞ we mean the inequality
f2 ≤ β is a facet. Given a network N , we call the numbers (α1, · · · , αM) the profile of N .

Given a network N , we denote the LP, max{f1 + αf2 : (f1, f2) ∈ Π2(N)}, and its value by
LN (α). We assume Π2(N) is as in Equation 10. By duality we know that LN (α) equals
the following dual program DN (α).

min{
∑
e∈A

c(e)x(e) : ∀P ∈ P1; x(P) ≥ 1; ∀Q ∈ P2; x(Q) ≥ α; ∀e ∈ E; x(e) ≥ 0}

We recall the following characterization of a facet.

Theorem A.1 f1 + αf2 = β is a facet iff β = LN (α) and there exists two distinct feasible
flows (g1, g2) and (h1, h2) satisfying the inequality with equality.

To demonstrate our example we construct two operations. The first called the doubling
operation takes a network N with profile (α1, · · · , αk) with αk ≥ 1 and returns a network N ′

with a constant number of more arcs and vertices whose profile is (α1, · · · , αk, ζk, · · · , ζ1)
where ζi := αi

2αi−1 . Thus, N ′ has double the number of facets as N but only a constant
number of edges more. The next operation called the shifting operation takes a network N
with profile (α1, · · · , αk) with αk ≥ 1 and returns a network N ′ with a constant number
of more arcs and vertices whose profile is (α1 + 1, · · · , αk + 1). Therefore, starting with
any network N with a constant number of edges, applying m steps of doubling and shifting
alternately gives us a network N with O(m) edges but at least 2m facets which completes
the example. In the remainder of the section we describe the two operations.

Doubling Operation:
Given a network N , Figure 1 shows how the network N ′ is constructed.

Lemma A.2 Suppose the profile of N was (α1, · · · , αk) with αk ≥ 1. Then the profile of
N ′ is (α1, · · · , αk, ζk, · · · , ζ1, 0) where ζi = αi

2αi−1 .

21

t1

s2

t2

s2

s1 t1

s2 t2t2

s1 N

e1 e2

e3 e4

s2

t2

Figure 1: The network N ′ obtained from N . The edges ei have a capacity C, where C is
the maximum f1 flow that is feasible in N .

Proof:
We prove the lemma by giving for each αi (and ζj) two feasible flows (g1, g2) and (h1, h2)

on the facet and a cut of value LN ′(αi) (and LN ′(ζj)).
Since (α1, · · · , αk) is the profile of N , for every αi there are feasible flows of value (g1, g2)

and (h1, h2) such that both satisfy f1+αif2 = LN (αi). Moreover there exists a solution x(e)
to DN (αi) of value LN (αi). We now describe the feasible flows of value (g′1, g

′
2) and (h′1, h

′
2)

in N ′ satisfying f ′1+αif ′2 = LN ′(αi) and also dual solutions y(e) to DN ′(αi) of value LN ′(αi).

Let C be the maximum f1 flow that can be sent in N . Note that C = LN (αk)

g′1 = g1, g
′
2 = g2 + 2C; h′1 = h1, h

′
2 = h2 + 2C

∀e ∈ E[N]; y(e) = x(e); y(e1) = y(e2) = αi; y(e3) = y(e4) = 0

Claim A.3 There exist feasible flows in N ′ if value (g′1, g
′
2) and (h′1, h

′
2).

Proof: We know there exists a flow of value (g1, g2) from s1 to t1 and s2 to t2 in N . The
same flow passing via e3 and e4 gives a flow of g′1 in N ′ from s1 to t1 in N ′. The extra 2C
flow from s2 to t2 in N ′ is via the arcs e1 and e2. 2

Claim A.4 The y(e)’s forms a feasible solution to the dual program DN ′(αi).

Proof: Every s1, t1 path P passes through N or uses the edge e1 or e2. In the first case,∑
e∈P y(e) ≥ 1 because

∑
e∈P x(e) ≥ 1. In the second case, feasibility is ensured by the fact

that y(e1) = y(e2) = αi ≥ αk ≥ 1.
Similarly, every s2, t2 path also either passes throughN or uses e1 or e2 and so

∑
e∈P y(e) ≥

αi for all such paths. Hence y is feasible. 2 The following claim proves the theorem.

Claim A.5 We have
∑

e∈E[N ′] c(e)y(e) = g′1 + αig
′
2 = h′1 + αih

′
2 = LN ′(αi).

Proof:
∑

e∈E[N ′] c(e)y(e) =
∑

e∈E[N] c(e)x(e) + 2Cαi = LN (αi) + 2Cαi. Also, g′1 + αig
′
2 =

g1 + αig2 + 2Cαi. The last equality in the claim follows from LP duality. 2

We have shown that (α1, · · · , αk) are facets of N ′ as well. Now we show (ζk, · · · , ζ1) are
also facets. For a given j, let (g1, g2) and (h1, h2) be the feasible flows satisfying f1 +αjf2 =
LN (αj). We now describe feasible flows (g′1, g

′
2) and (h′1, h

′
2) in N ′ and a solution y(e) to

DN ′(ζj) such that g′1 + ζjg
′
2 = h′1 + ζjh

′
2 =

∑
e∈E[N ′] c(e)y(e). This will end the proof.

22

g′1 = 2C − g1, g
′
2 = 2g1 + g2; h′1 = 2C − h1, h

′
2 = 2h1 + h2

∀e ∈ E[N], y(e) = (2ζj − 1)x(e); y(e1) = y(e2) = ζj ; y(e3) = y(e4) = (1− ζj)

Claim A.6 There exist feasible flows of value (g′1, g
′
2) and (h′1, h

′
2) in N ′.

Proof: Consider the flow of value g1 from s1 to t1 through e3, N, e4 and a flow of value
C − g1 through the paths e1, e4 and e3, e2. This gives a flow of g′1 from s1 to t1 in N ′.
Consider the flow of g2 from s2 to t2 through N and a flow of value g1 through both e1 and
e2.This gives a flow of value g′2 from s2 to t2 in N ′. Note that this is feasible since (g1, g2)
is feasible in N and C is a maximum s1 − t1 flow. 2

Claim A.7 The y(e)’s forms a feasible solution to the dual program DN ′(ζj).

Proof: Consider a path P from s1 to t1 in N ′. It either uses edges in N and e3 and e4 or
it is one of the two: (e1, e4) or (e3, e2). The sum of y′ of both the pairs in 1. So we may
assume P is of the first kind. In this case,

y(P) = y(e3) + y(e4) + y(P \ {e3, e4}) = 2(1− ζj) + (2ζj − 1)x(P \ {e3, e4}) ≥ 1

where the last inequality follows from the fact that P \{e3, e4} is a path from s1 to t1 in N .

Now consider a path P from s2 to t2 in N ′. The path either passes through N or consists
of just e1 or e2. In the latter two cases we have by definition y(P) = ζj . For every path
passing through N we have

y(P) = (2ζj − 1)x(P) ≥ (2ζj − 1)αj = ζj

where the last equality follows from the definition of ζj = αj

2αj−1 ⇒ αj = ζj
2ζj−1 . 2

Claim A.8 We have
∑

e∈E[N ′] c(e)y(e) = g′1 + ζjg
′
2 = h′1 + ζjh

′
2 = LN ′(ζj).

Proof: Note that
∑

e∈E[N ′] c(e)y(e) = (2ζj − 1)
∑

e∈E[N] c(e)x(e) + 2C. Now,

g′1 + ζjg
′
2 = (2C − g1) + ζj(2g1 + g2) = (2ζj − 1)g1 + ζjg2 + 2C

= (2ζj − 1)g1 + (2ζj − 1)αjg2 + 2C =
∑

e∈E[N ′]

c(e)y(e)

where the second line follows from the fact that ζj = (2ζj − 1)αj . 2

This proves Lemma A.2. 2

Shifting Operation:
Given a network N , Figure 2 shows how to construct the stretched network N ′. Suppose
the profile of N was (α1, · · · , αk).

Lemma A.9 The profile for N ′ is (α1 + 1, · · · , αk + 1).

23

N
e

t1s1

t1

s1

t2s2

Figure 2: The network N ′ obtained from N . The edge e has a capacity D, where D is the maximum
f2 flow that is feasible in N .

Proof: For any i = 1, · · · , k, let (g1, g2) and (h1, h2) be two feasible flows in N satisfying
f1 + αif2 = LN (αi). Let x(e) be a feasible optimal dual solution to DN (αi). We construct
(g′1, g

′
2) and (h′1, h

′
2) which are feasible flows in N ′ and a feasible dual solution y(e) to

DN ′(αi + 1). We complete the proof by showing that
∑

e∈E[N ′] c(e)y(e) = g′1 + (αi + 1)g′2 =
h′1 + (αi + 1)h′2.

Let D be the max f2 flow feasible in N . Note D = LN (α1)

g′1 = g1 +D − g2, g
′
2 = g2; h′1 = h1 +D − h2, h

′
2 = h2;

∀e ∈ E[N], y(e) = x(e); y(e) = 1

Claim A.10 There exists feasible flows in N ′ of value (g′1, g
′
2) and (h′1, h

′
2) and y(e)’s form

a feasible dual solution to DN ′(αi + 1) whose value equals g′1 + (αi + 1)g′2 = h′1 + (αi + 1)h′2.

Proof: The flow of value g1 through N and D− g2 through the edge e is a feasible flow of
value g′1 from s1 to t1. The flow of value g2 via N and e is a valid g′2 flow.

The shortest s1, t1 paths P are either paths in N or the path {e}. In any case y(P) ≥ 1.
Any s2, t2 path has to be a path in N concatenated with e and thus y(P) ≥ αi + 1.

Also,
∑

e∈E[N ′] c(e)y(e) =
∑

e∈E[N] c(e)x(e) + D = LN (αi) + D. The proof completes
by noticing that g′1 + (αi + 1)g′2 = g1 +D− g2 +αig2 + g2 = LN (αi) +D. The same is true
for h′1 + (αi + 1)h′2. 2 2

24

