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Is perfect matching in NC? That is, is there a deterministic fast parallel algorithm for it? This has been an

outstanding open question in theoretical computer science for over three decades, ever since the discovery of

RNC perfect matching algorithms. Within this question, the case of planar graphs has remained an enigma:

On the one hand, counting the number of perfect matchings is far harder than finding one (the former is

#P-complete and the latter is in P), and on the other, for planar graphs, counting has long been known to be

in NC whereas finding one has resisted a solution.

In this article, we give an NC algorithm for finding a perfect matching in a planar graph. Our algorithm

uses the above-stated fact about counting perfect matchings in a crucial way. Our main new idea is an NC

algorithm for finding a face of the perfect matching polytope at which a set (which could be polynomially

large) of conditions, involving constraints of the polytope, are simultaneously satisfied. Several other ideas

are also needed, such as finding, in NC, a point in the interior of the minimum-weight face of this polytope

and finding a balanced tight odd set.
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1 INTRODUCTION

Is perfect matching in NC? That is, is there a deterministic parallel algorithm that computes a
perfect matching in a graph in polylogarithmic time using polynomially many processors? This
has been an outstanding open question in theoretical computer science for over three decades,
ever since the discovery of RNC matching algorithms [18, 26]. Within this question, the case of
planar graphs has remained an intriguing one: For general graphs, counting the number of per-
fect matchings is far harder than finding one: the former is #P-complete [33] and the latter is in
P [6]. However, for planar graphs, a polynomial time algorithm for counting perfect matchings
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was found by Kasteleyn, a physicist, in 1967 [19], and an NC algorithm follows easily,1 given an
NC algorithm for computing the determinant of a matrix, which was obtained by Csanky [4] in
1976. On the other hand, an NC algorithm for finding a perfect matching in a planar graph has
resisted a solution. In this article, we provide such an algorithm.

An RNC algorithm for the decision problem, of determining if a graph has a perfect matching,
was obtained by Lovász [21], using the Tutte matrix of the graph. The first RNC algorithm for the
search problem, of actually finding a perfect matching, was obtained by Karp et al. [18]. This was
followed by a simpler algorithm due to Mulmuley et al. [26], which besides solving the cardinality
matching problem also solved the generalization to weighted graphs, provided edge-weights are
small.

It is worth noting that all the NC-based works on general graph matching since [26] have re-
sorted to studying the weighted problem stated above, including the current article. For ease of
exposition in the current article, and to highlight this unifying setup, we provide key definitions
that follow from the work of [26]. Henceforth, by small weights, we will mean small edge weights
and the acronym MWPM will be short for minimum weight perfect matching. The RNC algorithm
of [26] for finding an MWMP in a graph with small weights has found several applications, e.g., it
is a crucial ingredient in pseudo-deterministic RNC algorithms for finding a perfect matching in
bipartite [12] and general graphs [1]; these are RNC algorithms with the additional requirement
that when run on the same graph, they find the same (i.e., unique) perfect matching with high
probability.

The perfect matching problem occupies an especially distinguished position in the theory of
algorithms: Some of the most central notions and powerful tools within this theory were discov-
ered in the context of an algorithmic study of this problem, including the notion of polynomial
time solvability [6], the counting class #P [33] and a polynomial time equivalence between random
generation and approximate counting for self-reducible problems [15], which lies at the core of the
Markov chain Monte Carlo method. The parallel perspective also led to such a gain, namely the
Isolation Lemma [26], which has found several applications in complexity theory and algorithms.
In view of these facts, the problem of finding an NC algorithm for perfect matching has remained
a premier open question ever since the 1980s.

The first substantial progress on this question was made by Miller and Naor in [1989] [25]. They
gave an NC algorithm for finding a perfect matching in bipartite planar graphs using a flow-based
approach. In 2000, Mahajan and Varadarajan [24] gave an elegant way of using an NC algorithm
for counting perfect matchings to find one, hence giving a different NC algorithm for bipartite
planar graphs; our work uses a similar approach.

Over the years, perhaps the most popular approach used for attacking the main open problem
was derandomization of the Isolation Lemma. In the last few years, this approach has led to partial
success, albeit via a partial derandomization: researchers have obtained quasi-NC algorithms for
perfect matching and its generalizations. Such algorithms run in polylogarithmic time; however,

they require a super-polynomial, in particular, O (nlogO (1) n ) processors. Several nice algorithmic
ideas have been discovered in these works and our algorithm has benefited from some of these;
in turn, it will not be surprising if some of our ideas turn out to be useful for the resolution of
the main open problem. First, Fenner et al. [10] gave a quasi-NC algorithm for perfect matching in
bipartite graphs ; this was followed by the algorithm of Svensson and Tarnawski for general graphs
[31]. Algorithms were also found for the generalization of bipartite perfect matching to the linear
matroid intersection problem by Gurjar and Thierauf [13], and to a further generalization of finding
a vertex of a polytope with faces given by totally unimodular constraints by Gurjar et al. [14].

1For a formal proof, in a slightly more general context, see [34].
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We will first prove the following theorem, since it may be of more general interest.

Theorem 1.1. There is an NC algorithm which given a planar graph, returns a perfect matching

in it, if it has one.

In Section 7, we present the following generalization:

Theorem 1.2. There is an NC algorithm which, given a planar graph with small weights, finds an

MWPM in it.

We will also present an NC algorithm for finding a perfect matching in graphs of bounded genus;
the common generalization of these results follows easily.

2 OVERVIEW AND TECHNICAL IDEAS

2.1 The Bipartite Case and Difficulties Imposed by Odd Cuts in General Graphs

We first give an outline of the NC algorithm of Mahajan and Varadarajan [24] for bipartite planar
graphs. W.l.o.g. assume that the graph is matching-covered, i.e., each edge is in a perfect matching.
Using an oracle for counting the number of perfect matchings, they find a point x in the interior of
the perfect matching polytope and they show how to move this point to lower-dimensional faces
of the polytope until a vertex is reached; this will be a perfect matching. Consider a face of the
graph (in a planar embedding), which of course will be an even-length cycle. By the choice of x ,
each edge e in this cycle satisfies 0 < xe < 1. Modifying x by increasing and decreasing alternate
edges by the same (small enough) amount ϵ moves the point inside the polytope; we will call this
a rotation of the cycle. Keep increasing ϵ , starting from 0, until some edge e on this cycle attains
xe = 02; in this case, e is dropped. When this happens, ϵ cannot be increased anymore and we will
say that the cycle is blocked. If so, the point x moves to a lower (by at least one) dimension face.

To make substantial progress, Mahajan and Varadarajan [24] observe that, for any set of edge-
disjoint cycles, this process can be executed independently (by different amounts) in parallel,
thereby reaching a face of the polytope of correspondingly lower dimension. Finally, they show
how to find Ω(n) edge-disjoint cycles (which will be edge-disjoint faces in a planar embedding)
in NC, thereby terminating in O (logn) such iterations. We note that another way of measuring
progress, which will also generalize to non-bipartite graphs, is the number of edges that get re-
moved.

The fundamental difference between the perfect matching polytopes of bipartite and non-
bipartite graphs is the additional set of constraints in the latter saying that for each odd set, S ,
of vertices we must have at least one edge in the cut δ (S ) (see LP, Equation (1), in Section 3.2).
Let us point out a new difficulty thatarises because of these constraints. Observe that in Figure 1,
the marked even cycle cannot be rotated in the manner shown, even though the starting point
x (namely xe = 1/3 for each edge e) is strictly in the interior of the polytope. The reason is that
on rotating the cycle, odd set S , which is tight w.r.t. x , goes under-tight, hence making its con-
straint infeasible. In this case, we say that cycleC is blocked by odd set S . Hence, in general graphs,
a cycle may become blocked in one of two ways (Section 5.1). However, since cycle C cannot be
rotated anymore it does not lose an edge. On the other hand, observe that since one of the odd set
constraints has gone tight, we are already at a face of one lower dimension!

Moving forward, how do we capitalize on this progress? The natural way (which happens to
need substantially many additional ideas to get to an NC algorithm) is to shrink S . This works
because at least one edge ofC must have both endpoints in S , and therefore the shrunk graph has
fewer edges than the original graph. The rough outline is now as follows: The shrunk graph has

2It is easy to see that when some edge in the cycle attains xe = 1, the adjacent edges will attain xe = 0.
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Fig. 1. Even cycle blocked by an odd set

constraint. Example due to [10] and [31].

Fig. 2. Resulting graph after shrink-

ing the blocking tight odd set.

a perfect matching, find it; expand S and remove from it the vertex that is matched via an edge
in δ (S ); and find a perfect matching on the remaining vertices of S . For an example of the shrunk
graph, see Figure 2.

As stated above, a number of new ideas is needed to make this rough outline yield an NC algo-
rithm. First, a small hurdle: IfG is non-bipartite planar, the procedure of Mahajan and Varadarajan
[24] will find Ω(n) edge-disjoint faces; however, not all of these faces may be even. In fact, there
are matching-covered planar graphs having only one even face. To get around this, we define the
notion of an even walk, first introduced in the context of parallel matching algorithms by [20]: it
consists of two odd faces with a path connecting them which will be traversed in both directions;
for convenience, we will call an even cycle an even walk as well (Section 3.3). We give an NC algo-
rithm for pairing up odd cycles into even walks and thereby show how to find Ω(n) edge-disjoint
even walks inG (Section 6.2). We will show that all statements made above about rotating an even
cycle apply to rotating an even walk as well (this is done in Lemma 5.2). In particular, similar to a
cycle, a walk is blocked either if it loses an edge or if an odd cut intersecting it goes tight; in the
later case, the odd set is shrunk. In either case, at least one edge is removed.

2.2 A Central Algorithmic Issue and Its Resolution

A new algorithmic question now arises: The amount of rotation required to make a walk lose
an edge is easy to compute; however, how do we find the smallest rotation to make an odd cut
intersecting the walk go just tight? In particular, there may be exponentially many near-tight odd
cuts intersecting the walk. Note that we need the smallest rotation since we do not want any odd
cut to go under-tight.

We will postpone an answer to this question until we address the next hurdle, which happens to
be a big one: As in the bipartite case, to make substantial progress, we need to move the point x to
a face of the polytope where each of the Ω(n) even walks is blocked. The situation was far easier in
bipartite graphs because a set of individually legal rotations —i.e, those that do not move the current
point outside the polytope—on edge-disjoint cycles, if executed simultaneously in parallel are still
legal. However, in the non-bipartite case, executing individually legal rotations simultaneously
may take the point outside the polytope, i.e., the entire set of rotations may not legal. These two
situations are illustrated in Figure 3 and Figure 4, respectively. The reason for the latter is that
rotations on two different walks may be “tightening” the same odd cut. This is illustrated in Figure 5
in which the two walks can individually be rotated by ϵ1 and ϵ2, respectively; however, executing
them both simultaneously makes the odd set S go under-tight.

The following insight, which is the central new idea in our work, helps us get around this hur-
dle: It suffices to find small edge=weights w so that for each of the even walks, W , the vector of
motion resulting from its rotation, χW , satisfies 〈w, χW 〉 < 0. Then, a minimizer of x �→ 〈w,x〉 in
the polytope will lie in a face at which each of the walks is blocked either because it has lost an
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Fig. 3. Parallel moves in the bipartite perfect match-

ing polytope.

Fig. 4. Parallel moves in the non-bipartite perfect

matching polytope.

Fig. 5. Odd set constraint vio-

lated when even walks are ro-

tated independently.

Fig. 6. Minimizer of appropriate linear function

x �→ 〈w,x〉 blocks even walks.

edge or it intersects a tight odd cut; obviously, the minimizer is a feasible point. This is illustrated
in Figure 6. The two shorter arrows indicate independent rotations of two edge-disjoint walks
which lead to two different faces of the polytope. Executing them both simultaneously would take
the point outside the polytope, as was illustrated in Figure 4. However, a minimizer of 〈w,x〉 lies
on a face of the polytope at which both the walks are blocked.

The small edge-weights w are obtained as follows: The traversal of an even walk gives an or-
dered list of edges, possibly with repetition, of even-length. W.r.t. a weight function w , define
the circulation of an even walk to be the absolute value of the difference of sum of weights of
even- and odd-numbered edges in the traversal of this walk (Section 5.1); observe that the circu-
lation of a walk is independent of the starting edge of the traversal of the walk. We show that any
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weight function w that makes the circulation of each of the even walks non-zero suffices in the
following sense: Given such a function w , we can pick a direction of rotation for each of the even
walks so that one of the half-spaces defined by w contains the vector w and the other contains
the vector of motion of each of the even walks (Lemma 5.3). Interestingly enough, such a function
w is very easy to construct: in each walk, pick the weight of any one edge to be 1 and the rest 0
(Section 4.2).

Next, we need to find a minimizer, say x , ofw in the polytope. Clearly, taking x to be the average
of all MWPMs works. It is easy to see that this point can be specified as follows: for each edge e ,
xe = #Ge

w/#Gw , where #Gw and #Ge
w are the number of MWPMs inG and the number of MWPMs

in G containing the edge e , respectively. Clearly, an NC procedure for #Gw suffices for finding x .
This is achieved by finding a Pfaffian orientation (Section 3.1) for G, appropriately substituting
for the variables in the Tutte matrix of G and computing the determinant of the resulting matrix
(Section 6.1).

Some clarifications are due at this point: First, let us answer the opening question of this section,
i.e., how do we find the smallest rotation that blocks a given walk via an odd cut? Interestingly
enough, at present we know of no simpler method for one walk than for multiple walks (binary
search on the amount of rotation comes to mind but that is not an elegant, analytic solution).
Second, let us justify using decrease in the number of edges, rather than dimension of the current
point, as our measure of progress. For a single walk, both measures work. However, it could be
that on rotating k edge-disjoint walks, only one odd set, S , goes tight and blocks all k walks, hence
leading to a decrease in dimension of only one. On the other hand, on shrinking S , each of these k
walks will lose at least one edge.

2.3 The Rest of the Ideas

A number of ideas are still needed to get to an NC algorithm. First, for each walk that does not
lose an edge, we need to find a tight odd cut intersecting it. For this, we use a result of Padberg
and Rao [27] stating that one of the cuts in the Gomory-Hu tree of a graph is a minimum-weight
odd cut. We show how to find a Gomory-Hu tree in a weighted planar graph in NC (Section 6.3),
a result of independent interest. Next, consider a walk W which is intersecting a tight odd cut
w.r.t. the current point x . We rotate walkW further slightly so point x becomes infeasible, i.e.,W
now crosses an under-tight cut, or perhaps several of them (Lemma 5.3). Observe that rotating a
walk leaves each singleton cut tight. Hence, w.r.t. x , each minimum-weight odd cut must be an
under-tight odd cut that crosses W , and the Gomory-Hu tree will reveal one of them. Repeating
this for all walks in parallel, we obtain a set of tight odd cuts that intersect each of the walks.

However, these odd sets cannot be shrunk simultaneously because of the following reason. Re-
call that two sets S1, S2 ⊂ V are said to cross if the four sets S1 ∩ S2, S1 − S2, S2 − S1, V − (S1 ∪ S2)
are all non-empty. Thus, these sets are non-crossing if either they are disjoint or one is contained
in the other. If S1 and S2 are crossing tight odd sets, then on shrinking them both, we will get a
graph in which matching will not have the properties stated in Section 2.1. A family of subsets of
V is said to be laminar if each pair is non-crossing. It is well known that there exists a laminar
family of tight odd cuts, but how do we find it in NC?

We next give a divide-and-conquer-based procedure that removes the crossings and finds
pairwise-disjoint odd sets, each corresponding to one side of a tight odd cut. These uncrossed sets
correspond to the top level of a laminar family and can be shrunk simultaneously (Section 5.2).
The uncrossing procedure works as follows: Partition the family of tight odd cuts into two (almost)
equal subfamilies; recursively “uncross” each subfamily to obtain its top-level sets; finally, merge
the two families of top-level sets into one family. Clearly, the last step is the crux of the proce-
dure. In Section 5.2, we present a number of structural properties of the intersections of tight odd
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Fig. 7. Shrinking repeatedly yields a balanced viable set.

sets which eventually go to showing that they have a simple intersection structure which can be
exploited appropriately.

The proposed algorithm has now evolved to the following: Shrink all top-level sets and recur-
sively find a perfect matching in the shrunk graph; then recursively finding a perfect matching in
each of the shrunk sets (after removing its matched vertex). This algorithm has polylogarithmic
depth; however, it does not run in polylogarithmic time because of the following inherent sequen-
tiality: perfect matchings in the shrunk sets have to be found after finding a perfect matching
in the shrunk graph. The reason is that a perfect matching in a shrunk set S can be found only
after knowing the vertex in S that is matched outside S . Moreover, the perfect matchings in the
shrunk graph and the shrunk sets need to be found via a recursive application of the full algorithm
described so far.

Let us say that odd set S ⊂ V is viable if there is at least one perfect matching in G which picks
exactly one edge from δ (S ) and a set S ⊆ V is balanced if both S and its complement contain a
constant fraction of the vertices. Our final idea is to show how to find in NC a balanced viable
odd set, and that finding such a set suffices. We give a reason for the latter claim, assuming we
already found a balanced viable odd set, S . Using similar techniques to those that enabled us to
find a minimizer of weight vectorw in the polytope (which used the fact that counting the number
of perfect matchings in planar graphs is in NC), we show how to find an edge e ∈ δ (S ) which is
the unique edge in a perfect matching from this cut. Now we are done by a simple divide-and-
conquer strategy: match e , remove its end-points and find perfect matchings in the two sides of
the cut recursively, in parallel. Notice that with this scheme, even though perfect matchings in
the two sides can be found only after finding the matched edge e , the latter can be done without
any recursive calls, hence, leading to a polylogarithmic running time. However, the task of finding
a balanced viable odd set is not straightforward. It involves executing O (logn) iterations of the
procedure described above, keeping track of the number of original vertices in each shrunk node,
until the number of nodes is a certain constant. Finally, the node with the largest number of vertices
is the required set (Section 4.2). This is illustrated in Figure 7.

3 PRELIMINARIES

In this section, we will state several notions and algorithmic primitives we need for our NC algo-
rithm for finding a perfect matching in a planar graph.

3.1 The Tutte Matrix and Pfaffian Orientations

A key fact underlying our algorithm is that computing the number of perfect matchings in a planar
graph lies in NC, see [22] and [34].

LetG = (V ,E) be an arbitrary graph (not necessarily planar). Let A be the symmetric adjacency
matrix of G, i.e., corresponding to each edge (i, j ) ∈ E, A(i, j ) = A(j, i ) = 1, and the entries
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corresponding to non-edges are zero. Obtain matrixT from A by replacing for each edge (i, j ) ∈ E,
its two entries by xi j and −xi j , so the entries below the diagonal are positive; clearly, T is
skew-symmetric. T is called the Tutte matrix for G. Its significance lies in that its determinant is
non-zero as a polynomial iff G has a perfect matching. However, computing this determinant is
not easy: Simply writing it will require exponential time in general.

Next assume that G has a perfect matching. A simple even cycle C in G is said to be nice if
the removal of its vertices leaves a graph having a perfect matching. If so, clearly, C lies in the

symmetric difference of two perfect matchings in G. Direct the edges of G to obtain
−→
G . We will

say that
−→
G is a Pfaffian orientation for G if each nice cycle C has an odd number of edges oriented

in each way of traversingC . Its significance lies in the following: Let (i, j ) ∈ E, with i < j. If in the
Pfaffian orientation, this edge is directed from i to j, then let xi j = 1, otherwise let xi j = −1. Then
the determinant of the resulting matrix is the square of the number of perfect matchings in G.

Next, we use the important fact that every planar graph has a Pfaffian orientation [19] and
moreover, such an orientation can be found in NC and the determinant can be computed in NC by
Csanky’s algorithm [4]. Hence, we can answer the decision question of whether G has a perfect
matching in NC.

3.2 The Perfect Matching Polytope, Its Faces, and Tight Odd Sets

We use the notation 1F to denote the indicator vector of a subset of edges F ⊆ E. For a subset
of vertices S , we let δ (S ) denote the edges that cross S , and by a slight abuse of notation, we let
δ (v ) = δ ({v}) denote the set of edges adjacent to vertex v .

The perfect matching polytope is the convex hull of indicator vectors of all perfect matchings
in G and will be denoted by PM (G ):

PM(G ) = conv
{
1M | M is a perfect matching of G

}
.

The perfect matching polytope lives in RE and is alternatively described by the following set of
linear equalities and inequalities [5]:

⎧⎪⎪⎨
⎪⎪
⎩
x ∈ RE

�������

〈1δ (v ),x〉 = 1 ∀v ∈ V ,
〈1δ (S ),x〉 ≥ 1 ∀S ⊂ V , with |S | odd,
xe ≥ 0 ∀e ∈ E.

⎫⎪⎪⎬
⎪⎪
⎭

(1)

For a given weight vector w ∈ RE on edges, we can obtain minimum-weight fractional and
integral perfect matchings by minimizing the linear function x �→ 〈w,x〉 = ∑e wexe subject to the
above-stated constraints. This set of fractional and integral perfect matchings form a face of PM(G )
and will be denoted by PM(G,w ).

An important step needed by our algorithm is finding a point in the relative interior of the
face PM(G,w ) in NC. The algorithm of [24] obtained such a point for the case of bipartite planar
graphs by using the fact that counting the number of perfect matchings in planar graphs is in
NC. The current article requires a weighted-extension, using ideas from [24] and [26]. We do this
by computing a Pfaffian orientation for G and then evaluating the Tutte matrix for appropriate
substitutions of the variables. The point we find will be exactly the average of the vertices, i.e., 1M

for perfect matchings M , lying on the face PM(G,w ). We denote this average by avg(PM(G,w )).
As is well known,

avg(PM(G,w )) =
1

| {M | 1M ∈ PM(G,w )} |
∑

M :1M ∈PM(G,w )

1M .

Lemma 3.1. Given a planar graph G = (V ,E) and small edge-weights w ∈ ZE , there is an NC al-

gorithm which returns avg(PM(G,w )).
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We prove Lemma 3.1 in Section 6.1.
In general, a face of PM(G ) is defined by setting a particular set of inequalities to equalities. Let

S be the family of odd sets whose inequalities are set to equality. These will be called tight odd sets.
Two such tight odd sets S1, S2 ∈ S are said to cross if they are not disjoint and neither is a subset
of the other. If so, one can prove that either S1 ∩ S2 and S1 ∪ S2 are also tight odd sets or S1 − S2

and S2 − S1 are tight odd sets. In the former case one can remove the equality constraint for S1 and
replace it by the equality constraints for S1 ∩ S2 and S1 ∪ S2, and the face would not change. In the
latter case S1 can be replaced by S1 − S2 and S2 − S1 and still the face remains invariant. In either
case, the new sets do not cross. The familyS is said to be laminar if no pair of sets in it cross. Given
a family of tight odd sets S, one can successively uncross pairs to obtain a family of tight odd sets
defining the same face of the polytope. This operation will result in a laminar family. However,
for our purposes, we only need to work with the maximal sets in the laminar family. We define a
similar notion of uncrossing for such top-level sets and show how they give us the set of equality
constraints, by defining things appropriately.

3.3 Finding Maximal Independent Sets and Even Walks

One of the ingredients we use in multiple ways to design our algorithm is that a maximal inde-
pendent set in a graph can be found in NC.

Lemma 3.2 ([23]). There is an NC algorithm for finding some maximal independent set in an input

graph G = (V ,E).

Kulkarni et al. [20] used Lemma 3.2 to find linearly many edge-disjoint cycles in bipartite planar
graphs. We use a similar step, but instead of cycles we have to work with even walks, i.e., cycles
with possibly repeated edges. We only deal with special types of even walks that are standard in
graph theory; we will make them explicit next. We note that, in the past, several articles on parallel
matching algorithms have used such walks.

Throughout this article, an even walk is used to refer to either a simple even-length cycle in G
or the following structure: Let C1 and C2 be two odd-length edge-disjoint cycles in G and let P be
a path, edge-disjoint from C1,C2, connecting vertex a vertex, say v1, of C1 to a vertex, say v2, of
C2; if v1 = v2, P will be the empty path. Starting from v1, traverse C1, then P from v1 to v2, then
traverse C2, followed by P from v2 to v1.

Note that all of our walks start and end at the same location. We use Lemma 3.2 to derive the
following. We prove Lemma 3.3 in Section 6.2.

Lemma 3.3. Suppose that G = (V ,E) is a connected planar graph with no vertices of degree 1 and

at most |V |/2 vertices of degree 2. Then, there is an NC algorithm for finding Ω( |E |) edge-disjoint

even walks in G.

4 MAIN ALGORITHM

4.1 Divide-and-Conquer Procedure

In this section, we will describe the algorithm we use to prove Theorem 1.1. W.l.o.g. assume that
the input graph has a perfect matching. We can easily check whether a perfect matching exists by
counting the number of perfect matchings in NC; see Section 3.1.

We use a divide-and-conquer approach. The pseudocode is given in Algorithm 1. Given a graph
G = (V ,E), our algorithm finds an odd set S ⊂ V , selects an edge e ∈ δ (S ) as the first edge of the
perfect matching, and then recursively extends this to a perfect matching in S andV − S , without
using any other edge of the cut δ (S ).
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ALGORITHM 1: Divide-and-conquer algorithm for finding a perfect matching.

PerfectMatching(G = (V ,E))
if |V | = 0 then

return ∅.
else

Find a viable set S with |S |/|V | ∈ [c1, 1 − c1].
Let w ← 1δ (S ) .
Let x ← avg(PM(G,w )).
Select an arbitrary edge e ∈ δ (S ) with xe > 0.
Let G1 be the induced graph on S with the endpoint of e removed.
Let G2 be the induced graph on V − S with the endpoint of e removed.
in parallel do

M1 ← PerfectMatching(G1).
M2 ← PerfectMatching(G2).

end

end

return M1 ∪M2 ∪ {e}

Note that if M is the output of our algorithm, by definition, |M ∩ δ (S ) | = 1. This prevents us
from using an arbitrary odd set S ⊂ V in the first step and motivates the following definition.

Definition 4.1. Given a graph G = (V ,E), an odd set S is called viable if there exists at least one
perfect matching M ⊆ E with |M ∩ δ (S ) | = 1.

In order for a step of the algorithm to make significant progress, i.e., reduce the size of the graph
by a constant factor, we also require the viable set to be balanced. That is, we require

c1 ≤
|S |
|V | ≤ (1 − c1)

for some small constant 0 < c1 < 1/2. Throughout this article, we will assume several constant
upper bounds for c1. At the end c1 can be set to the lowest of these upper bounds.

Assuming that we are able to find a balanced viable set S in NC, we can prove Theorem 1.1.

Proof of Theorem 1.1. Since the set S found by Algorithm 1 is viable, there is at least one per-
fect matching N with |N ∩ δ (S ) | = 1. On the other hand, for the weight vector w = 1δ (S ) and any
perfect matching N , we have 〈w,1N 〉 = |N ∩ δ (S ) |, which is always at least one. So the MWPMs
N are exactly those that have a single edge in the cut δ (S ). The point x is the average of these
perfect matchings, so for any edge e with xe > 0, there is at least one MWPM N containing e . This
shows that {e} can be extended to a perfect matching without using any other edge of δ (S ) and
therefore proves that G1 and G2 both have a perfect matching, an assumption we need in order to
be able to recursively call the algorithm. This shows the correctness of the algorithm.

We finish the proof by showing that the algorithm is in NC. By Lemma 3.1, we can compute a
point x in the polytope in NC, and we assumed the viable set S was found by an NC algorithm.
So all of the steps of each recursive call can be executed in polylogarithmic time with a polyno-
mially bounded number of processors. Notice that the recursion depth of the algorithm is at most
log1/(1−c1 ) ( |V |) which is logarithmic in the input size. This is because the size of the graph gets
reduced by a factor of 1 − c1 in each recursion level. Since recursive calls are executed in parallel,
this shows that the entire algorithm runs in polylogarithmic time. �

All that remains is finding a balanced viable set by an NC algorithm. This is done in Section 4.2.
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4.2 Finding a Balanced Viable Set

In this section, we describe how to find a balanced viable set S in a graph G = (V ,E) by an NC al-
gorithm; we note that the procedure works for a non-planar graph as well. We can assume w.l.o.g.
that |V | > 1

c1
and 1

1−c1
< 2. Therefore, a single vertex and V are not balanced viable sets.

Let us reduce the size of the graph G by either removing edges not participating in perfect
matchings or shrinking tight odd sets. Any vertex in the shrunk graph corresponds to an odd set
in the original graphG. This odd set is always viable. Therefore, if we manage to reduce the size of
the shrunk graph sufficiently so it contains at most 1/c1 vertices, then the largest of the viable sets
we get would have size at least c1 |V |. When we remove edges or shrink odd sets, we can also make
sure the size of a viable set is not larger than (1 − c1) |V |. Hence, in the end, we obtain a balanced
viable set. See Figure 7 for a depiction.

The pseudocode is given in Algorithm 2; the procedures Reduce(G, f) and Preprocess(G, f)
called from this algorithm are given in Algorithm 3 and Algorithm 4, respectively. Throughout
the algorithm we maintain a mapping f from the original vertices to the vertices of the current
shrunk graph and at termination, we return the pre-image of the vertex that contains c1 fraction
of the original vertices.

ALGORITHM 2: Finding a balanced viable set.

BalancedViableSet(G0 = (V0,E0))
Let G = (V ,E) be a copy of G0 and let f : V0 → V be the identity map.
while | f −1 (v ) | < c1 |V0 | for all v ∈ V do

G, f ← Preprocess(G, f ).
G, f ← Reduce(G, f ).

end

Find v ∈ V for which | f −1 (v ) | ≥ c1 |V0 |.
return f −1 (v ).

Lemma 4.2. The while loop in Algorithm 2 finishes as soon as |V | ≤ 1
c1

.

Proof. At any point in the algorithm, we have

∑

v ∈V

| f −1 (v ) |
|V0 |

= 1.

When the number of terms in the sum is less than 1
c1

, one of them will be larger than c1. �

We maintain the invariant that our graphG is planar, and has a perfect matching. This invariant
is satisfied because we restrict ourselves to only the following two operations:

(1) Remove an edge e from G, where e does not participate in any MWPM for some weight
vector w .

(2) Shrink a set S of vertices that is a tight odd set w.r.t. some point x in the perfect matching
polytope.

Lemma 4.3. If a graph G is planar, has a perfect matching and is matching-covered, then after the

removal of an edge or shrinking of a tight odd set as described above, it continues to remain planar

and have a perfect matching.

Proof. The lemma is obvious in the case of removing an edge. Planarity is automatically satis-
fied, and since the edge did not participate in any MWPM, the remaining graph still has a MWPM.
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In the case of shrinking a tight odd set, first note that the resulting graph would still have a
perfect matching. More precisely, let x be a point in the perfect matching polytope of G and let x ′

be the vector obtained after shrinking S . Then, x ′ is a valid point in the perfect matching polytope
of the shrunk graph; the degree constraint of the shrunk vertex is satisfied because the odd set
constraint of S was originally tight.

We next show that, after shrinking S , the graph remains planar. If the graph induced on S is
connected, this follows from the fact that contracting edges preserves planarity. So assume that
the graph induced on S is not connected. Observe that the latter graph cannot contain two or
more odd components because each of these components would need a matched edge from δ (S ),
contradicting the assumption that S is a tight odd set. On the other hand, a simple parity argument
shows that there must be at least one odd component. So there is exactly one odd component, that
we call S1.

Next assume that the induced graph on S has some component S2, other than S1. We have
already shown that S2 must be even. Note that 〈1δ (S1 ),x〉 ≤ 〈1δ (S ),x〉 and equality holds if and
only if S2 does not have any outgoing edges in the entire graph. But 〈1δ (S ),x〉 = 1, and 〈1δ (S1 ),x〉 ≥
1, so there must be equality. This shows that all edges in δ (S ) belong to δ (S1), and that S2 is a
connected component in the entire graph. We see that the induced graph on S must consist of
one odd component, and some number of even components that are connected components in the
entire graph as well. Shrinking each of the latter results in a vertex. Shrinking these vertices with
the odd component preserves planarity. �

It is also easy to see that the pre-image of any viable set at any point in the resulting graph is
a viable set in the original graph, because any perfect matching in G can be extended to a perfect
matching in G0. Therefore we can return f −1 (v ) at any point if it is a balanced set.

The main loop in Algorithm 2 has two steps, Preprocess and Reduce. Although not explicitly
stated in the pseudocode, at any point in the execution of either step, we can terminate the whole
procedure by finding a balanced viable set and directly returning it.

First, we preprocess the graph. Below, we state the properties we expect to hold after prepro-
cessing. We postpone the description of the procedure Preprocess and the proof of Lemma 4.4 to
Section 4.3.

Lemma 4.4. The procedure Preprocess either finds a balanced viable set or after it returns the

following conditions hold.

(1) G is connected.

(2) No vertex v ∈ V has degree 1 and at most half of the vertices have degree 2.

(3) For all v ∈ V , we have | f −1 (v ) | < c1 |V0 |.

Now we describe the main step, i.e., Reduce. The pseudocode is given in Algorithm 3.
Assuming Lemma 4.4, our goal is to either remove a constant fraction of the edges ofG or shrink

pieces of G so that a constant fraction of the edges get shrunk. The conditions satisfied after the
preprocessing step, Lemma 4.4, ensure that we can apply Lemma 3.3 and find Ω( |E |) edge-disjoint
even walks, as we do in the first step of Algorithm 3.

Next, we construct a weight vector which is 0 everywhere except for the first edge of every even
walk, and find a point x in the relative interior of PM(G,w ) by applying Lemma 3.1. By our choice
of weight vector, each even walk either loses an edge or gets blocked by a tight odd set as we will
prove in Section 5. Our last step consists of finding a number of disjoint odd sets S1, . . . , Sl , such
that each even walkWi , that did not lose an edge, has an edge with both endpoints in one S j . We
describe the procedure DisjointOddSets and prove these properties in Section 5.
Now we can prove the following:
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ALGORITHM 3: Reducing the size of a graph by shrinking vertices and removing edges.

Reduce (G = (V ,E), f : V0 → V )
Find Ω( |E |) edge-disjoint even walksW1, . . . ,Wk .
Let w ← 0, the zero weight vector.
forW ∈ {W1, . . . ,Wk } in parallel do

Set we ← 1 for the first edge e ofW .
end

Let x ← avg(PM(G,w )).
for e ∈ E with xe = 0 in parallel do

Remove edge e from G.
end

LetW = {Wi |Wi did not lose an edge}.
Let S1, . . . , Sl ← DisjointOddSets(G, f ,x ,W ).
Shrink each Si into a single vertex and update f on f −1 (Si ) to point to the new vertex.

Lemma 4.5. After running Reduce we either find a balanced viable set, or |E | gets reduced by a

constant factor.

Proof. We find k even walks where k = Ω( |E |). Every walk either loses an edge in the edge
removal step, or loses an edge after shrinking S1, . . . , Sl . So the number of edges gets reduced by at
least k , which is a constant fraction of |E | as long as |E | is large enough (larger than a large enough
constant). Note that we never encounter graphs with |V | < 1/c1 by Lemma 4.2, so by setting c1

small enough we can assume that |E | is larger than a desired constant. �

By Lemma 4.5, our measure of progress, namely |E |, gets reduced by a constant factor each time
until we find a balanced viable set. Therefore, the number of times Reduce is called is at most
O (log( |E0 |)), so as long as DisjointOddSets can be run in NC, the whole algorithm is in NC.

We describe the remaining pieces, Preprocess in Section 4.3, and DisjointOddSets in Sec-
tion 5.

4.3 Preprocessing

Here we describe the procedure Preprocess and prove Lemma 4.4. The pseudocode is given in
Algorithm 4. Throughout the process, we make sure that | f −1 (v ) | < c1 |V0 | for every v or we find
a balanced viable set.

In the first step, we remove any edge ofG that does not participate in a perfect matching. Next,
we make the graph connected. We arrive at a connected graph where every edge participates in a
perfect matching. This ensures that there are no vertices of degree 1, unless the entire graph is a
single edge; but in that case, we return f −1 (v ) as a balanced viable set for one of the two vertices.

After having a connected graph with no vertices of degree 1, while half of the vertices have
degree 2, we shrink them into other vertices by finding appropriate tight odd sets. The while loop
can be run at most a logarithmic number of times, because each time the number of vertices gets
reduced by a factor of 2.

It remains to describe the procedures MakeConnected and ShrinkDegreeTwos. Both of these
procedures work by shrinking tight odd sets w.r.t. x . In both, we have to be slightly careful to avoid
shrinking a large piece of the original graph causing a violation of the condition | f −1 (v ) | < c1 |V0 |.

First, let us describe MakeConnected. We first find the connected components C1, . . . ,Ck of G.
We sort them to make sure | f −1 (C1) | ≤ · · · ≤ | f −1 (Ck ) |. Let v be an arbitrary vertex of Ck . For
any i < k, the set Si = {v} ∪C1 ∪ . . .Ci is a tight odd set, because {v} is a tight odd set and adding
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ALGORITHM 4: The preprocessing step.

Preprocess (G = (V ,E), f : V0 → V )
Let x ← avg(PM(G )).
for e ∈ E with xe = 0 in parallel do

Remove e from G.
end

Let G, f ← MakeConnected(G, f ).
while |{v ∈ V | deg(v ) = 2}| > |V |/2 do

Let G, f ← ShrinkDegreeTwos(G, f ).
end

entire connected components does not change the cut value. If | f −1 (Sk−1) | < c1 |V0 |, then we can
simply shrink Sk−1 into a single vertex and make the graph connected. Otherwise, let j be the first
index where | f −1 (S j ) | ≥ c1 |V0 |. Then, f −1 (S j ) is a viable set, because it is a tight odd set. We claim
that it is balanced as well; for this we need to show that | f −1 (S j ) | ≤ (1 − c1) |V0 |. We have

| f −1 (S j ) | = | f −1 (S j−1) | + | f −1 (Cj ) | ≤ c1 |V0 | +
1

2
|V0 |,

where we used the fact that Cj is not the largest component in terms of f −1 (Cj ). So as long as
c1 + 1/2 < 1 − c1, we are done. This is clearly satisfied for small enough c1.

Now let us describe ShrinkDegreeTwos, which is based on a similar step in [20]. First we iden-
tify all vertices of degree 2. Some of these vertices might be connected to each other, in which
case we get paths formed by these vertices. We can extend these paths, by the doubling trick in
polylogarithmic time to find maximal paths consisting of degree 2 vertices. Then, in parallel, for
each such maximal path we do the following: Let the vertices of the path be (v1, . . . ,vk ). Further,
let v0 be the vertex we would get if we extended this path from the v1 side and vk+1 the one we
would get from the vk side. Note that deg(vi ) = 2 for i = 1, . . . ,k but not for i = 0,k + 1.

We claim that for any even i , the set Si = {v0,v1, . . . ,vi } is a tight odd set. To see this, let
t = x (v0,v1 ) . Then, because v1 has degree 2, it must be that x (v1,v2 ) = 1 − t . Then, this means that
x (v2,v3 ) = t , and so on. In the end, we get that x (vi−1,vi ) = 1 − t . Now, look at the edges in δ (S ). They
are either adjacent tov0 orvi . Those adjacent tov0 have a total x value of 1 − t and those adjacent
to vi have a total x value of t . So 〈1δ (Si ),x〉 = t + (1 − t ) = 1.

Now, let j be the first even index such that | f −1 (S j ) | ≥ c1 |V0 |. If no such index exists, we can
simply shrink Sk or Sk+1 (depending on the parity of k). Else, we claim that S j is a balanced viable
set. Viability follows from being a tight odd set. Being balanced follows because

| f −1 (S j ) | = | f −1 (S j−2) | + | f −1 (vj−1) | + | f −1 (vj ) | ≤ c1 |V0 | + c1 |V0 | + c1 |V0 |.

So as long as 3c1 ≤ (1 − c1), the set S j is balanced and we can simply return it.
Having all of the ingredients, we now finish the proof of Lemma 4.4.

Proof of Lemma 4.4. It is easy to see that the pointx ∈ PM(G ) remains a valid point throughout,
i.e., it remains in the perfect matching polytope even after shrinking sets. This is because we only
shrink tight odd sets w.r.t. x . Assume that the algorithm does not find a balanced viable set.

After MakeConnected the graph becomes connected, and from then on it remains connected.
Since x remains a valid point in the perfect matching polytope until the end, every edge at the end
participates in a perfect matching. But in a connected graph, this means that there are no vertices
of degree 1.
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Note that each time ShrinkDegreeTwos is called, the number of vertices in the graph gets re-
duced. It is easy to see that for each path of length k consisting of degree 2 vertices, the number of
vertices that disappear during shrinking is at least k . So ShrinkDegreeTwos reduced the number
of vertices by at least the number of degree 2 vertices.

Finally, note that by the stopping condition of the while loop, the algorithm terminates only
when at most half of the remaining vertices have degree 2. So until then, the number of vertices
in the graph gets at least halved in each iteration. Therefore, the number of iterations is at most
logarithmic. �

5 TIGHT ODD SETS

In this section, we describe the main remaining piece of the algorithm, namely the procedure
DisjointOddSets. The input to this procedure is a graph G = (V ,E) and a map f : V0 → V , a
number of edge-disjoint even walks W1, . . . ,Wm in G, the point x = avg(PM(G,w )), where w is
the weight vector constructed in Algorithm 3. Note that xe > 0 for all e ∈ E, since we removed all
edges e with xe = 0. We will prove the following:

Lemma 5.1. There is an NC algorithm DisjointOddSets, that either finds a balanced viable set,

or finds disjoint tight odd sets S1, . . . , Sl satisfying the following: In anyWi there is an edge e both of

whose endpoints belong to some S j . Furthermore, | f −1 (S j ) | < c1 |V0 | for all j.

At a high level, the procedure works as follows:

(1) First, for each even walkWi , we find a tight odd set blocking it.
(2) The resulting tight odd sets might cross each other in arbitrary ways. We uncross them

to obtain S1, . . . , Sl , being careful not to produce sets with | f −1 (Si ) | ≥ c1 |V0 |.

In Section 5.1, we describe the procedure for finding a tight odd set blocking an even walk. Then,
in Section 5.2, we describe how to uncross these and produce disjoint odd sets.

5.1 Finding a Tight Odd Set Blocking an Even Walk

In this section, we describe how to find a tight odd set blocking a given even walk W . At a high
level, we first move slightly outside of the polytope by moving along a direction defined by W .
Then, we find one of the violated constraints defining the perfect matching polytope. This must
be the tight odd set we were after.

Recall that an even walk is either a simple even-length cycle in G or the following structure:
LetC1 andC2 be two odd-length edge-disjoint cycles inG and let P be a path connecting vertexv1

of C1 to vertex v2 of C2; if v1 = v2, P will be the empty path. Starting from v1, traverse C1, then P
from v1 to v2, then traverse C2, followed by P from v2 to v1.

Next, we define the alternating vector of an even walkW . For this purpose, writeW as a list of
edgesW = (e1, . . . , ek ), where k is even and if the walk contains a path, then the edges of the path
will be repeated twice in this list. We define the alternating vector associated to W as the vector
χW given by

χW = −1e1 + 1e2 − 1e3 + · · · + 1ek
=
∑

i

(−1)i1ei
.

In terms of its components, we have

(χW )e =

⎧⎪⎪⎨
⎪⎪
⎩

(−1)i if e = ei and e is not on the path inW ,
2(−1)i if e = ei and e is on the path inW ,
0 if e � ei for any i .
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Note that for a weight vector w , we have

〈w, χW 〉 = −we1 +we2 −we3 + · · · +wek
.

In particular for the weight vector chosen in Algorithm 3, we have 〈w, χW 〉 < 0.
We next define the notion of rotation of an even walk. For a given reference point x ∈ RE an ϵ-

rotation byW is simply the point y = x + ϵ χW . We remark that ϵ will always have a small, though
still inverse exponentially large, magnitude. As a simple observation, note that

〈w,y〉 = 〈w,x〉 + ϵ · 〈w, χW 〉 < 〈w,x〉.
Note that the point x is avg(PM(G,w )), i.e., we have

x =
1M1 + · · · + 1Mm

m
,

where M1, . . . ,Mm are all the MWPMs in G.
We will now see what happens to an ϵ-rotation of this point if ϵ is small enough.

Lemma 5.2. Let x = avg(PM(G,w )) for some weight vectorw . LetW be an even walk whose edges

are in the support of x , i.e., for every e ∈W , we have xe > 0, and let 〈w, χW 〉 < 0. Let K (n) ≤ nn

denote the number of perfect matchings in the complete graph Kn , and let y be an ϵ-rotation of x with

the walkW for some ϵ < 1/(2nK (n)). Then, the following hold:

(1) For every vertex v , we have 〈1δ (v ),y〉 = 1.

(2) For every odd set S ⊂ V , if 〈1δ (S ),x〉 > 1, then 〈1δ (S ),y〉 ≥ 1.

(3) For every edge e ∈ E, we have ye ≥ 0.

Proof. Condition (1) holds because 〈1δ (v ), χW 〉 = 0. This identity holds, because the walk W
enters and exits each vertexv the same number of times, and the entries and exits have alternating
signs, cancelling each other.

Condition (2) holds, because when 〈1δ (S ),x〉 > 1, then it is larger than 1 by a margin; choosing
ϵ small enough will not let us erase more than this margin. Formally, we have

〈1δ (S ),x〉 =
〈1δ (S ),1M1〉 + · · · + 〈1δ (S ),1Mm

〉
m

,

and note that 〈1δ (S ),1Mi
〉 is at least 1 and must be greater than 1 for some i . For that particular i,

this value must be at least 2 (in fact, at least 3), which gives us

〈1δ (S ),x〉 ≥ 1 +
1

m
.

Now, note that ‖χW ‖1 ≤ 2n and ‖1δ (S ) ‖∞ ≤ 1 which together imply that

|〈1δ (S ), χW 〉| ≤ 2n.

Finally, piecing things together, we have

〈1δ (S ),y〉 = 〈1δ (S ),x〉 + ϵ〈1δ (S ), χW 〉 ≥ 1 +
1

m
− 2nϵ ≥ 1 +

1

m
− 2n

2nK (n)
≥ 1.

Condition (3) holds, because again, xe > 0 implies that xe is positive by a margin. We have

xe =
(1M1 )e + · · · + (1Mm

)e

m
≥ 1

m
,

which implies that ye ≥ 1/m − 2ϵ ≥ 0. �

Lemma 5.2 almost ensures that the point y is inside the perfect matching polytope PM(G ) if
the starting point x was in PM(G ). The only way that y cannot be in PM(G ) is if there is an odd
set S ⊂ V such that 〈1δ (S ),x〉 = 1, i.e., a tight odd set, whose constraint gets violated by y. This

Journal of the ACM, Vol. 67, No. 4, Article 21. Publication date: May 2020.



Planar Graph Perfect Matching Is in NC 21:17

leads us to the following important lemma, which enables us to extract a tight odd set blocking the
rotation of the walkW .

Lemma 5.3. Suppose w is a weight vector, x = avg(PMw (G )), W is a walk that satisfies the con-

ditions of Lemma 5.2, and furthermore 〈w, χW 〉 < 0. Then there must be an odd set S ⊂ V such that

〈1δ (S ),x〉 = 1 and 〈1δ (S ), χW 〉 � 0. Furthermore, such an S can be found by first obtaining y as an

ϵ-rotation of x byW , for a small but inverse exponentially large ϵ , and then finding a minimum odd

cut in y:

argmin
S ⊂V , |S | is odd

〈1δ (S ),y〉.

Proof. Since 〈w, χW 〉 < 0, we have 〈w,y〉 < 〈w,x〉. We choose the magnitude of ϵ to be small
enough that the conditions of Lemma 5.2 are satisfied. Now, since x was a minimizer of the linear
function x �→ 〈w,x〉 over the polytope PM(G ), it must be the case that y � PM(G ).

Therefore, one of the constraints defining the perfect matching polytope, Equation (1), must not
be satisfied for y. But Lemma 5.2 ensures that almost all of these constraints are satisfied; the only
possible constraint being violated would be an odd set S such that 〈1δ (S ),x〉 = 1 and 〈1δ (S ),y〉 < 1.
Take any such set S where 〈1δ (S ),x〉 = 1 and 〈1δ (S ),y〉 < 1. We have

〈1δ (S ),y〉 = 〈1δ (S ),x〉 + ϵ〈1δ (S ), χW 〉,

which means that 〈1δ (S ), χW 〉 � 0. In other words, S satisfies the statement of the lemma.
It only remains to show that if we take S to be a minimum odd cut in y, then S satisfies

〈1δ (S ),x〉 = 1 and 〈1δ (S ),y〉 < 1. We know that the only possible constraint being violated by y is
an odd set constraint, so for the minimum odd cut it must be true that 〈1δ (S ),y〉 < 1. On the other
hand, if 〈1δ (S ),x〉 > 1, then we would get a contradiction from condition 2 of Lemma 5.2, because
that would imply 〈1δ (S ),y〉 ≥ 1. So such a set must satisfy 〈1δ (S ),x〉 = 1 and 〈1δ (S ),y〉 < 1. �

We will say that an odd set S such that 〈1δ (S ),x〉 = 1 and 〈1δ (S ), χW 〉 � 0, is a set that blocks the
walkW . By combining the following lemma with Lemma 5.3, we get that we can find a tight odd
set blocking each of our even walks.

Lemma 5.4. There is an NC algorithm that given a weight planar graph G, outputs the minimum

odd cut of G.

We will prove Lemma 5.4 in Section 6.3.

5.2 Uncrossing Tight Odd Sets

Suppose we are given a list of tight odd sets S1, . . . , Sm that could cross each other arbitrarily.
Note that we can assume from the beginning that for each i , | f −1 (Si ) | ≤ 1

2 |V0 |. If not, we simply

replace Si by V − Si . We can even further assume that | f −1 (Si ) | < c1 |V0 |; otherwise, we would
return f −1 (Si ) as a balanced viable set and end the procedure. Throughout the algorithm, we
maintain this property.

Our goal is to uncross the sets S1, . . . , Sm , so that we can shrink all of them at the same time. We
make progress from shrinking these sets by making sure that each of our even walks has an edge
inside at least one of the shrunk sets, so that shrinking reduces the number of edges by at least the
number of walks.

Unfortunately, having an edge inside an Si is not a property that is preserved by uncrossing.
Instead, we require a stronger property that implies having an edge in one Si , and show that this
stronger property is preserved by uncrossing. Throughout this section, we assume that x is some
fixed point in PM(G ) with xe > 0 for all e ∈ E.
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Definition 5.5. For a set S ⊆ V , define Λ(S ) ⊆ RE to be the linear subspace defined as the span
of cut indicators of all tight odd sets contained in S :

Λ(S ) := span{1δ (T ) | T ⊆ S, |T | is odd, 〈1δ (T ),x〉 = 1}.
We extend this definition to more than one set S1, . . . , Sm by letting

Λ(S1, . . . , Sm ) := Λ(S1) + · · · + Λ(Sm ).

We also use the notation Λ⊥ (S1, . . . , Sm ) to denote the subspace of RE orthogonal to
Λ(S1, . . . , Sm ).

Next, we will show that χW not being orthogonal to Λ(S1, . . . , Sm ) implies thatW has an edge
in one E (Si ).

Lemma 5.6. LetW be an even walk, and assume that χW � Λ⊥ (S1, . . . , Sm ). Then, there is at least

one edge e ∈W and at least one i such that e ∈ E (Si ).

Proof. It is easy to see that χW � Λ⊥ (S1, . . . , Sm ) implies that there is at least one i such that
χW � Λ⊥ (Si ). It follows from Definition 5.5 that there must be some tight odd set T ⊆ Si such
that 〈1δ (T ), χW 〉 � 0. We will show that 〈1δ (T ), χW 〉 � 0 implies that there is some e ∈W such
that e ∈ E (T ) ⊆ E (Si ).

Suppose the contrary, that no edge e ∈W is in E (T ). LetW = (e1, . . . , ek ) and note that

〈1δ (T ), χW 〉 =
k∑

j=1

(−1) j 〈1δ (T ),1ej
〉.

Every time thatW enters a vertex v ∈ T , it must leave immediately from T , or else we would find
an edge e ∈ E (T ) ∩W . Therefore, we can pair up the nonzero 〈1δ (T ),1ej

〉s into consecutive pairs,
possibly pairing up the last edge with the first. Since these pairs appear in the sum with alternating
signs, they cancel each other, giving us

〈1δ (T ), χW 〉 = 0,

which is a contradiction. Therefore,W must have at least one edge in E (T ) ⊆ E (Si ). �

Next we will define our basic uncrossing operations and show that they preserve this nonorthog-
onality property. Whenever we have two tight odd sets S1 and S2,we will show that we can uncross
them, i.e., replace them by new tight odd sets without shrinking the subspace Λ(S1) + Λ(S2). We
will use the following uncrossing lemma, which is standard in the literature. We will prove it for
the sake of completeness.

Lemma 5.7. If S1 and S2 are tight odd sets, then either S1 ∩ S2, S1 ∪ S2 are tight odd sets and

1δ (S1 ) + 1δ (S2 ) = 1δ (S1∩S2 ) + 1δ (S1∪S2 ),

or S1 − S2 and S2 − S1 are tight odd sets and

1δ (S1 ) + 1δ (S2 ) = 1δ (S1−S2 ) + 1δ (S2−S1 ) .

Proof. The following identity holds for any S1 and S2 and can be easily checked by considering
all possible configurations of the endpoints of an arbitrary edge:

1δ (S1 ) + 1δ (S2 ) = 1δ (S1∩S2 ) + 1δ (S1∪S2 ) + 21δ (S1−S2,S2−S1 ) .

We have two cases: Either |S1 ∩ S2 | is odd or it is even.
Case 1. Assume that |S1 ∩ S2 | is odd. It follows that |S1 ∪ S2 | is also odd. Then by taking the dot

product with x , we get

1 + 1 = 〈1δ (S1 ),x〉 + 〈1δ (S2 ),x〉 ≥ 〈1δ (S1∩S2 ),x〉 + 〈1δ (S1∪S2 ),x〉 ≥ 1 + 1,
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where the last inequality follows from the fact that x ∈ PM(G ) and that S1 ∩ S2 and S1 ∪ S2 are odd
sets. Since this inequality is tight, it must be the case that 〈1δ (S1∩S2 ),x〉 = 〈1δ (S1∪S2 ),x〉 = 1, which
proves that S1 ∩ S2 and S1 ∪ S2 are tight odd sets. It further follows that

〈1δ (S1−S2,S2−S1 ),x〉 = 0,

which implies that 1δ (S1−S2,S2−S1 ) = 0, i.e., δ (S1 − S2, S2 − S1) = 0; this is because x has strictly pos-
itive entries. Now we have the desired identity

1δ (S1 ) + 1δ (S2 ) = 1δ (S1∩S2 ) + 1δ (S1∪S2 ) .

Case 2. Now assume that |S1 ∩ S2 | is even. We can replace S2 by V − S2, since V − S2 is also a
tight odd set. But now S1 ∩ (V − S2) = S1 − S2 which is an odd set. So it follows from the proof of
Case 1 that S1 ∩ (V − S2) and S1 ∪ (V − S2) are both tight odd sets and we have

1δ (S1 ) + 1δ (S2 ) = 1δ (S1∩(V−S2 )) + 1δ (S1∪(V−S2 )) .

Now observe that S1 ∩ (V − S2) = S1 − S2 and S1 ∪ (V − S2) = V − (S2 − S1). Since taking comple-
ments does not change either δ (·) or being a tight odd set, the claim follows. �

Now we use Lemma 5.7 to prove the claim that tight odd sets can be uncrossed without shrinking
Λ(S1) + Λ(S2).

Lemma 5.8. Suppose that S1, S2 are tight odd sets, i.e., |S1 |, |S2 | are odd and 〈1δ (S1 ),x〉 =
〈1δ (S2 ),x〉 = 1. Then exactly one of the following two conditions holds:

(1) S1 ∪ S2 is a tight odd set and

Λ(S1) + Λ(S2) ⊆ Λ(S1 ∪ S2),

(2) S1 and S2 − S1 are both tight odd sets and

Λ(S1) + Λ(S2) ⊆ Λ(S1) + Λ(S2 − S1).

Proof. Look at the parity of |S1 ∪ S2 |. If |S1 ∪ S2 | is odd, then we claim that Case 1 happens.
Otherwise, we will show that Case 2 happens.

Case 1. |S1 ∪ S2 | is odd. In this case, |S1 ∩ S2 | is also odd and it follows by Lemma 5.7 that S1 ∪ S2

is a tight odd set. It is trivial from Definition 5.5 that Λ(S1),Λ(S2) ⊆ Λ(S1 ∪ S2) which immediately
yields

Λ(S1) + Λ(S2) ⊆ Λ(S1 ∪ S2).

Case 2. |S1 ∪ S2 | is even. In this case, |S1 − S2 | and |S2 − S1 | are both odd. Again, from Lemma 5.7
it follows that S2 − S1 is a tight odd set. It remains to prove that Λ(S1) + Λ(S2) ⊆ Λ(S1) + Λ(S2 − S1).
It is enough to prove that Λ(S2) ⊆ Λ(S1) + Λ(S2 − S1).

It is enough to show that for any tight odd set T ⊆ S2, we have the inclusion 1δ (T ) ∈ Λ(S1) +
Λ(S2 − S1). We again have two cases: Either |T ∩ S1 | is odd or even.

If |T ∩ S1 | is even, it follows from Lemma 5.7 that T − S1 and S1 −T are tight odd sets and

1δ (T ) = 1δ (T−S1 ) + 1δ (S1−T ) − 1δ (S1 ) .

We have 1δ (S1−T ),1δ (S1 ) ∈ Λ(S1) and 1δ (T−S1 ) ∈ Λ(S2 − S1). So 1δ (T ) ∈ Λ(S1) + Λ(S2 − S1) as
desired.

The only case that remains is when |T ∩ S1 | is odd. In this case, we apply Lemma 5.7 to the setsT
and S2 − S1, both of which are tight odd sets. Note thatT ∩ (S2 − S1) = T − S1 which has even size
by assumption. Therefore, by Lemma 5.7, (S2 − S1) −T and T − (S2 − S1) = S1 ∩T are also tight
odd sets and

1δ (T ) = 1δ (S2−S1−T ) + 1δ (S1∩T ) − 1δ (S2−S1 ) .

Journal of the ACM, Vol. 67, No. 4, Article 21. Publication date: May 2020.



21:20 N. Anari and V. V. Vazirani

We have 1δ (S1∩T ) ∈ Λ(S1) and 1δ (S2−S1−T ),1δ (S2−S1 ) ∈ Λ(S2 − S1) which proves that 1δ (T ) ∈
Λ(S1) + Λ(S2 − S1) as desired. �

Given tight odd sets S1, . . . , Sm , repeated applications of Lemma 5.8 allow us to uncross
them, i.e., replace them by pairwise disjoint tight odd sets S ′1, . . . , S

′
m′ such that Λ(S1, . . . , Sm ) ⊆

Λ(S ′1, . . . , S
′
m′ ). However, naively applying Lemma 5.8 would result in a sequential algorithm which

is not in NC. We will next show how we can do the uncrossing in NC.
We will use a divide-and-conquer approach to uncross a given list of tight odd sets S1, . . . , Sm .

The high-level description of our procedure, Uncross, is given in Algorithm 5. We roughly di-
vide the given sets into two parts, and recursively uncross each part. Then we call the procedure
MergeUncross in order to merge the resulting sets.

ALGORITHM 5: Divide-and-conquer algorithm for uncrossing tight odd sets

Uncross(S1, . . . , Sm)
if m=1 then

return S1

else

in parallel do
R1, . . . ,Rp ← Uncross(S1, . . . , S �m/2�)
C1, . . . ,Cq ← Uncross(S �m/2�+1, . . . , Sm)

end

return MergeUncross(R1, . . . ,Rp ,C1, . . . ,Cq)
end

Next, we will describe the merging procedure MergeUncross. The procedure MergeUncross,
similarly to Uncross, accepts a list of tight odd sets and returns a list of pairwise disjoint tight
odd sets whose Λ is not smaller. With some abuse of notation, we still name the inputs to
MergeUncross as S1, . . . , Sm . The difference between MergeUncross and Uncross is that the input
sets to MergeUncross satisfy certain properties highlighted below.

Lemma 5.9. Suppose that {S1, . . . , Sm } = {R1, . . . ,Rp ,C1, . . . ,Cq }, where m = p + q and

R1, . . . ,Rp are pairwise disjoint tight odd sets and C1, . . . ,Cq are also pairwise disjoint tight

odd sets. Then S1, . . . , Sm have no 3-wise intersections. Furthermore, the intersection graph of

S1, . . . , Sm , where two Si ’s are connected if they have a nonempty intersection, is bipartite.

Proof. If we select any three sets Si , S j , Sk , then either two of them are from R1, . . . ,Rp or two
of them are from C1, . . . ,Cq . In either case, those two sets would not have any intersection. It is
also easy to see that the intersection graph is bipartite, since R1, . . . ,Rp naturally form one part
andC1, . . . ,Cq the other; by assumption, no two sets from the same part have any intersection. �

Having no 3-way intersections means that we can compute the parity of any union of S1, . . . , Sm

from their pairwise intersections. This is more handily captured by the notion of an intersection
parity graph.

Definition 5.10. For tight odd sets S1, . . . , Sm satisfying the conditions of Lemma 5.9, define the
intersection parity graph H = (VH ,EH ), as follows: Let VH , the nodes of H , be S1, . . . , Sm and, for
i � j, let there be an edge between Si and S j if and only if |Si ∩ S j | is odd.

An immediate corollary of Lemma 5.9 is that H is bipartite. Another corollary is that the parity
of |∪iSi | is the same as the parity of |VH | + |EH | which we simply denote by |H |; this is because
the inclusion-exclusion formula stops at pairwise intersections for our sets. We use the notation
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H (Si1 , . . . , Sik
) to denote the induced subgraph on nodes Si1 , . . . , Sik

. With this notation, we have

|Si1 ∪ . . . Sik
| 2≡ |H (Si1 , . . . , Sik

) |,

where
2≡ represents having the same parity.

By Lemma 5.8, if S1, S2 have an edge between them in H , then the union S1 ∪ S2 will also be a
tight odd set. If there is a third set S3 connected to S2, we can again include S3 in this union, i.e.,
S1 ∪ S2 ∪ S3 will be a tight odd set.

Can we repeatedly apply this procedure and obtain S1 ∪ · · · ∪ Sm as a tight odd set? There seem
to be two barriers to this. If the graph H is not connected, we can never take the union of two
sets from different connected components. Another natural barrier is that |S1 ∪ · · · ∪ Sm | could
possibly be even; so it will never emerge out of this process, because Lemma 5.8 only produces
tight odd sets. For simplicity of notation, we use ∪H to denote S1 ∪ · · · ∪ Sm .

Surprisingly, the two mentioned barriers are really the only barriers, as we will show next.

Lemma 5.11. Assume that H = H (S1, . . . , Sm ) is connected and that |H | 2≡ 1. Then, ∪H = S1 ∪
· · · ∪ Sm is a tight odd set, and Λ(S1, . . . , Sm ) ⊆ Λ(∪H ).

Proof. We just need to show that ∪H is a tight odd set. The fact that Λ(S1, . . . , Sm ) ⊆ Λ(∪H )
is trivial from Definition 5.5.

We will use induction on |VH | to prove this fact. It is trivial to check this for |VH | ≤ 2. Even if
|VH | = 3, the only graph that is connected and bipartite on 3 nodes would be the path of length
2 and we have already described that in this case we can take the union by two applications of
case 1 from Lemma 5.8.

Now consider a depth-first-search (DFS) tree started from an arbitrary node of H . If S is any

leaf of this tree with degH (S )
2≡ 1, then we can proceed as follows: The graph H − {S } will have

one fewer node and odd many fewer edges. Therefore, |H − {S }| 2≡ 1, and obviously H − {S } is
connected, since S was a leaf. By induction, ∪(H − {S }) is a tight odd set. But S is also a tight
set, and by assumption the union of the two, ∪(H − {S }) ∪ S = ∪H , is also odd. So, by Lemma 5.8,

we get that ∪H is a tight odd set. So from now on, assume that for any leaf node S , degH (S )
2≡ 0.

More generally, if S is any node whose removal does not disconnect the graph, we can assume that

degH (S )
2≡ 0, or else we can proceed as before. Note that this implies that any leaf in the tree has

at least one back edge, i.e., an edge going to an ancestor other than its parent. This is true because
any leaf must have at least one edge in addition to the one going to its parent. Since an undirected
DFS tree has no cross edges, this edge must be a back edge.

Since an undirected DFS tree has no cross edges, its leaf nodes are never connected to each other.
Therefore, if S1, S2 are two leaves, by the definition of H , S1 ∩ S2 is even and hence so is S1 ∪ S2.

Hence, |H − {S1, S2}|
2≡ 1. Note that H − {S1, S2} is also connected, so by induction ∪(H − {S1, S2})

is a tight odd set.
Now, if the DFS tree has at least four leaves S1, S2, S3, S4, we can proceed as follows: Consider

the graphs H − {S1, S2} and H − {S3, S4}. They both satisfy the assumptions of the induction and
therefore ∪(H − {S1, S2}) and ∪(H − {S3, S4}) are both tight odd sets. Their union is again ∪H
which has an odd parity. So again by Lemma 5.8 we get that ∪H is a tight odd set. From now on
we assume that there are at most 3 leaves in the tree.

If there are any two leaves S1, S2 that share a parent P , we can proceed as follows: The graph
H − {S1, S2} again satisfies the assumptions of induction. We also have that S1 ∪ P ∪ S2 is a tight
odd set; this follows by applying the base case to the subgraph H (S1, S2, P ) which is a path of
length 2. Again we have two tight odd sets ∪(H − {S1, S2}) and S1 ∪ P ∪ S2 whose union ∪H is
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odd. Therefore, ∪H is a tight odd set. So from now on, we assume that no two leaves share a
parent.

Now assume that the DFS tree has three leaves S1, S2, S3. Without loss of generality, assume that
S1 is the deepest leaf. Let P be the parent of S1. Note that P does not have any other children in the
tree, because S1 was the deepest leaf and no two leaves share a parent. Note that the removal of P

does not disconnect the graph because S1 has a back edge. Therefore, it must be that degH (P )
2≡ 0.

Note also that P is not connected to S2 or S3, because a DFS tree does not have cross edges. All
of this implies that H − {S3, P } is connected, and also has odd parity. As before, H − {S1, S2} also
satisfies the assumptions of the induction. So again, we get two tight odd sets whose union is ∪H
and therefore ∪H is a tight odd set.

Now assume that the DFS tree has only two leaves S1, S2. Let P1 be the parent of S1 and P2 the
parent of S2. Let Q be the lowest common ancestor of S1 and S2 in the tree. If P1, P2 � Q , then we
can proceed similarly to the previous case: Both P1 and P2 must have an even degree, since their
removal does not disconnect the graph. Now H − {P1, S2} and H − {P2, S1} are both connected and
have an odd parity. We use induction and the fact that their union is ∪H to again show that ∪H is
a tight odd set. So assume that one of P1, P2 is the same as Q . Without loss of generality, assume
that P2 = Q . Note that P1 � Q , or else we would have two leaves sharing a parent, which is already
a resolved case. Now let R be the parent of P2 = Q . Note that S2 has a back edge, but its back edge
cannot be to R because that would create a triangle between S2, P2,R which is forbidden in our
bipartite graph. So the back edge must be to some ancestor of R. This means that removing R or
even removing both R, S1 does not disconnect the graph. Since removing R does not disconnect

the graph, we have degH (R)
2≡ 0. Now we have two cases:

(1) If S1 does not have an edge toR, that would implyH − {S1,R} is odd and connected. Similar
to the case of three leaves, we would get that H − {P1, S2} is odd and connected as well.
But then H − {S1,R} and H − {P1, S2} are two connected and odd subgraphs whose union
is H which implies that ∪H is a tight odd set.

(2) Now assume that S1 does have an edge to R. Note that Q = P2 is a parent of S2 and an
ancestor of S1. So it must have some other child, which we will callC . Note thatC � S1, or
else S1, S2 would be two leaves sharing a parent, which has already been resolved. Now,
the removal of C does not disconnect the graph because of the edge between S1 and R.

So it must be that degH (C )
2≡ 0. On the other hand, the removal of both S2,C also does

not disconnect the graph. Also note that there is no edge between S2 and C because such
an edge would create a triangle S2,C,Q which is forbidden in our bipartite graph. All of
these mean that H − {S2,C} is odd and connected and by induction ∪(H − {S2,C}) is a
tight odd set. On the other hand, S2 ∪Q ∪C is also a tight odd set because the induced
graph on these three sets is a path of length 2. Again, we have found two tight odd sets
∪(H − {S2,C}) and S2 ∪Q ∪C whose union gives us ∪H and we are done.

The only remaining case is when the DFS tree has only one leaf, i.e., when the DFS tree is a
Hamiltonian path. If the root and the leaf are not connected to each other, we can find another DFS
tree such that it has more than one leaf and reduce the problem to the previous cases considered.
Consider starting the DFS from the child of the current root and going down the Hamiltonian path
until we reach the current child. Since this child was not connected to the root, the DFS procedure
cannot continue and has to back up. Eventually, the original root will be connected somewhere
along the tree as a leaf, but we now have two leaves, and we have already considered this case.

So the only case that remains is if the DFS tree is a Hamiltonian path and that the root is con-
nected to the leaf. This tree with the extra edge gives us a Hamiltonian cycle. Since the removal of
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any node in this graph does not disconnect the graph, all of the degrees must be even. Note that

the entire graph cannot be simply this Hamiltonian cycle, because otherwise |H | 2≡m +m 2≡ 0. So
there must be some edge, other than those of the cycle, between two vertices P andQ . Let the two
neighbors of P on the Hamiltonian cycle beA,B. Note that removing bothA,B does not disconnect
the graph. There is also no edge between A and B, because otherwise we would have a triangle
A,B, P which is forbidden in bipartite graphs. SoH − {A,B} is odd and connected and by induction
∪(H − {A,B}) is a tight odd cut. Note that A ∪ B ∪ P is also a tight odd cut, because the induced
graph on A,B, P is a path of length 2. Again we have written H as the union of two connected and
odd subgraphs; this implies that ∪H is a tight odd set. �

Lemma 5.11 is the powerful pillar we use to create the method MergeUncross. If the intersection
parity graphH has multiple connected components, we can deal with each one separately and then
uncross the results using Case 2 of Lemma 5.8. If all of the connected components have odd parity,
then we can take the union in each one and proceed. The only case we still need to show how
to handle is when a connected component of H has even parity. We will show next that the even
parity case can also be handled very easily.

Lemma 5.12. Assume thatH = H (S1, . . . , Sm ) is connected and |H | 2≡ 0. Then there are two induced

subgraphs ofH , which are both odd and connected, and which together cover every node. Furthermore,

these two subgraphs can be found in NC.

Proof. We will be working with the biconnected components of H and the corresponding
block-cut tree. A biconnected component is simply a maximal subgraph such that the removal of
any vertex from it does not disconnect the subgraph. The block-cut tree is formed by introducing
a node for each biconnected component and a node for every cut vertex, a vertex whose removal
disconnects the graph, and connecting a cut vertex to all biconnected components to which it
belongs. Finding biconnected components and forming the block-cut tree can be easily done in
NC. For example, in parallel for every pair of edges, and every vertex, one can check whether the
removal of that vertex disconnects the pair of edges; then one can form equivalence classes out
of the edges and obtain the biconnected components. For more efficient and elegant algorithms in
NC, see [32].

For an induced subgraph B = (VB ,EB ), let us define its inverse parity as the parity of |VB | +
|EB | + 1 and denote this by [B]. Note that we have [B]

2≡ 1 + |B |. We regard biconnected compo-
nents as induced subgraphs, unless otherwise stated. Inverse parity has a certain additivity prop-
erty. Namely, if B1 and B2 are induced subgraphs that share only a single vertex and have no edges

to each other, then [B1 ∪ B2] = [B1] + [B2].
Using this, one can easily compute the inverse parity of any subtree of the block-cut tree. In

the block-cut tree, to each biconnected component assign its inverse parity, and to each cut vertex
assign 0. Then it is easy to see, by the additivity property, that for any subtree of the block-cut
tree, the inverse parity of the union of all blocks in the subtree is simply the parity of the sum of
assigned numbers.

In particular, since |H | 2≡ 0, or in other words, [H ]
2≡ 1, there must be an odd number of 1s in

the block-cut tree.
We will first solve the problem when there are at least three 1s in the tree. In this case, we can

find two subtrees whose union is the entire tree, each having an even number of 1s. This suffices,
because the union of all biconnected components in each subtree would be an odd connected
graph, and by Lemma 5.11, we can merge all of the nodes in it. Each subtree will be obtained by
simply partitioning the block-cut tree by removing an edge and looking at one of the resulting
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two subtrees. Clearly, we can try all such partitions in NC. So it remains to show that at least two
of them, whose union is the entire tree, have an even internal sum. For this, look at the 1 nodes
in the tree whose distance, in the tree, is the largest. Let them be B1 and B2. Look at the path on
the block-cut tree connecting B1 to B2 and let the edge adjacent to B1 be e1 and the one adjacent
to B2 be e2. Now if we partition the block-cut tree by removing e1, we get two parts, one of which
contains B2, and the other part can only contain one 1 node, namely B1. Otherwise, the distance
between B1 and B2 would not have been maximal. So the subtree containing B2 has an even sum.
Similarly, if we remove e2 from the block-cut tree, the part containing B1 will have an even sum.
It is not hard to see that these two subtrees cover the whole tree.

So the only remaining case is when the block-cut tree has only one 1 node. In that case, let B be

the biconnected component with [B]
2≡ 1.

First, consider the case where B is the entire graph H . In this case, we will show that either
there is a vertex S where B and B − {S } are both odd and connected, or there are two vertices S1, S2

connected by an edge such that B − {S1, S2} and H (S1, S2) are both odd and connected. First, note
that if any node in B has an even degree, then this condition is automatically satisfied. Because if
S1 is such a node, B − {S1} is connected since B is biconnected. It is also odd because B − {S1} has
one fewer node and an even number of fewer edges. So assume from now on that the degree of
every node in B is odd. Now we want to obtain the nodes S1, S2 as described before. This is easy to

derive from an open ear decomposition of B. Note that [B]
2≡ 1 implies that B cannot be simply a

single edge, so it must have an open ear decomposition. Look at this ear decomposition, and add
the ears one by one. Look at the last ear added that was not a single edge. Suppose that this ear was
some path (S1, . . . , Sk ). Then, note that S2 is a new node added by this ear, and since no new nodes
are added after this ear, the removal of S1, S2 leaves B connected; even if this ear was the initial
cycle, this is still true. So B − {S1, S2} is connected and since the degrees of S1, S2 are both odd and
they are connected to each other, it must be that B − {S1, S2} is odd. Since S1, S2 are connected to
each other as well H (S1, S2) is also connected and odd as desired. Note that the vertex S1 or the
pair of vertices S1, S2 can be found in NC by simply checking all possibilities in parallel.

Now consider the case where B is not the entire graph H . In this case we proceed as before, and
by looking at the induced subgraph B, we find either a node S1 or two connected nodes S1, S2 such
that B − {S1} or B − {S1, S2} is connected and odd. So we have a partition of B into a single or a
pair of vertices and the rest of B. We simply attach the biconnected components other than B to
one of the partitions, based on the block-cut tree. This ensures that connectivity is preserved, and
further, the parity of the partitions is not changed because every biconnected component other
than B has inverse parity 0. Again this operation can be done in NC, since the partition inside B
can be found in NC, and connecting the rest of the biconnected components is simply a matter of
partitioning the block-cut tree into two or three parts. �

Now, armed with Lemmas 5.11 and 5.12, we can describe the procedure MergeUncross. We will
first make sure that even intersections are completely removed, i.e., made empty. This is easy to do
in parallel, because there are no 3-wise intersections. Then we apply Lemma 5.11 or Lemma 5.12
to each connected component ofH . To avoid creating sets S with | f −1 (S ) | ≥ c1 |V0 |, we always pass
our new sets through the procedure CheckBalancedViable, which will potentially find a balanced
viable set and end the procedure.

We just have to describe CheckBalancedViable. The input to this procedure is an odd connected
subset H of the intersection parity graph. If | f −1 (∪H ) | < c1 |V0 |, then this procedure simply does
nothing. Otherwise, it outputs a balanced viable set as follows:

If | f −1 (∪H ) | ≤ (1 − c1) |V0 |, then it simply outputs f −1 (∪H ) as the balanced viable set. Oth-
erwise, we order the vertices of H as S ′1, . . . , S

′
k

so that for any i , the induced subgraph on
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ALGORITHM 6: Algorithm for uncrossing partially uncrossed sets

MergeUncross(S1, . . . , Sm)
for i = 1 . . .m in parallel do

Si ← Si −
⋃

j<i, |Si∩Sj | even S j

end

H ← H (S1, . . . , Sm )
H1, . . . ,Hk ←ConnectedComponents(H)
F ← ∅
for i = 1 . . .k in parallel do

if |Hi | = |VHi
| + |EHi

| is odd then
CheckBalancedViable (Hi ).
Add ∪Hi to F .

else
Let H ′i ,H

′′
i be the two induced subgraphs promised by Lemma 5.12.

CheckBalancedViable (H ′i ).
CheckBalancedViable (H ′′i ).
Add ∪H ′i to F .
Add ∪H ′′i − ∪H ′i to F .

end

end

return F

Ui = {S ′1, . . . , S ′i } is connected. For example, sorting according to shortest distance (in H ) to an
arbitrary initial vertex S ′1 would satisfy this property. Now let j be the first index for which

| f −1 (∪Uj ) | ≥ 2c1 |V0 |. Then, | f −1 (∪Uj ) | ≤ 3c1 |V0 | < (1 − c1) |V0 |. So if | ∪Uj |
2≡ 1, then we can re-

turn f −1 (∪Uj ) as a balanced viable set (it is a tight odd set by Lemma 5.11). Otherwise, by
Lemma 5.12, we can find two subsets of Uj whose union covers Uj and that are odd. We simply
return the subset with the larger value of | f −1 (·) | as the balanced viable set.

All together, we get the following result:

Theorem 5.13. Given tight odd sets S1, . . . , Sm , there is an NC algorithm that either finds a viable

set or outputs pairwise disjoint tight odd sets S ′1, . . . , S
′
m′ such that

Λ(S1, . . . , Sm ) ⊆ Λ(S ′1, . . . , S
′
m′ ),

and | f −1 (S ′i ) | < c1 |V0 |.

6 OTHER ALGORITHMIC INGREDIENTS

In this section, we describe the remaining algorithmic ingredients we used in Section 4 and 5.

6.1 Finding a Point in the Relative Interior of a Face of the Perfect Matching Polytope

In this section, we prove Lemma 3.1 by giving an NC algorithm for the following problem: Given
a planar graph G = (V ,E) and a weight vector on edges w ∈ ZE given in unary, find a point, x ,
in the interior of PM(G,w ), where PM(G,w ) denotes the face of the perfect matching polytope of
G containing all minimum-weight perfect matchings inG and their convex combinations (clearly,
the corner points of this face are precisely the set of minimum-weight perfect matchings in G).

Proof of Lemma 3.1. Let #Gw denote the number of MWPMs in G w.r.t. edge weights w , and
for each edge e ∈ E, let #Ge

w denote the number of such perfect matchings which contain the edge
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e . The point x we will find will have coordinate

xe =
#Ge

w

#Gw
.

Clearly, x satisfies all required conditions. Additionally, observe that if M1, . . . ,Mm are all the
MWPMs in G, then

x =
1M1 + · · · + 1Mm

m
= avg(PM(G,w )).

We will crucially use the fact that a Pfaffian orientation ofG can be computed in NC. Let (i, j ) ∈
E, with i < j. If in the Pfaffian orientation this edge is directed from i to j, then let Bi j = y

we ;
otherwise, let Bi j = −ywe , where y is an indeterminate. Let B be the resulting matrix. Observe
that the exponents of the entries of B are small in the input size and hence its determinant can
be computed in NC [2]. Consider the lowest degree term in det(B); let its degree be d . Then, the
coefficient of yd is the square of the number of perfect matchings of minimum-weight in G (see
[26]), i.e., it is (#Gw )2.

Next, for each edge e ∈ E, we will compute #Ge
w , the number of MWPMs that edge e participates

in. Zero out the two entries in B corresponding to e to obtain matrix Be and compute det(Be ). Then
the coefficient of yd will be (#Gw − #Ge

w )2. Hence, #Ge
w as well as #Gw can be computed. Clearly,

this can be done in parallel for all edges. �

6.2 Finding Linearly Many Edge-Disjoint Even Walks

In this section, we prove Lemma 3.3 by showing how to find Ω( |E |) many edge-disjoint even walks
in a given graph G = (V ,E) in NC. By assumption, G is a connected planar graph that does not
have any vertices of degree 1 and at most |V |/2 vertices of degree 2. We first find linearly many
edge-disjoint planar faces in G.

Lemma 6.1 (Adapted from [20]). Suppose that G = (V ,E) is a connected planar graph with no

vertices of degree 1 and at most |V |/2 vertices of degree 2. Then, there is an NC algorithm that returns

|E |/300 edge-disjoint planar faces of G.

Proof. It is easy to see that the graph has Ω( |E |) faces. By Euler’s formula, we have

|V | − |E | + |F | = 2,

where F denotes the set of (planar) faces. By rearranging and using the fact that deg(v ) ≥ 2 for
every v , we get

|F | ≥ |E | − |V | =
∑

v ∈V

deg(v ) − 2

2
≥

∑

v ∈V :deg(v )≥3

deg(v )

6
=

1

3
( |E | − | {v : deg(v ) = 2

} |)

≥ 1

3
( |E | − |V |/2) ≥ 1

6
|E |.

Consider the planar dual G∗ of G. Corresponding to each face in G, the dual has a vertex, and
corresponding to each edge in the primal, there is an edge in the dual. The sum of the degrees in the
dual graph is 2|E | ≤ 12|F |. In other words, the average degree in the dual graph is at most 12. By
Markov’s inequality, at least half of the dual vertices must have degree at most 24. We simply drop
the dual vertices of degree more than 24 from the dual graph and find a maximal independent set
in the remaining dual. This can be done in NC, by Lemma 3.2. The remaining dual has maximum
degree at most 24, so its maximal independent set has at least 1/25 of its vertices, i.e., at least
|F |/50 ≥ |E |/300. �
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If at least half of the faces found by Lemma 6.1 are even, we work with these as our even walks.
Else, we need to pair up odd faces together with an edge-disjoint path connecting each pair to get
Ω( |E |) even walks of the second type.

Lemma 6.2. Given an even number f of edge-disjoint odd faces in a planar graph, we can find, in

NC, f 2/(4f + 16|E |) edge-disjoint even walks, each formed by joining two of the given faces.

Proof. First, we find a spanning tree T of G. We will only use paths on the spanning tree to
pair up odd faces. For each given odd face, place a token at one of its vertices, arbitrarily. Now we
have f tokens on the spanning treeT . In Lemma 6.3, we will prove that these tokens can be paired
up by edge-disjoint paths from the tree in NC.

We use this pairing of tokens and the paths from the tree T to pair the given odd faces. When
we connect two odd faces O1 and O2 by a path P , the path P might intersect or even use the edges
of O1 and O2. We fix this by replacing P with a subpath of P . More precisely, we find the last
intersection of P with O1, and the first intersection after that point with O2, and replace P by the
subpath between these two intersections. Now the path is edge-disjoint from O1,O2.

So far, we have created f /2 even walks; but they are not necessarily edge-disjoint. The only
way that two of these walks can intersect each other is if the connecting path from one shares an
edge with an odd face of the other. Because of this, any given edge e can appear in at most 2 of
the walks. So the average number of edges in an even walk is at most 2|E |/f . Markov’s inequality
implies that at least f /4 of the even walks have at most 4|E |/f edges. Any of these even walks
shares an edge with at most 4|E |/f other walks, since an edge appears in at most two walks.

By Lemma 3.2, we can find, in NC, a maximal independent set of these short even walks (an
independent set is a just a set of walks that are pairwise edge-disjoint). The number of walks in
this independent set will be at least

f /4

1 + 4|E |/f =
f 2

4f + 16|E | . �

We now describe the missing part from the above proof.

Lemma 6.3. Consider a tree T and an even number of tokens o1, . . . ,of placed on the vertices of

the tree. We can find, in NC, a pairing of the tokens using the shortest path on the tree, so that no two

paths share an edge.

Proof. For each edge e ∈ T , we will count the number of tokens on either side of T when e is
removed; this follows from an NC tree traversal algorithm [17]. Since there are an even number
of tokens, this count must either be odd on both sides or even on both sides. We will do this in
parallel for every edge. We then remove all of the edges whose token counts were even-even.

After this operation, the degree of every vertex v must have the same parity as the number of
tokens on it. This is because for each edge e adjacent to v , the number of tokens on the other side
of e is odd. So the number of tokens not on v has the same parity as deg(v ). But the total number
of tokens on the entire tree is even, so this parity is also shared by the number of tokens on v .

Now we do the following in parallel for each vertex v : We pair up all the tokens on v in an
arbitrary way until there is at most one token left. We will then pair the remaining token, if any,
with one of the remaining edges; there must be at least one edge if there is at least one token. Now
there are an even number of edges adjacent tov that remain. We pair them up in an arbitrary way,
so that whenever we use an edge in a pair to enter v, we exit using the other edge.

Now, by following the paths from each token to the edge it is assigned to, we will get to another
token, and this gives us a pairing between tokens. Note that this path following does not have to
be done sequentially, but can instead be done using the doubling trick to get an NC algorithm. �
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We now have the ingredients needed to finish the proof of Lemma 3.3.

Proof of Lemma 3.3. We first find |E |/300 edge-disjoint faces by invoking Lemma 6.1. If at least
half of these faces are even, we return this half. Otherwise, we invoke Lemma 6.2. We have |E |/600
odd faces, and by possibly dropping one of them we can supply an even number f ≥ ( |E |/600) − 1
of odd faces to the algorithm described by Lemma 6.2 and obtain

( |E |/600 − 1)2

4( |E |/600 − 1) + 16|E | = Ω( |E |)

edge-disjoint even walks. This finishes the proof. �

6.3 Finding Gomory-Hu Trees and Minimum Odd Cuts

In this section, we will give an NC algorithm for constructing a Gomory-Hu tree for a planar
connected graphG = (V ,E) with edge weights given byw : E → R≥0 and finding a minimum odd
cut. We will crucially use the fact that an s-t max-flow and min-cut can be computed in a planar
graph in NC [16].

We first define the notion of a Gomory-Hu tree. For each pair of vertices u,v ∈ V , let f (u,v )
denote the weight of a minimum u-v cut in G. Let T be a spanning tree on vertex set V , not
necessarily a subset of E. On removing an edge e fromT , we get two subtrees. Let S1, S2 be the sets
of vertices spanned by these subtrees; clearly, this is a cut in G. We will say that (S1, S2) is the cut

defined by edge e .
A Gomory-Hu tree, say T , is a spanning tree of V , together with a function w ′ giving weights

to the edges of T , such that:

(1) For u,v ∈ V , let (s, t ) be the minimum-weight edge, under w ′, on the unique path in T
between u and v . Then, we require that w ′(s, t ) = f (u,v ).

(2) The cut defined by (s, t ) is a minimum u-v cut in G.

Note that if (S, S ) is a minimum u −v cut, then the graph induced on S must be one connected
component; if not, the component not containing u can be moved to the other side to obtain a
smaller u-v cut. Hence, the graph obtained by shrinking S in G will remain planar.

The sequential algorithm for constructing a Gomory-Hu tree has, at any point, a treeT defined
on a partition S1, . . . , Sk of V , and a weight function w ′ defined on the edges of T . The starting
partition is simply V , with T having no edges. The partition and T satisfy:

• For each edge (Si , S j ) ∈ T , ∃ u ∈ Si , v ∈ S j such that w ′(Si , S j ) = f (u,v ).
• The cut defined by edge (Si , S j ) must be a minimum u-v cut in G.

In each iteration, the sequential algorithm refines the tree by splitting one of the partitions into
two as follows. It picks a partition having at least two vertices, say Si . Let u,v ∈ Si . LetT1, . . .Tl be
the subtrees of T incident at node Si . By shrinking subtree Tj , we mean identifying all vertices in
Tj and replacing it by single vertex tj . All edges incident at vertices in Tj from outside Tj are now
incident at tj , with the same weight as before. ShrinkingT1, . . .Tl gives a graph on Si ∪ {t1, . . . , tl }.
Let this graph beG ′; clearly it will be planar. InG ′, find a minimum u-v cut. It is easy to show that
the weight of this cut will also be f (u,v ).

This cut will partition Si into two sets, say S ′ and S ′′, with u ∈ S ′ and v ∈ S ′′. Replace Si by
these two sets to obtain a partition on k + 1 sets. The new tree will contain the edge (S ′, S ′′) with
weightw ′(S ′, S ′′) = f (u,v ). Next, among the subtreesT1, . . .Tl take the ones on the u side (v side)
of the cut and let them be incident at S ′ (S ′′). The algorithm ends when each partition is a singleton
vertex. The tree so found will be a Gomory-Hu tree.
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We now give our NC algorithm. The main difference lies in the way set Si is split. We first define
the notion of a central vertex for Si . Pick a vertex r ∈ Si and for each remaining vertex v ∈ Si , find
a minimal minimum v-r cut in the graph G ′ defined above after shrinking subtrees incident to Si ;
by a minimal minimumv-r cut we mean that the side containingv is smallest among all minimum
v-r cuts. Let Sv denote the side containing v in this cut and let S ′v = Sv ∩ Si . We will say that r is
a central vertex for Si if for each v ∈ Si , v � r , |S ′v | ≤ |Si |/2. Let us first show that such a vertex
exists.

Lemma 6.4. For any partition Si , a central vertex r exists for Si .

Proof. LetT be the eventual Gomory-Hu tree found by the sequential algorithm stated above.
Remove all vertices not in Si from T . Let us argue that the resulting graph, say T ′, will still be
connected. This follows since at any stage in the algorithm, the sets which define the current
partition of Si are connected via the set of edges which were added each time a subset of Si was
split.

It is easy to see that there is a vertex r ∈ T ′ such that each subtree of T ′ incident at r has at
most |T ′ |/2 vertices. Since T is a Gomory-Hu tree, for each v ∈ Si , v � r , a minimum v-r cut is
defined by one of the edges of T that lies in T ′. It follows that each such cut satisfies |S ′v | ≤ |Si |/2
and hence r is a central vertex for Si . �

A central vertex for Si can be found in NC: For each vertex r ∈ Si , test if it is a central vertex by
finding, in parallel, a minimal minimum v-r in G ′ for each vertex v ∈ Si , v � r . From now on, let
r denote a central vertex for Si .

Lemma 6.5. Let r ,u,v ∈ V and let Su and Sv be minimal minimum u-r and v-r cuts in G, respec-

tively. Then Su and Sv do not cross.

Proof. Assume Su and Sv cross. There are three cases:
Case 1. If u,v ∈ (Su ∩ Sv ) then it is well known that (Su ∩ Sv ) is also a u-r and v-r minimum

cut, contradicting minimality.
Case 2. Assume u ∈ (Su − Sv ) and v ∈ (Sv − Su ). We will partition the edges incident at the sets

Su and Sv into six types and let a,b, c,d, e, f denote their capacities:

(1) a: Edges between (Su − Sv ) and (Su ∪ Sv ).
(2) b: Edges between (Su ∩ Sv ) and (Su − Sv ).
(3) c: Edges between (Su ∩ Sv ) and (Sv − Su ).

(4) d: Edges between (Su ∩ Sv ) and (Su ∪ Sv ).

(5) e: Edges between (Sv − Su ) and (Su ∪ Sv ).
(6) f: Edges between (Su − Sv ) and (Sv − Su ).

Since Su and Sv are u-r and v-r minimum cuts, we get:

f (u, r ) = a + b + d + f .

f (v, r ) = b + c + d + f .

Since (Su − Sv ) and (Sv − Su ) are u-r and v-r cuts (not necessarily minimum), we get:

f (u, r ) ≤ a + c + f .

f (v, r ) ≤ b + e + f .

These four equalities and inequalities imply that d = 0. Now, if either of the inequalities is strict,
we will get that the other inequality is violated. Hence, both inequalities are actually equalities,
giving us smaller u-r and v-r minimum cuts and a contradiction. Hence, Su and Sv cannot cross.
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Case 3. Assume u ∈ (Su − Sv ) and v ∈ (Su ∩ Sv ). Since Su is a u-r minimum cut, f (u, r ) = a +
c + d + f .

Now, (Su ∩ Sv ) is a v-r cut; however, it is not a minimum v-r cut, since that would contradict
the minimality of the v-r minimum cut Sv . Therefore,

b + c + d > b + d + e + f implying c > e + f .

Combining with the previous fact, we get

f (u, r ) = a + c + d + f > a + d + e + 2f ≥ a + d + e .

Now, (Su ∪ Sv ) is also a u-r cut having capacity a + d + e < f (u, r ), leading to a contradiction. �

Corollary 6.6. Let r ,v1, . . .vk ∈ V and let Sv1 , . . . , Svk
be minimal minimum v1-r , . . . vk -r cuts

in G, respectively. Then, Sv1 , . . . , Svk
form a laminar family.

Let r denote a central vertex for Si that is found by the algorithm. By Corollary 6.6, the cuts Sv ,
for each vertex v ∈ Si , v � r form a laminar family. Let M1, . . . ,Ml be the maximal sets of this
laminar family. Clearly, we can split Si into the l sets M1 ∩ Si , . . . ,Ml ∩ Si and attach subtrees to
appropriate sets as given by M1, . . . ,Ml . This can be done for all sets Si of the current partition,
in parallel. This defines one iteration of our parallel algorithm. Clearly, after each iteration, the
cardinality of the largest set in the partition drops by a factor of 2 and therefore onlyO (logn) such
iterations are needed. Hence, we get:

Theorem 6.7. There is an NC algorithm for obtaining a Gomory-Hu tree for an edge-weighted

planar graph.

Now we use Padberg and Rao’s theorem that states that the Gomory-Hu tree of a graph must
contain a minimum odd cut as one of its edges [27] to finish the proof of Lemma 5.4.

Proof of Lemma 5.4. We first find a Gomory-Hu tree, then try all of the cuts obtained by
removing an edge of the tree. We return the minimum among cuts that split the vertices into
odd pieces. Clearly, all of this can be done in parallel, and hence the algorithm is in NC. �

Remark 6.1. An alternative way of finding a minimum odd cut S is to use some properties of
the Pickard-Queyranne structure of minimum s-t cuts [29]. However, that method is more cum-
bersome to describe.

7 EXTENSIONS

In this section, we will build on the machinery established in the previous sections to prove two
generalizations of Theorem 1.1. We first give a proof of Theorem 1.2 stated in the Introduction.

Proof of Theorem 1.2. For a fixed integer k , assume that we are given a weight function on
the edges of planar graph G = (V ,E),

W : E → {0, . . . ,nk },
and we wish to find an MWPM inG. Recall that in Section 6.1, for the purpose of finding a perfect
matching inG, we had defined 0/1 weights on edges given by functionw . Now, define the following
composite weight function, c; its least significant logn bits correspond tow and the rest of the bits
correspond toW .

ce = (n ·We ) +we .

Clearly, c gives small weights to edges and can be used in place of w to carry out the NC al-
gorithm given in the previous sections. The algorithm will return an MWPM w.r.t. weights given
by c . Since w is 0/1, for any perfect matching, the sum of weights according to w is at most n/2.
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Therefore, in computing the weight of a perfect matching according to c , there will be no carry-
over from the least significant logn bits to the rest. Hence, the MWPM w.r.t. c will also be a MWPM
w.r.t.W . �

Theorem 7.1. There is an NC algorithm which given a bounded-genus graph, returns a perfect

matching in it, if it has one.

Proof. In order to derive our algorithm for planar graphs, we used planarity in exactly three
ways, and here we will show how one can obtain the same results for graphs embeddable on
orientable surfaces of bounded genus.

(1) Ω( |E |) Edge-Disjoint Even Walks (Lemma 3.3). We used planarity to extract Ω( |E |) edge-
disjoint faces and then argued that, by pairing up the faces, we get Ω( |E |) edge-disjoint
even walks.

(2) Counting Perfect Matchings (Lemma 3.1). We used planarity to argue that we can count the
number of MWPMs and hence get a point inside a face of the perfect matching polytope
PM (G,w ) when w is small.

(3) Finding the Minimum Odd Cut (using Theorem 6.7). We used the fact that minimal minimum
s-t cuts can be computed in NC for planar graphs [16], in order to prove that we can
construct Gomory-Hu trees and find the minimum odd cut.

Note that given a graph, one can find an embedding onto a surface of genus д = O (1) in NC if
one exists [7]. So from now on, we assume this embedding is given to us. We now address how
each of Lemmas 3.3 and 3.1, and Theorem 6.7 can be proved for bounded genus graphs.

For Lemma 3.3, note that we simply need to obtain Ω( |E |) edge-disjoint cycles in our graph.
Pairing up odd cycles can be done as before using a spanning tree. In planar graphs, these cycles
were obtained from the faces, and we used Euler’s formula |V | − |E | + |F | = 2 to argue that in
graphs without degree 1 vertices and with at most half of the vertices having degree 2, there
must be Ω( |E |) faces. We still have an Euler’s formula in the case of bounded genus graphs, but
with 2 replaced by a (negative) constant. The proof still works as before and one can show that
|F | ≥ a |E | − b for some a > 0, which implies that |F | = Ω( |E |).

For Lemma 3.1, it is enough to be able to count perfect matchings. To be more precise, given
weightsw over the edges of the graph, we simply need to compute the perfect matching generating
function ∑

M is perfect matching

∏

e ∈M

we ,

in NC as long as the bit complexity of w is small. Kulkarni et al. [20] showed how this can be
done in NC by slightly modifying an algorithm of Galluccio and Loebl [11]. Their method reduces
computing the perfect matching generating function to taking a linear combination of Pfaffians
over planar graphs.

Finally, for finding minimum odd cuts in bounded genus graphs: We will show that we can use
the methods of Borradaile et al. to find the minimum odd cut in NC [3]. The algorithm of Borradaile
et al. allows one to find minimum cuts between all pairs of vertices in bounded genus graphs in
nearly linear time, however we will show that a slight modification of it runs in NC. This almost
shows that one can find the minimum odd cut in NC, because every minimum odd cut is also a
minimum s-t cut for some s and t . However, one still needs to be careful about cases where there
can be multiple minimum s-t cuts.

The main observation behind the algorithm of Borradaile et al. is that a minimum cut separating

vertices s and t is composed of dual cycles (of which there are at most 2O (д)), all but one of which
can be chosen from certain homology classes without regards to the pair s and t . They use this

Journal of the ACM, Vol. 67, No. 4, Article 21. Publication date: May 2020.



21:32 N. Anari and V. V. Vazirani

observation to reduce the problem to finding minimum cuts in 2O (д2 ) planar graphs, where д is the
genus of the original graph. Roughly speaking, they enumerate all possible homology classes for
all but one the cycles, and one by one, from each homology class they find the shortest possible
cycle in the chosen homology class and perform some surgery on the graph and its embedding.
These surgeries reduce the genus, until the embedding becomes planar. The surgeries are easy to
perform in NC, as long as the cycles are found in NC.

In order to define the homology classes, and also find shortest cycles given the homology class,
Borradaile et al. use the results of Erikson and Nayyeri [9]. Their algorithm again can be imple-
mented in NC; at a high level, it works as follows: construct a spanning forest in the dual graph in
order to define Z2-homology signatures, and then construct a Z2-homology cover of the bounded
genus graph and find shortest paths between pairs of vertices in the cover. All of these can be
parallelized and are in particular in NC as long as the genus is bounded.

We now point out the main technicality needed to adapt the algorithm of Borradaile et al. Al-
though minimum cuts between all pairs of vertices can be found from the minimum cuts in the

2O (д2 ) planarizations, it is not guaranteed that these cuts are nicely uncrossed from each other
and form a Gomory-Hu tree. In fact, Borradaile et al. perturb the weights in order to have unique

minimum cuts, and in order to be able to merge the Gomory-Hu trees from 2O (д2 ) planar graphs
into one Gomory-Hu tree for the original graph. However, we cannot afford to perturb the weights
because we do not have access to random bits. Instead, we argue in the next paragraph that a min-
imum odd cut can be directly found in one of the planarizations. Therefore, one can produce the
planarizations in NC and then construct a Gomory-Hu tree from each and find the minimum odd
cut amongst them.

Note that if the weights of the graph were slightly perturbed, then the minimum odd cut would
have been the unique minimum s-t cut for some pair s and t , and we would have been able to find
the unique cut in one of the planarizations. But this shows that even if the edges were not per-
turbed, a minimum odd cut must survive the surgeries performed on the graph for some sequence
of fixed homology signatures. In other words, a minimum odd cut must be comprised of dual cy-
cles, all but one of which are the minimum cycles from given homology classes. So a minimum
odd cut must survive one of the sequences of surgeries performed on the graph, and found at the
end by our algorithm for finding Gomory-Hu trees in planar graphs. �

We remark that all of the subroutines mentioned in the previous proof still remain in NC for

genus up to O (
√

logn), except for the subroutine that finds the embedding of the graph. Hence,

Theorem 7.1 can be slightly strengthened to handle graphs of genus O (
√

logn), as long as the
input graph is given along with its embedding. Finally, observe that the common generalization
of Theorems 1.2 and 7.1 easily follows.

8 DISCUSSION

The main open problem, of course, is to go beyond bounded genus graphs and obtain an NC perfect
matching algorithm for general, or even bipartite, graphs. Below, we state a more easily accessible
open problem.

An interesting problem defined by Papadimitriou and Yannakakis [28], called Exact Matching,
is the following: Given a graph G with a subset of the edges marked red and an integer k , find a
perfect matching with exactly k red edges. This problem is known to be in RNC [26]; however, it
is not yet known to be in P, even for bipartite graphs. For the case of planar graphs, the decision
version of this problem is known to be in NC (and hence P); this follows from the fact that a
Pfaffian orientation for such a graph can be computed in NC [34] and by using the techniques of
Section 3.1. Using the decision oracle to sequentially prune edges, the search version can be seen
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to be in P; however, it is not known to be in NC. Can our techniques be used for obtaining an
NC algorithm for the search version?

Remark 8.1. Subsequent to our work, Sankowski [30] gave an NC algorithm for computing a
perfect matching in a planar graph, using somewhat different techniques.

Remark 8.2. Building on our result, recently Eppstein and Vazirani [8] resolved the open problem
stated by Vazirani [34], of obtaining an algorithm for K3,3-free graphs. Eppstein and Vazirani [8]
go further to give NC algorithms for computing an MWPM for small edge-weights, counting the
number of perfect matchings, and a maximum s-t flow in one-crossing-minor-free graphs.

Remark 8.3. In the Introduction of this article, and the version that appeared in FOCS 2018, we
stated, “... it will not be surprising if some of our ideas turn out to be useful for the resolution
of the main open problem.” Our recent article [1] already justifies this remark. The article gives
an NC reduction from search to decision for the problem of finding an MWMP in general graphs
with small edge-weights; as remarked in [1], this new fact has qualitatively changed the nature of
the main open problem. The overall structure of the oracle-based algorithm given in [1] follows
that of the current article. Additionally, this article uses some key ideas from the current work, in
particular, an NC algorithm for finding a balanced viable set; observe that the algorithm given in
the current article works for general graphs. For completeness, it is important to remark that [1]
also critically draws on several ideas discovered in other articles on matching published on the
last five years.
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