Rate control as a market equilibrium

Frank P. Kelly* Vijay V. Vazirani[†]

Abstract

This note extracts the definition of a rate control equilibrium from [2]. An interesting question is whether the equilibrium can be found by a polynomial time algorithm: it can in the case where every route is of unit length [1]. (Continuous time algorithms similar to TCP are known - see [3] - but insights from finite algorithms may be provocative.)

1 The equilibrium

Consider a network with a set J of resources, and let C_j be the finite capacity of resource j, for $j \in J$. Let a route r be a non-empty subset of J, and write R for the set of possible routes. Set $A_{jr} = 1$ if $j \in r$, so that resource j lies on route r, and set $A_{jr} = 0$ otherwise. This defines a 0 - 1 matrix $A = (A_{jr}, j \in J, r \in R)$. Suppose that several routes through the network may substitute for one another: formally, suppose that a source-sink s is a subset of s and write s for the set of possible source-sinks. Set s if s is a subset of s and write s for the set of possible source-sinks. Set s if s is a subset of s and an arrive s for the set of possible source-sinks. Set s if s if s is a subset of s and set s if s if s is a subset of s and set s if s is a subset of s if s if s is a subset of s if s i

A flow pattern $y=(y_r, r \in R)$ supports the rates $x=(x_s, s \in S)$ if Hy=x, so that the flows y_r over routes r serving the source-sink s sum to the rate x_s . A flow pattern $y=(y_r, r \in R)$ is feasible if $y \geq 0$ and $Ay \leq C$, where $C=(C_i, j \in J)$, so that the flows over routes through resource j

^{*}Statistical Laboratory, University of Cambridge, 16 Mill Lane, Cambridge, CB2 1SB, UK. Email: f.p.kelly@statslab.cam.ac.uk

[†]College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280. Email: vazirani@cc.gatech.edu.

sum to not more than the capacity C_j of resource j. Suppose that user s is prepared to pay an amount m_s per unit time, and let $m = (m_s, s \in S)$.

Say that (x, y) is an equilibrium if there exist multipliers (λ, μ) such that:

$$Hy = x, \quad Ay \le C, \quad x, y \ge 0 \tag{1}$$

$$\lambda^T H \le \mu^T A, \quad \lambda, \mu \ge 0 \tag{2}$$

$$\mu^{T}(C - Ay) = 0, \quad (\mu^{T}A - \lambda^{T}H)y = 0, \quad m_{s} = \lambda_{s}x_{s}, \ s \in S.$$
 (3)

Interpret μ_j as the price of unit flow through resource j, and λ_s as the price of unit flow between source-sink s. The first row of conditions expresses capacity constraints; the other rows insist that no flow goes along a route unless it is the cheapest route serving the relevant source-sink, that no link has a positive price unless it is full, and (the final equation) that all money is spent.

An equilibrium exists, since it solves the following optimization problem (e.g. [2], page 13):

maximize
$$\sum m_s \log x_s$$
 (4)

subject to
$$Hy = x, Ay \le C$$
 (5)

over
$$x, y \ge 0.$$
 (6)

For this optimization problem row (1) is *primal feasibility*; row (2) is *dual feasibility*; and row (3) comprises *complementary slackness*.

Indeed an equilibrium exists if H and A are more general than 0-1 matrices. The case where all routes are of unit length is the model of [1], where a polynomial time algorithm is presented. Is there a polynomial time algorithm for the case of longer routes?

References

- [1] N. R. Devanur, C.H. Papadimitriou, A. Saberi and V.V. Vazirani (2002) Market equilibrium via a primal-dual-type algorithm.
- [2] F. P. Kelly (1997) Charging and rate control for elastic traffic. European Transactions on Telecommunications, volume 8, pages 33-37. www.statslab.cam.ac.uk/~frank/elastic.html
- [3] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan (1998) Rate control in communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research Society 49, 237-252. www.statslab.cam.ac.uk/~frank/rate.html.