
This article was downloaded by: [2600:8802:2911:6200:ad2b:eaaf:8922:974] On: 07 May 2024, At: 15:30
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Mathematics of Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

A Theory of Alternating Paths and Blossoms from the
Perspective of Minimum Length
Vijay V. Vazirani

To cite this article:
Vijay V. Vazirani (2024) A Theory of Alternating Paths and Blossoms from the Perspective of Minimum Length. Mathematics of
Operations Research

Published online in Articles in Advance 07 May 2024

. https://doi.org/10.1287/moor.2020.0388

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2024, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/moor.2020.0388
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

A Theory of Alternating Paths and Blossoms from
the Perspective of Minimum Length
Vijay V. Vazirania

a Department of Computer Science, University of California, Irvine, California 92697
Contact: vazirani@ics.uci.edu, https://orcid.org/0000-0002-4106-9077 (VVV)

Received: December 7, 2020
Revised: December 15, 2021; May 16, 2022;
May 4, 2023; July 30, 2023; December
12, 2023; March 18, 2024; March 22, 2024
Accepted: March 29, 2024
Published Online in Articles in Advance:
May 7, 2024

MSC2020 Subject Classifications: Primary:
68Q25, 68W40

https://doi.org/10.1287/moor.2020.0388

Copyright: © 2024 INFORMS

Abstract. The Micali–Vazirani (MV) algorithm for finding a maximum cardinality match-
ing in general graphs, which was published in 1980, remains to this day the most efficient
known algorithm for the problem. The current paper gives the first complete and correct
proof of this algorithm. The MV algorithm resorts to finding minimum-length augmenting
paths. However, such paths fail to satisfy an elementary property, called breadth first search
honesty in this paper. In the absence of this property, an exponential time algorithm
appears to be called for—just for finding one such path. On the other hand, the MV algo-
rithm accomplishes this and additional tasks in linear time. The saving grace is the various
“footholds” offered by the underlying structure, which the algorithm uses in order to per-
form its key tasks efficiently. The theory expounded in this paper elucidates this rich struc-
ture and yields a proof of correctness of the algorithm. It may also be of independent
interest as a set of well-knit graph-theoretic facts.

Funding: This work was supported in part by the National Science Foundation [Grant CCF-2230414].

Keywords: maximum matching problem • efficient algorithms • alternating paths • augmenting paths • blossoms • double depth first search

1. Introduction
The following quote, from the classic book by Lovász and Plummer [22], provides a nice backdrop for the work
reported in this paper:

The concept of an alternating path, although quite simple, is one of the most important in all of matching theory.
(Lovász and Plummer [22, p. 12])

For the significance of this notion in the design of efficient algorithms for matching as well as the parallel devel-
opment of the notion of an augmenting path for flow algorithms, we refer the reader to Ahuja et al. [1] and Lovász
and Plummer [22]. The computational importance of minimum-length augmenting paths was first recognized by
Dinitz [4] in the context of flow theory, and this basic idea gave rise to several efficient maximum flow algorithms;
see Ahuja et al. [1]. Independent and simultaneous works by Hopcroft and Karp [15] and Karzanov [19] studied
minimum-length augmenting paths in the context of matching and used this notion to give the most efficient algo-
rithm of its time for maximum matching in bipartite graphs; see Section 10 for the improvements obtained in recent
years.

Edmonds [7] defined the notion of blossoms and used it to give the first polynomial time algorithm for finding a
maximum matching in general graphs. His proof of correctness was built around graph-theoretic facts, which for-
malize the manner in which augmenting paths traverse blossoms and their complex nested structure.

The most efficient known algorithm for general graph matching is from Micali and Vazirani [24] in 1980.1 It
resorts to finding minimum-length augmenting paths and uses the scheme proposed in Hopcroft and Karp [15]
and Karzanov [19]; see Section 1.2. The blossoms that it finds are special, and they are defined in Section 8; in con-
trast, the blossoms of Edmonds [7] do not take into consideration length information and therefore, inadequate for
the purpose of finding minimum-length augmenting paths. The description of this algorithm given in Micali and
Vazirani [24], via a pseudocode, is complete and error free.2 However, the paper did not attempt a proof of
correctness.

A proof of correctness was attempted in Vazirani [34]. That paper correctly recognized the fact that an elaborate,
new theory of alternating paths and blossoms, from the perspective of minimum-length paths, was called for to
give such a proof. As detailed in Section 1.1, although that paper made some important contributions, it had serious
shortcomings.

1

MATHEMATICS OF OPERATIONS RESEARCH
Articles in Advance, pp. 1–39

ISSN 0364-765X (print), ISSN 1526-5471 (online) https://pubsonline.informs.org/journal/moor

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

mailto:vazirani@ics.uci.edu
https://orcid.org/0000-0002-4106-9077
https://doi.org/10.1287/moor.2020.0388

The current paper completes the task started in Vazirani [34] by presenting the pertinent theory in full detail and
using it to give the first complete and correct proof of the Micali–Vazirani (MV) algorithm. In Section 1.1, we state
the new ideas underlying this proof. Considering the special status of the maximum matching problem within the
theory of algorithms, it was not appropriate to leave its most efficient known algorithm in an essentially unproven
state, hence the investment of (substantial) effort to produce the current paper, notwithstanding the lapse of consid-
erable time since the publication of the algorithm.

In the case of bipartite graphs, minimum-length alternating paths from an unmatched vertex to a matched
vertex can be of one parity only, either even or odd. Consequently, such paths possess an elementary property,
called breadth first search (BFS) honesty in this paper. Let p be a minimum alternating path from unmatched ver-
tex f to v, and let u lie on p. Then, the part of p from f to u is a minimum alternating path from f to u and not any
longer. In the presence of this property, a straightforward alternating BFS suffices for executing a phase3 in lin-
ear time.

In general graphs, the existence of minimum-length alternating paths of both parities from an unmatched vertex
to a matched vertex leads to a new difficulty, whose origin lies in the fact that such paths are not BFS honest. In the
situation described, assume that p is a minimum even-length alternating path from f to v and that u lies on p. The
issue is that the part of p from f to u can be arbitrarily longer than a minimum path from f to u of either parity. This
happens because all minimum paths from f to u contain v at an odd length; see Example 2 in Section 3.2.

As a result, the following fundamental difficulty arises. For finding a minimum augmenting path in the graph,
we need to find arbitrarily long paths to intermediate vertices, even though the latter does admit short paths; see
Section 3. As such, this appears to call for an exponential time4 algorithm. How then does the MV algorithm accom-
plish this task within the same time as bipartite graphs (i.e., linear time for a phase)?

The theory expounded in this paper shows how the underlying structure offers several different “footholds” for
the key tasks that the algorithm needs to perform in order to home in on a solution quickly. The bottom line is that
although minimum-length alternating paths are not BFS honest, they are not arbitrarily BFS dishonest. First, Theo-
rem 2 uses the notion of tenacity to carve out an important case in which vertex u must be BFS honest on path p
from f to v. Second, even if vertex u is not BFS honest on p, it is BFS honest on p w.r.t. a special vertex, called base(u).
In turn, even if base(u) is not BFS honest on p, it is BFS honest on p w.r.t. base(base(u)) � base2

(u) and so on; see The-
orems 5 and 6.

Consistent with these simple-looking rules, myriad situations can arise—illustrated via the many examples given
in this paper—and the algorithm needs to efficiently handle all of them. Indeed, the structure expounded in this
paper lays bare a stark contrast: on the one hand, the extreme complexity of the problem being handled by the algo-
rithm and on the other hand, the simplicity of the algorithm itself.

Matching has had a long and distinguished history within graph theory and combinatorics, spanning more than
a century and a half (Lovász and Plummer [22]). Its algorithmic history is equally long, dating back to the
midnineteenth-century work of Carl Gustav Jacobi on the bipartite case, as mentioned in Wikipedia [36]. Its exalted
status in the theory of algorithms5 arises from the fact that its study has yielded quintessential paradigms and pow-
erful algorithmic techniques, which form the foundation of the modern theory of algorithms, as we know it today.
These include definitions of the classes P (Edmonds [8]) and #P (Valiant [32]), the primal-dual paradigm (Kuhn
[20]), the equivalence of random generation and approximate counting for self-reducible problems (Jerrum et al.
[17]), characterizing facets of the convex hull of solutions to a combinatorial problem (Edmonds [7]), the canonical
paths argument in the Markov chain Monte Carlo method (Jerrum and Sinclair [16]), and the isolation lemma (Mul-
muley et al. [27], Wikipedia [37]).

1.1. Overview and Contributions
In this section, we will state the contributions of Vazirani [34] and point out the nature of its shortcomings, because
of which the current paper was called for. We will also state the contributions of the current paper and discuss the
ideas that led to the current proof.

A number of structural notions and definitions need to be given to state the algorithm and the proof. Rather than
stating them all up front, we have spread them over the sections in which they are put to use for the first time. The
elementary ones, pertaining to minimum-length alternating paths, are given in Section 3.1. Section 4 gives defini-
tions required for stating the algorithm, primary among them being tenacity of vertices and edges and the classifica-
tion of edges into props and bridges.

At a high level, the algorithm involves three main ideas.
1. Double depth first search (DDFS). The new graph search procedure called DDFS is described in Section 2 in a

completely self-contained manner; it can be read without reading the rest of the paper.

Vazirani: A Theory of Alternating Paths and Blossoms
2 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

2. Marking petals appropriately. Petals need to be marked appropriately so that paths through them can be found
quickly. Petals are defined in Definition 13, and Section 5.2 provides details on marking them. Remark 1 highlights
how this way of marking petals helps achieve the promised running time.

3. Synchronization of events. This is described in Section 9.1; in particular, see Remark 8.
Section 8 gives the central notions of base of a vertex and base of a blossom; these are essential to the proof of

correctness of the algorithm and for clarifying the “footholds” mentioned in Section 1. As described in Section 8.1,
in order to define the base of a vertex v, we need to show that the set B(v), defined in Definition 19, is a singleton.
However, its proof requires the notion of a blossom and its associated properties. On the other hand, blossoms
can be defined only after defining the base of a vertex. Therefore, we are faced with a severe “chicken-and-egg”
problem.

Our proof resolves this problem by carrying out an induction on tenacity. This is done in the central structural
theorem: Theorem 3. The induction basis, for the lowest-tenacity vertices in the graph, is given in Section 8.2. It
shows that for such vertices v, B(v) is a singleton; this unique vertex is defined to be base(v). The proof of this fact is
not straightforward and is accomplished by using DDFS in an appropriate setting. Indeed, one of the main innova-
tions of the current paper is the use of this procedure not only in the algorithm but also for its proof.

Once the base of the lowest-tenacity vertices is well defined, the blossoms containing these vertices can be
defined, and properties of these blossoms and properties of paths traversing through them can be established. In
the induction step, which is carried out in Section 8.3, these facts are established for higher-tenacity vertices.

As mentioned, the heart of the proof involves using DDFS in an appropriate setting; the latter is a graph obtained
from the given graph. The graph in which the induction basis is carried out is far simpler than the one in which the
induction step is carried out because the latter contains blossoms defined in the previous steps of the induction.
Because of this simplicity, the induction basis plays the role of a crucible in which proof techniques can be devel-
oped with relative ease for the various claims. Furthermore, as detailed here, we can determine the “correct” order
in which these proofs need to be carried out. In the proof of the induction step, we first apply a transformation on
previously defined blossoms (see Definition 28), after which the structure of the proofs becomes similar to those in
the induction basis, and these proofs are omitted unless they contain a significant new insight.

The following steps were taken to render the algorithm easier to comprehend.
1. For ease of comprehension, DDFS has been described in the simpler setting of a directed, layered graph H. In

the algorithm, DDFS is run on the original graph G. However, describing DDFS on G is too cumbersome; this was
done in Vazirani [34]. Instead, we provide a mapping from G to H in Section 5.3 via which the reader can easily
trace the steps that DDFS executes in G. Interestingly, this cosmetic-looking idea had a far-reaching conceptual con-
sequence as discussed.

2. To further help the reader, in the many illustrative examples given, the distance of vertices from unmatched
vertices is proportional to their min levels, such as would be the case in the corresponding layered graph H. Thus,
the unmatched vertices belong to the lowest level.

3. Wherever possible, procedures are described in plain English. For example, DDFS is described in English in Sec-
tion 2; readers who prefer to understand it via a pseudocode can find it in Micali and Vazirani [24] and Vazirani [34].

4. The structural definitions given in this paper are of two types: purely graph-theoretic ones and algorithmic
ones; the latter depends on the manner in which ties are resolved in a run of the algorithm. Whereas the former
includes base and blossom, the latter includes petal and bud; see Section 5.2. We have demarcated these two types
of definitions, and in Section 9.2, we have pointed out relationships between them.

At a high level, Vazirani [34] also accurately identified the interplay between the notions of tenacity, base, blos-
som and bridge. However, the actual definitions given for some of these notions were incorrect. For example, in
Vazirani [34], the central notion of base of a vertex was defined for any vertex of finite tenacity. However, it turns
out that there may be vertices of finite tenacity that have no base (e.g., see Example 14). In the current paper, base
has been defined only for vertices of eligible tenacity; see Definition 17 for this notion. Vazirani [34, theorem 3]
“proves” that every vertex of finite tenacity has a well-defined base; it is obviously incorrect. Furthermore, Vazirani
[34, theorem 3] is incorrect even for vertices of eligible tenacity.

The errors in the proofs given in Vazirani [34] can be traced back to three reasons; we provide them together with
the ways we get around them in the current paper.

1. Vazirani [34] failed to identify the “chicken-and-egg” problem stated and tried to “prove” several facts in a
stand-alone manner. As mentioned, the current paper rectifies this problem by carrying out an induction on tenac-
ity in Theorem 3, proving all these fact for lower-tenacity vertices before moving to higher-tenacity vertices.

2. The expository idea of describing DDFS in the simpler setting of a layered graph had an unexpected conse-
quence; it led to two breakthrough ideas for the proof: first, use of the power of DDFS and second, doing the proof
in the simpler setting of graphs H′m and H′t . As a result of the latter, we avoid dealing with the debilitating

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 3

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

complexity of the original graph G � (V, E), unlike Vazirani [34].
The induction basis is carried out in graph H′m. Then, the nontrivial definitions of predt and pred∗t , given in Defi-

nition 28, help finesse the lower-tenacity blossoms, which were defined in previous induction steps, to yield the
graph H′t in which the induction step is carried out. All the facts established are then “ported” back to G using the
mapping between these graphs and G; see Sections 8.2.1 and 8.3.1.

These ideas qualitatively changed6 the nature of the proofs; instead of dealing with individual alternating paths
that can get arbitrarily complicated, leading to incorrect proofs, we now deal with the very precise and potent infor-
mation provided by the DDFS Certificate, as proven in Theorem 1.

3. The mindset in Vazirani [34] was the following. The culminating fact that needed to be proven was the exis-
tence of a bridge of the right tenacity on a max-level path,7 and a variety of other structural facts needed to be estab-
lished prior to that. This order turns out to be incorrect. As mentioned, in the current paper, the order is dictated by
the proof of the induction basis carried out in graph H′m. Its simple structure makes transparent the “right” order of
implications; see Section 8.2. This is the right order for the induction step as well; see Section 8.3. In particular, the
existence of a bridge is the first, and not the last, fact we establish in the induction basis as well as in the induction
step.

1.2. Running Time and Related Papers
The simplest scheme for finding a maximum matching is to start with the empty matching, iteratively find aug-
menting paths, and augment the current matching. When there is no such path, the matching must be maximum;
this is shown in Berge [2]. In order to improve the running time, Hopcroft and Karp [15] and Karzanov [19] pro-
posed finding multiple augmenting paths in each iteration as stated in Definition 1.

Definition 1 (Phase). In a graph G � (V, E) with matching M, a phase consists of finding a maximal set of disjoint
minimum-length augmenting paths and augmenting M along all paths found.

As shown in Hopcroft and Karp [15] and Karzanov [19], O(
ffiffiffi
n
√
) phases suffice8 for finding a maximum matching.

These papers also show how to implement a phase in O(m) time in a bipartite graph, thereby getting a total running time
of O(m

ffiffiffi
n
√
). The MV algorithm executes a phase in linear time on the Random Access Model (RAM) model. Its total run-

ning time is O(m
ffiffiffi
n
√
) on the RAM model and O(m

ffiffiffi
n
√
·α(m, n)) on the pointer model (see Theorem 8 for details).

We note that small theoretical improvements to the running time, for the case of very dense graphs, have been
given in recent years: O(m

ffiffiffi
n
√

log(n2=m)=log n) (Goldberg and Karzanov [14]) and O(nw) (Mucha and Sankowski
[26]), where w is the best exponent of n for multiplication of two n×n matrices. The former improves on MV for
m � n2�o(1), and the latter improves on MV for m � ω(n1:85). However, the latter algorithm involves a large multi-
plicative constant in its running time, which comes from the use of fast matrix multiplication as a subroutine,
thereby making the small improvement in the exponent not very meaningful.

Prior to Micali and Vazirani [24], Even and Kariv [9] had used the idea of finding augmenting paths in phases
to obtain an O(n2:5) maximum matching algorithm. However, their algorithm is extremely complicated, and its
correctness is hard to ascertain, in particular because there is no journal version of that result.

Subsequent to Micali and Vazirani [24], Gabow and Tarjan [11] give an efficient scaling algorithm for finding a
minimum weight matching in a general graph with integral edge weights, and at the end of their paper, the
authors claim that the unit weight version of their algorithm achieves the same running time as the MV algo-
rithm; see also Gabow [10]. The rest of the history of matching algorithms is very well documented, and it will
not be repeated here (e.g., see Lovász and Plummer [22], Vazirani [34]).

2. DDFS
This section is fully self-contained and describes the procedure of DDFS. For ease of comprehension, we have pre-
sented DDFS in the simplified setting of a directed, layered graph H. In the MV algorithm, DDFS is run on the origi-
nal graph G, which is far more complex. In G, DDFS terminates with either a new blossom—more precisely, a new
petal—or the existence of a new augmenting path. These correspond to Case 1 and Case 2, which are detailed here.
We will provide an explicit mapping between the two settings in Section 5.3.

The input to DDFS is a directed, layered graph H � (V, E). V is partitioned into h+1 layers for some h>0. The layers
are numbered from zero to h and are named l0, : : : , lh, with l0 being the lowest layer and lh being the highest layer. The
layer number of a vertex v is denoted by l(v). We will assume that for each v ∈ V, l(v) is easily available; in fact, it can
be obtained in unit time. If l(v) < l(u), then we will say that v is deeper than u. Each directed edge (u, v) ∈ E runs from
a higher layer to a lower layer, not necessarily consecutive (i.e., l(u) > l(v)). V contains two special vertices, r and g,
for red and green, not necessarily in the same layer, and neither of them in l0. See Figure 1 for a layered graph with
h�7.

Vazirani: A Theory of Alternating Paths and Blossoms
4 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

At a high level, the objective of DDFS is to grow two depth first search (DFS) trees, Tr and Tg, rooted at r and g,
respectively, in such a way that Tr and Tg share at most one vertex and the deepest vertex (vertices) in the two trees is
(are) “as deep as possible.” Furthermore, this needs to be done in time that is linear in the sum of the sizes of the
two trees. Because of the DDFS Requirement, stated here, it is trivial to grow any one tree very deep, all the way to
the lowest layer, l0. However, this will not achieve the more interesting and useful objective stated. For that, we
grow each tree in such a way that it does not “block off” the other tree by growing them in a highly coordinated
manner; the latter is the main point of DDFS.

We require that H satisfies the DDFS Requirement.

2.1. DDFS Requirement
Starting from every vertex v ∈ V, there is a path to a vertex in layer l0.

Vertex v will be called a bottleneck if every path from r to l0 and every path from g to l0 contains v; v is allowed to
be r or g or to be a vertex in layer l0. Let p be a path from r or g to layer l0. Because layer numbers on p are monotoni-
cally decreasing, if there is a bottleneck, the one having highest level must be unique. It will be called the highest bot-
tleneck, and we will denote it by b. If H has a bottleneck, we will say that we are in Case 1. Otherwise, there must be
distinct vertices r0 and g0 in layer l0 such that there are vertex-disjoint paths from r to r0 and g to g0; this will be called
Case 2.

As stated, in the MV algorithm, these two cases correspond to the creation of a new petal and the discovery of a
new augmenting path, respectively. In the graph of Figure 1, DDFS will terminate in Case 1, with bottleneck b, as
shown in Figure 2. In the graph of Figure 3, which differs from the graph of Figure 1 only in the two edges going
from c to g0, DDFS terminates in Case 2, with disjoint paths from r to r0 and g to g0.

In Case 1, let Vb (Eb) be the set of all vertices (edges) that lie on all paths from r or g to b. In Case 2, let Ep be the set
of all edges that lie on all paths starting from r or g and ending at r0 or g0.

2.2. The Objective of DDFS
The first objective of DDFS is to determine which of these two cases holds. Additional objectives of DDFS in the two
cases are as follows.

Case 1. DDFS needs to find the highest bottleneck, b, and partition the vertices in Vb� {b} into two sets SR and
SG, called the red set and the green set respectively, with r ∈ SR and g ∈ SG. These sets should satisfy the following.

1. There is a path from r to b in SR ∪ {b} and a path from g to b in SG ∪ {b}.
2. There are two spanning trees, Tr and Tg, in SR ∪ {b} and SG ∪ {b} and rooted at r and g, respectively. Further-

more, DDFS needs to find such a pair of trees.

Case 2. DDFS needs to find distinct vertices r0 and g0 in layer l0 and vertex disjoint paths from r to r0 and g to
g0. In this case, as soon as DDFS finds these two paths, it halts, even if it has not traversed all edges of Ep

Figure 1. Layered graph H with r and g in layer l7.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 5

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

because a new augmenting path has already been found. Let E′p ⊆ Ep denote the edges that DDFS has actually
traversed.

2.3. The Two DFS Trees
DDFS involves the coordinated growth of two DFS trees, the red tree Tr and the green tree Tg, rooted at r and g,
respectively. At each point in the algorithm, each tree has a well-defined center of activity (i.e., the vertex it is cur-
rently exploring). These are denoted by Cr and Cg and are initialized to the two roots, r and g, respectively. When a
center of activity is at a vertex u and is ready to move, it must be the case that the color of u is the same as that of the
center of activity. If the center moves to a vertex v, the edge (u, v) is assigned to the corresponding tree and given
the color of the center.

Therefore, each edge (u, v) has the same color as that of u (i.e., all edges out of u will get the color of u). Note, how-
ever, that the color of v may be different from that of u. Figure 2 shows Tr and Tg after DDFS has been performed on
the graph of Figure 1. Tr consists of broken edges, and Tg consists of solid edges; the edge from b to l0 is in neither
tree. Note that b is in both trees and gets neither color.

At termination, DDFS provides the following certificate.

Figure 2. DDFS executed from r and g terminates in Case 1 with bottleneck b. Edge numbers indicate the order of traversal of
the edges.

Figure 3. DDFS executed from r and g terminates in Case 2.

Vazirani: A Theory of Alternating Paths and Blossoms
6 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Definition 2 (DDFS Certificate). In Case 1, for every vertex v ∈ Vb� {b}, if v is red, there is a path from r to v in Tr
and a disjoint path from g to b in Tg. Additionally, if v is green, there exists a path from g to v in Tg and a disjoint
path from r to b in Tr. In Case 2, there are vertex disjoint paths from r to r0 and g to g0 having colors red and
green, respectively.

2.4. Running Time
The running time of DDFS needs to be O(|Eb |) in Case 1 and O(|E′p |) in Case 2.

2.5. Coordinated Growth of the Two Trees
We will first describe aspects of DDFS in which the two trees function as “normal” DFS trees in a directed graph,
and then, we will describe their coordination; in particular, the coordination determines, at each step, which tree
grows. Initially, all vertices, other than r and g, are marked “unvisited,” and all edges are marked “unexplored.”

Every vertex in Tr ∪ Tg, other than r, g, and b, has a unique parent; r and g have no parent, and b has two parents,
one of each color. Assume that Cr�u, and it is Tr’s turn to grow. If so, Tr picks an unexplored edge, say (u, v), out of
u. If v is already marked “visited” and Cg ≠ v, then Tr picks another unexplored edge out of u. If v is marked
“unvisited,” then v is marked “visited,” u is designated the parent of v, and Cr moves to v. The last case is that v is
already marked “visited” and that Cg�v is dealt with here. When all outgoing edges from u have been explored, Cr
backtracks from u to its parent if u ≠ r; the case u� r is dealt with here. The growth of Tg is analogous. Because H is
acyclic, the trees have no back edges.

We next describe the coordination between the two trees. We will adopt the (arbitrary) convention that Cr will
“try to keep ahead of” Cg and that Cg will “try to catch up.” Following this convention, the moves of Cr are as fol-
lows. If l(Cr) > l(Cg), then Cr keeps moving until the first time that l(Cr) ≤ l(Cg). If l(Cr) � l(Cg) and Cr ≠ Cg, then Cr
moves one step and stops; at this point, l(Cr) < l(Cg). If Cr�Cg, the two centers of activity have met, and this case is
described. The moves of Cg are as follows. If l(Cr) < l(Cg), then Cg keeps moving until the first time that
l(Cg) ≤ l(Cr), and then, it stops.

2.6. When the Two Centers of Activity Meet
As stated, when one of the centers of activity traverses an edge, the edge is assigned to the corresponding tree and
is assigned its color.

However, the assigning of color to a vertex is not so straightforward and is not done in a greedy manner. Indeed,
a vertex v may first be added to one tree, and later, this decision may be reverted; this happens if Cr and Cg meet at
v.9 We will adopt the convention that when this happens, first Cg backtracks and tries to find an alternative path
that is as deep as v. If it fails, then Cg occupies v, and Cr tries to find an alternative path that is as deep as v. If Cr also
fails, then it must have backtracked all the way to the root r, and DDFS terminates.

We will explain these moves in detail via Figure 2. In this figure, the numbers on the edges indicate the order in
which they are added to the two trees. Observe that the two centers of activity meet for the first time at a. At this
point, DDFS needs to determine if a is the highest bottleneck and if not, then which of the trees can find an alterna-
tive path at least as deep as a so that search may resume. By the convention established, Cg tries first. After it back-
tracks all the way to g, it traverses edge numbers 5 and 6 and arrives at a vertex that is as deep as a, and DDFS
resumes.

The two centers of activity meet for the second time at vertex c. This time, Cg backtracks all the way to g without
finding an alternative path. As per our convention, Cg now occupies c, and Cr tries to find an alternative path as
deep as c.

However, at this stage, we need to introduce an important notion, namely the pointer Barrier. Its purpose is to
prevent Cg from backtracking from a vertex more than once. At the start of DDFS, the Barrier is initialized to g. At
this stage, because Cg has backtracked from c all the way to g (i.e., the current position of the Barrier), it is now
moved to c.

Next, the two centers of activity meet at b. By our convention, b is first given to Tr and Cg attempts to find an alter-
native path. However, it backtracks all the way to the Barrier, which is currently at c, without success. At this point,
the Barrier is moved to b, b is given to Tg, and Cr attempts to find an alternative path. However, it backtracks all the
way to r without finding an alternative path. At this point, we conclude that b is the bottleneck. In general, when Cr
backtracks all the way to r, DDFS terminates in Case 1, and the current meeting point is declared the bottleneck.

In Figure 3, after backtracking from b, Cg does manage to find an alternative path as deep as b when it explores
edge number 15. At this point, DDFS resumes; Cr reaches r0 in layer l0, and Cg reaches g0 in that layer, hence termi-
nating in Case 2.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 7

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Theorem 1. DDFS accomplishes the objectives stated in the required time.

Proof. In Case 1, tree Tr contains paths consisting of red-colored vertices from r to b and from r to each red ver-
tex. A similar claim holds about tree Tg. In Case 2, there is a path consisting of red-colored vertices from r to r0 in
tree Tr, and there is a path consisting of green-colored vertices from g to g0 in tree Tg. Therefore, the DDFS Certifi-
cate holds.

Finally, it is easy to see that each edge of H is explored by at most one tree and if so, only once. Clearly, Tr
backtracks from each vertex at most once, and because of the Barrier, the same holds for Tg as well. The theorem
follows. w

3. Elementary Definitions and a Fundamental Notion
In Section 3.1, we will present some elementary definitions pertaining to minimum-length augmenting paths.
Using these definitions, in Section 3.2, we present the property of breadth first search honesty, because of which an
alternating BFS works in bipartite graphs, yielding a linear time algorithm for a phase. The lack of this property in
nonbipartite graphs necessitates a much more complex algorithm.

3.1. Elementary Definitions
A matching M in an undirected graph G � (V, E) is a set of edges, no two of which meet at a vertex. Our problem is
to find a matching of maximum cardinality in the given graph. Henceforth, all definitions will be w.r.t. a fixed
matching M in G. Edges in M will be said to be matched, and those in E�M will be said to be unmatched. Vertex v
will be said to be matched if there is a matched edge incident at it and unmatched otherwise.

An alternating path is a simple path whose edges alternate between M and E�M (i.e., matched and unmatched).
An alternating path that starts and ends at unmatched vertices is called an augmenting path. Clearly, the number of
unmatched edges on such a path exceeds the number of matched edges on it by one.10 Its significance lies in that
flipping matched and unmatched edges on such a path leads to a valid matching of one higher cardinality.
Edmonds’ matching algorithm operates by iteratively finding an augmenting path w.r.t. the current matching,
which initially is assumed to be empty, and augmenting the matching. When there are no more augmenting paths
w.r.t. the current matching, it can be shown to be maximum.

The MV algorithm finds augmenting paths in phases as proposed in Hopcroft and Karp [15] and Karzanov [19].
In each phase, it finds a maximal set of disjoint minimum-length augmenting paths w.r.t. the current matching, and
it augments along all paths. Hopcroft and Karp [15] and Karzanov [19] show that only O(

ffiffiffi
n
√
) such phases suffice

for finding a maximum matching in general graphs. The remaining task is designing an efficient algorithm for a
phase.

Definition 3 (Length of Minimum-Length Augmenting Path). Throughout, lm will denote the length of a minimum-
length augmenting path in G; if G has no augmenting paths, we will assume that lm �∞.

Definition 4 (Even Level and Odd Level of Vertices). The even level (odd level) of a vertex v, denoted by even level(v)
(odd level(v)), is defined to be the length of a minimum even (odd)-length alternating path from an unmatched
vertex to v; moreover, each such path will be called an even level(v) (odd level(v)) path. If there is no such path,
even level(v) (odd level(v)) is defined to be ∞.

We will typically denote an unmatched vertex by f. The even level is zero, and its odd level is the length of the
shortest augmenting path starting at f; if no augmenting path starts at f, odd level(f) � ∞. The length of a
minimum-length augmenting path w.r.t. M is the smallest odd level of an unmatched vertex.

Definition 5 (Max Level and Min Level of Vertices). For a vertex v such that at least one of even level(v) and
odd level(v) is finite, max level(v) (min level(v)) is defined to be the bigger (smaller) of the two.

Definition 6 (Outer and Inner Vertices). A vertex v with finite min level is said to be outer if even level(v) < odd level(v)
and inner otherwise.

Definition 7 (Odd and Even w.r.t. p). Let p be an alternating path from unmatched vertex f to v, and let u lie on p.
The length of path p, denoted by |p | , is the number of edges on p. The part of p from f to u will be denoted by
p[f to u], and p[f to u) will denote the part of p from f to the vertex just before u. Other combinations are self-
explanatory. We will say that vertex u is even w.r.t. p if |p[f to u] | is even, and it is odd w.r.t. p if |p[f to u] | is odd.

Example 1. In the figures hereafter, matched and unmatched edges are drawn with dashed and solid lines,
respectively. Additionally, unmatched vertices are drawn with a small circle (e.g., vertex f in Figure 4). The num-
bers in this figure indicate the even levels and odd levels of vertices, with missing numbers being infinity.

Vazirani: A Theory of Alternating Paths and Blossoms
8 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

3.2. The Notion of BFS Honesty
Let p be an alternating path from unmatched vertex f to v. We will say that p is a minimum alternating path if |p | �
even level(v) (|p | � odd level(v)) if |p | is even (odd).

BFS honesty is the following property. Let p be a minimum alternating path from unmatched vertex f to v, and let
u lie on p. Then, p[f to u] is a minimum alternating path from f to u. Bipartite graphs satisfy this property, and as a
consequence, a straightforward alternating BFS suffices for finding minimum augmenting paths; see Section 4, or
for a complete description, see Vazirani [34, section 2.1].

Surprisingly enough, this elementary property does not hold in the nonbipartite graphs, as illustrated in Example 2.
This basic difference arises because in bipartite graphs, minimum-length alternating paths from an unmatched vertex
f to a vertex v can be of one parity only, either even or odd, but in nonbipartite graphs, they can be of both parities. As
a result, the following may happen. Let p be an even level(v) path from f to v, and let u lie on it with |p[f to u] | being
odd. Then, p[f to u] can be arbitrarily longer than an odd level(u) path. The reason is that every odd level(u) path, say
q, contains v at an odd length, and extending q to v to get an even-length path will result in a self-intersecting path; see
Example 2. Consequently, for the graph in Figure 5, we would need to find longer and longer odd-length alternating
paths from f to w in order to find the minimum-length alternating paths from f to other vertices (e.g., u and v).

In summary, the following fundamental difficulty arises. For finding a minimum-length augmenting path, we
need to find arbitrarily long paths to intermediate vertices, even though the latter does admit short paths. As such,
this appears to call for an exponential time algorithm. Recall that finding short paths is easy and that finding long
paths is hard (e.g., the Hamiltonian path is Nondeterministic Polynomial Time (NP) hard).

Figure 4. (Color online) The even levels and odd levels of vertices are indicated; missing levels are ∞.

Figure 5. (Color online) Vertices w, a, b, and u are not BFS honest on the even-level(v) path shown via arrows.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 9

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Example 2. In Figure 5, odd level(w) � 7. An even level(v) path is shown in this figure. Observe that w occurs at
a length of 11 on this path. Also, observe that v occurs at an odd length on the odd level(w) path. It will be
instructive for the reader to find an even level(u) path; observe that w occurs at a length of nine on it.

4. Some Essential Definitions
As mentioned in Section 1, in order to implement a phase in linear time in nonbipartite graphs, we need to exploit
the elaborate structure offered by minimum-length alternating paths. In this section, we present some facts that are
absolutely necessary to describe the MV algorithm. The proof of correctness of the algorithm requires additional
structural properties, presented in Section 8.

Definition 8 (Tenacity of Vertices and Edges). Define the tenacity of vertex v tenacity(v) � even level(v) + odd
level(v). If (u, v) is an unmatched edge, then tenacity(u, v) � even level(u) + even level(v) + 1, and if it is matched,
tenacity(u, v) � odd level(u) + odd level(v) + 1.

The notion of tenacity is central to the structural facts that follow. Clearly, tenacity(f) ≥ lm for an unmatched
vertex f; see Definition 3 for the notion of lm. Furthermore, tenacity(f) � lm if and only if f participates in a
minimum-length augmenting path.

Definition 9 (Minimum Tenacity of a Vertex in G). Throughout, tm will denote the tenacity of a minimum-tenacity
vertex in G.

Clearly tm ≤ lm. If tm� lm, the situation is particularly simple because there are no blossoms, and essentially,
the bipartite graph algorithm works for executing a phase. Henceforth, we will assume that tm< lm.

Example 3. In Figure 6, the tenacities of vertices are marked. They are α � 13, β � 15, γ�17, and δ �∞. In Figure 7,
the tenacities of edges are marked. They are α � 13, β � 15, and γ�17.

Definition 10 (Predecessor, Prop, and Bridge). Consider a min level(v) path, and let (u, v) be the last edge on it;
clearly, (u, v) is matched if v is outer and unmatched otherwise. In either case, we will say that u is a predecessor
of v and that edge (u, v) is a prop. An edge that is not a prop will be defined to be a bridge.

Definition 11 (The Relations pred and pred∗). Let v be a vertex such that min level(v) is finite. If v is an outer ver-
tex, it will have a unique predecessor, namely its matched neighbor; otherwise, it will have one or more prede-
cessors. The relation pred is defined as follows. We will say that u is pred v if u is a predecessor of v; we will also
write is as u � pred v. The relation pred∗ is the reflexive, transitive closure of the relation pred. If u is pred∗v, we
will also write is as u � pred∗v.

Example 4. In Figure 5, the two horizontal edges and the oblique unmatched edge at the top are bridges, and in
Figure 9, (w, w′) and (u, v) are bridges; the rest of the edges in these two graphs are props. In Figure 8, edge (u, v)
is a bridge. This bridge is unusual because u is pred∗v, even though u is not pred v.

Figure 6. (Color online) The tenacity of vertices is indicated; here, α � 13, β � 15, γ�� 17, and δ �∞.

Vazirani: A Theory of Alternating Paths and Blossoms
10 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Definition 12 (The Support of a Bridge). Let (u, v) be a bridge of tenacity t ≤ lm. Then, its support is defined to be

support(u, v) � {w | tenacity(w) � t and ∃ a max level(w) path containing (u, v)}:

Example 5. In the graph of Figure 6, the supports of the bridges of tenacity α, β, and γ�are the sets of vertices of
tenacity α, β, and γ, respectively. In the graph of Figure 8, the tenacity of bridge11 (u, v) is 13, and its support con-
sists of two vertices: v and its matched neighbor. In Figure 9, the supports of the bridges (w, w′) and (u, v) are all
vertices of tenacities 11 and 13, respectively. Observe that in Figure 9, f is not in the support of any bridge, and
tenacity(f) � ∞.

5. A Description of the MV Algorithm
The MV algorithm executes phases as defined in Section 1.2. Each phase starts with the matching, say M, computed
in the last phase. A basic task accomplished in a phase is finding the min levels and max levels of all vertices of
tenacity ≤ lm. For this purpose, the algorithm calls the procedures MIN and MAX iteratively as described.

In this section, we have described the MV algorithm using only the definitions stated in Section 4. However, in
some places, more clarity results from using notions that are defined later in the paper; if so, we have referred to the
appropriate definitions. The reader is advised to get a broad idea of the algorithm on first reading and occasionally
return to this section while reading the rest of the paper.

Figure 7. (Color online) The tenacity of each edge is indicated; here, α � 13, β � 15, and γ�� 17.

Figure 8. (Color online) Edge (u, v) is a bridge.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 11

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

5.1. Procedures MIN and MAX
At the beginning of a phase, all unmatched vertices are assigned a min level of zero, and the rest are assigned a tem-
porary min level of ∞. No vertices are assigned max levels at this stage. The algorithm for a phase is organized in
search levels, denoted by i, starting at zero. At each search level, MIN executes one step of alternating BFS and is fol-
lowed by MAX, which executes DDFS, if needed. See Algorithm 1 for a summary of the main steps.

If i is even (odd), MIN searches from all vertices, u, having an even level (odd level) of i along incident unmatched
(matched) edges, say (u, v). If edge (u, v) has not been scanned before, MIN will determine if it is a prop or a bridge as
follows. If v has already been assigned a min level of at most i, then (u, v) is a bridge. Otherwise, v is assigned a min
level of i+ 1, u is declared a predecessor of v, and edge (u, v) is declared a prop. Note that if i is odd, v will have only
one predecessor, which is its matched neighbor, and if i is even, v will have one or more predecessors.

Once an edge is identified as a bridge, if MIN is able to ascertain its tenacity, say t, then the edge is inserted in the
list of bridges of tenacity t, Br(t). MIN is able to ascertain the tenacity of a bridge as long as it is not an anomalous bridge
as defined; in the latter case, MAX finds the tenacity of this bridge. Task 2 in Theorem 7 proves that by the end of
execution of procedure MIN at search level i, the algorithm would have identified every bridge of tenacity 2i+ 1.

Algorithm 1 (At Search Level i)
1. MIN:
For each level i vertex, u, search along appropriate parity edges incident at u.

For each such edge (u, v), if (u, v) has not been scanned before then
If min level(v) ≥ i+ 1 then

min level(v) ← i+ 1
Insert u in the list of predecessors of v.
Declare edge (u, v) a prop.

Else declare (u, v) a bridge, and if tenacity(u, v) is known, insert (u, v) in Br(tenacity(u, v)).
End

End
2. MAX:
For each edge in Br(2i+ 1):

Find its support using DDFS.
For each vertex v in the support:

max level(v) ← 2i+ 1�min level(v)
If v is an inner vertex, then

For each edge e incident at v that is not a prop, if its tenacity is known, insert e in Br(tenacity(e)).
End

End
End

Figure 9. (Color online) Edges (w, w′) and (u, v) are bridges, with the latter being an anomaly bridge.

Vazirani: A Theory of Alternating Paths and Blossoms
12 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

After MIN is done, procedure MAX calls DDFS with each bridge of tenacity 2i+ 1 and finds the support of
this bridge. In the process, DDFS finds all vertices, v, having tenacity(v) � 2i+ 1. Because their min levels are at
most i, they are already known, and hence, max level(v) � 2i+ 1�min level(v) can be easily computed. Clearly,
if min level(v) is even level(v), then max level(v) will be odd level(v), and if min level(v) is odd level(v), then
max level(v)will be even level(v).

Example 6. For each bridge in the first five figures, its tenacity gets ascertained by MIN (including the bridge (u, v)
in Figure 8). We next explain the notion of an anomalous bridge via the graph in Figure 9. At search level 4, MIN
searches from vertex u along edge (u, v) and realizes that v already has a min level 3 assigned to it. Moreover, u got
its min level from its matched neighbor. Therefore, MIN correctly identifies edge (u, v) as a bridge. However, it is
not able to ascertain tenacity(u, v) because even level(v) is not known at this time. At search level 5, after conducting
DDFS on bridge (w, w′) (of tenacity 11), MAX will assign max level(v) � 8, which is also even level(v). Therefore, at
that time, tenacity(u, v) will be ascertained to be 13 by MAX, and edge (u, v) is inserted in Br(13). Thus, (u, v) is an
anomalous bridge.

Let us explain this notion in more general terms. Let (u, v) be an unmatched bridge such that the even level of
one of the endpoints, say v, has not been determined at the point when MIN realizes that (u, v) is a bridge; if so, v
must be an inner vertex. The even level of v will be determined by MAX at search level (tenacity(v)� 1)=2. At
this point, tenacity(u, v) is ascertained, and the edge is inserted in Br(tenacity(u, v)). An important point to note in
Figure 9 is that tenacity(v) < tenacity(u, v). This ensures that max level(v) is known at search level (tenacity(v)�
1)=2 (i.e., before the search level at which bridge (u, v) needs to be processed by MAX, namely search level
(tenacity(u, v)� 1)=2)).

Assume that DDFS is processing a bridge of tenacity 2i+ 1 and that vertex v is in its support. If v is inner and
has an incident unmatched edge (u, v) that is not a prop, then it must be an anomalous bridge. MAX will ascer-
tain its tenacity and insert it in Br(tenacity(u, v)). Note that tenacity(u, v) > 2i+ 1 and bridge (u, v) will need to be
processed in a higher search level.

Let lm be the length of a minimum-length augmenting path in a phase. Then, during search level jm, where
lm � 2jm + 1, a maximal set of such paths is found. This is described in Section 5.4.

5.2. Petals and the Way They Are Marked
The notion of a petal is central to the MV algorithm; petals are found by DDFS.

Definition 13 (Petal and Bud). Assume that DDFS is called with a bridge (u, v) of eligible tenacity t and that it ter-
minates in Case 1. Then, the bottleneck b found is called a bud. The set of vertices of tenacity t encountered during
the current DDFS, which must lie in the support of (u, v), forms a new petal. Formally, the petal consists of all ver-
tices in the support of (u, v) minus the supports of all bridges (of tenacity t) processed thus far in the current
search level.

Note that b must be an outer vertex and that it is not included in the current petal. Observe that each vertex of
eligible tenacity is included in exactly one petal and that the formation of each petal is triggered by a distinct
bridge.12

Example 7. In the graph of Figure 10, MAX will call DDFS with the bridge (r1, r2), which is of tenacity 9, at search
level 4. The two DFSs will be rooted at r1 and r2, and DDFS will terminate in Case 1 with b as the highest bottle-
neck. The four vertices that constitute the support of bridge (r1, r2) form the new petal, and b is the bud of this
petal. Observe that b does not belong to this petal.

5.2.1. Marking a Petal. When a new petal is found, the algorithm executes the following steps. It creates a new
node, called petal node; this has the shape of a doughnut in Figure 10. All vertices of the new petal point13 to the petal
node; b is not in the petal and does not point to the petal node. The new petal node points to the two endpoints of its
bridge, r1 and r2, and to its bud, b. These pointers will enable the algorithm to

1. skip over this petal in future DDFSs and
2. efficiently find an alternating path through the petal; see Remark 1.

Definition 14 (The Functions bud(v) and bud∗(v)). Define a function bud : V→ V as follows. If vertex v is in a petal,
then bud(v) � b, where the bud of this petal is b, and if v is not in a petal, then bud(v) � v. At any point in the exe-
cution of the algorithm, the function bud∗(v) is defined recursively as follows. If bud(v) � v, then bud∗(v) � v;
else, bud∗(v) � bud∗(bud(v)). Clearly, bud∗(v) will keep changing as the algorithm proceeds.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 13

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

The notions of petal and bud are intimately related to the notions of blossom and base. Whereas the first pair
is algorithmic—the exact petals and buds found depend on the manner in which the algorithm resolves ties—the
second pair is purely graph theoretic. The relationship between these notions is established in Section 9.2. Here,
we simply note that a blossom is a union of petals, and the base of a vertex v, of eligible tenacity t, will be bud∗(v)
at the end of MAX in search level (t� 1)=2.

Example 8. In the graph of Figure 11, the two bridges (l1, l2) and (r1, r2) are of the same tenacity. The algorithm
will break this tie arbitrarily and perform DDFS on these bridges in one of the two orders. In Figures 11 and 12,
the order is (l1, l2) first and (r1, r2) second; these figures show the petals and buds found after DDFS is performed
on the first and second bridges, respectively. Observe that b does not belong to the first petal, but it does belong
to the second petal. The blossom is the union of both petals, and its base is f. The reader is encouraged to work
out the petals if DDFS is performed on these bridges in the reverse order.

5.3. The Mapping from Graph G to H
We will give a succinct description of this mapping here; for a more in-depth treatment, see Sections 8.2.1 and
8.3.1. Each time DDFS is called, a new directed graph H is defined. It is a function of the bridge that triggers the
current DDFS and the petals that have been found so far. A well-chosen subset of the vertices of G will form the
vertices of H. For each vertex v of G that is chosen, its name in H will be vH, and we will define its level,
l(vH) �min level(v).

Figure 10. (Color online) A new petal node is created after DDFS is performed on bridge (r1, r2).

Figure 11. (Color online) The petal formed when DDFS is performed on bridge (l1, l2); its bud is b.

Vazirani: A Theory of Alternating Paths and Blossoms
14 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Assume that DDFS is called with bridge (r, g). Then, H must have the two vertices bud∗(r) and bud∗(g).14

The rest of H is recursively defined as follows. If min level(v) > 0, then corresponding to each predecessor u
of v in G, H has the vertex bud∗(u) and the directed edge (v, bud∗(u)). If min level(v) � 0, then l(vH) � 0, and vH
has no outgoing edges. It is easy to confirm that H satisfies the DDFS Requirement. For details, see Sections
8.2.1 and 8.3.1.

Example 9. In the graph of Figure 13, DDFS called with bridge (u, v) ends in Case 2; the two centers of activity
terminate at distinct unmatched vertices, f1 and f2. This indicates the presence of a minimum-length augmenting
path between f1 and f2. The next task is to find such a path.

Example 10. All bridges considered so far had nonempty support. However, this will not be the case in a typical
graph (e.g., consider bridge (a, b) of tenacity 17) in Figure 14. Clearly, the support of this bridge is ∅. DDFS will
discover this right away because the two endpoints of this bridge have the same bud∗ (i.e., bud∗(a) � bud∗(b)).
Whether a bridge has empty support is not known a priori; it will become clear only after DDFS is performed on
this bridge. Therefore, DDFS needs to be performed on every one of the bridges.

5.4. Finding Augmenting Paths
The MV algorithm will find augmenting paths during search level jm, where lm � 2jm + 1 and lm is the length of a
minimum-length augmenting path in the current phase. DDFS on some bridges of tenacity lm will end in Case 2
(i.e., no bottleneck is found). We note that not every bridge of tenacity lm leads to an augmentation; DDFS on a
bridge of tenacity lm can end in Case 1 as well (i.e., a bottleneck is found).

Figure 12. (Color online) The petal and blossom formed when DDFS is performed on bridge (r1, r2); their bud and base is f.

Figure 13. (Color online) DDFS on the bridge (u, v) terminates with two unmatched vertices, f1 and f2, leading to an
augmentation.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 15

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

5.4.1. Finding One Augmenting Path. In Figure 15, min level(u) >min level(v), and therefore, edge (u, v) is an
anomalous bridge. When DDFS is performed on this bridge, assume that the red DFS trees has root u. Because v is
already in a petal with bud∗(v) � b, the green DFS tree will have root b. The two trees will simply follow predeces-
sors and will terminate at f1 and f2, respectively.

A DFS from u in the red tree will yield a path from u to f1, say p1. Because v is in a petal with bud∗(v) � b, the algo-
rithm needs to find an alternating path from v to b, say p2, starting with a matched edge (i.e., of even length). The
construction of this path is described.15 Additionally, the algorithm needs to find a path, say p3, from b to f2 in the
green tree of the DDFS performed on bridge (u, v). Then, the complete augmenting path from f1 to f2 will be
p�1

1 ◦ (u, v) ◦ p2 ◦ p3. Clearly, p1 and p3 are easy to find.
We next describe how to find p2. The algorithm observes that even level(v) �max level(v), and therefore, p2 must

use the bridge of the petal containing v. Using the petal node, the algorithm finds the endpoints of this bridge,
namely c and d. It notices that c and v have the same color, say red. Therefore, it looks for a path from c to v in the
red tree and a path from d to b in the green tree. For finding the latter path, it jumps from w to bud∗(w) at the
moment when DDFS was called with the bridge (c, d) because that will be the next node in the green tree. The latter
node is a.16 Next, the algorithm continues searching from a in the green tree and follows predecessors until it
reaches b.

To find the complete path from d to b, the algorithm must find a path from a to w in the smaller petal.17 This time,
it observes that even level(w) �min level(w), and therefore, the required path does not use the bridge of the smaller
petal. Instead, it is found by doing a DFS in the green tree, assuming that the color of w was green in the DDFS con-
ducted on bridge (w, w′). Then, p2 is obtained by concatenating the path from v to c with (c, d) with the path from d
to b. The latter consists of (d, w) concatenated with the path from w to a concatenated with the path from a to b.

Figure 14. (Color online) The tenacities of all four bridges is indicated. Bridge (a, b) has empty support.

Figure 15. (Color online) Constructing a minimum-length augmenting path between unmatched vertices f1 and f2.

Vazirani: A Theory of Alternating Paths and Blossoms
16 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Remark 1. Observe that the process of finding path p2 from v to b, in Figure 15, critically used the markers left in
the petal created by DDFS when called with bridge (c, d). In particular, the pointers from the petal node to the
endpoints of this bridge (i.e., c and d) are critical for ensuring linear running time; disjoint paths from c to v and d
to b can be easily found by doing DFSs on the two trees rooted at c and d; see Definition 2. In the absence of these
markers, the algorithm would need to find disjoint paths from v to c and from b to d; it is unclear how this can be
accomplished efficiently.

One last step in the process of finding an augmenting path, which could not be described because it requires
Definition 27, is stated in Remark 6 in Section 8.3.1.

Example 11. In Figure 16, we have added one edge to the graph of Figure 5, namely (v, f ′) and the unmatched
vertex f ′. The even level(v) path, which starts at f, followed by edge (v, f ′) yields the unique augmenting path in
Figure 16. Therefore, finding even level(v) in Figure 5 was not just an academic matter. However, the MV algo-
rithm will not find this path by following the arrows in Figure 16; instead, it will use the bridges and blossoms as
detailed. In particular, the bridge of tenacity γ�17, as shown in Figure 7, triggers a DDFS that will find this path
by skipping over the blossom of tenacity β�15.

5.4.2. Finding a Maximal Set of Disjoint Paths. After the first path, say p, is found, its vertices are removed. As a
result, there may be other vertices that cannot be on minimum-length augmenting paths that are disjoint from p.
These vertices are recursively removed using the procedure RECURSIVE REMOVE, which works as follows. First,
all vertices of p and all edges incident at them are removed. If as a result, there is a matched vertex v that has no
more predecessors, it is removed. This process is continued until there are no more such vertices. Finally, all iso-
lated unmatched vertices are removed.

At this point, MAX will process the next bridge of tenacity lm. When it encounters another bridge that makes
DDFS terminate in Case 2, it finds another augmenting path. This continues until all bridges of tenacity lm are pro-
cessed. Lemma 24 shows that this will result in a maximal set of paths of length lm.

6. Relationship Between the Tenacity of an Edge and Tenacities of Its Endpoints
The relationship depends on whether the edge is matched or unmatched and in the latter case, whether it is a prop
or a bridge. The answer in each case is significant and will influence the proof of the main theorem, Theorem 3,
given in Sections 8.2 and 8.3. It will also help establish facts that give the correct way of synchronizing events in the
algorithm, which are presented in Section 9.1.

Lemma 1. Let (u, v) be a matched edge of finite tenacity. Then, even level(v) � odd level(u) + 1 and tenacity(v) � tenacity
(u, v). Furthermore, (u, v) is a bridge if and only if odd level(u) � odd level(v) � i, where tenacity(u, v) � 2i+ 1.

Figure 16. (Color online) The even-level(v) path, which starts at f, followed by edge (v, f ′) is an augmenting path.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 17

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Proof. Let p be an odd level(u) path. If v lies on p, then (u, v) must also lie on p because p is an alternating path. If
so, p is not a simple odd-length alternating path to u, giving a contradiction. Therefore, v does not lie on p, and
hence, p ◦ (u, v) is a minimum even-length alternating path to v. Therefore, even level(v) � odd level(u) + 1, and
similarly, even level(u) � odd level(v) + 1. Therefore, tenacity(v) � even level(v) + odd level(v) � odd level(u) + 1
+ odd level(v) � tenacity(u, v) � even level(u) + odd level(u) � tenacity(u).

Now, there are two cases; either one of u or v has an odd level of < i or odd level(u) � odd level(v) � i. In the
first case, assume odd level(u) < i. If so, u is a predecessor of v, and (u, v) is a prop. In the second case, neither
endpoint is a predecessor of the other, and (u, v) is a bridge. Finally, if (u, v) is a bridge, the first case cannot
apply. Therefore, odd level(u) � odd level(v) � i. w

Remark 2. As a consequence of Lemma 1, in several proofs, restricting attention to only one of the endpoints
of a matched edge (u, v) will suffice because even level(v) and odd level(v) fully determine the two levels of u.

Lemma 2. Let (u, v) be an unmatched edge of finite tenacity, and assume that u is a predecessor of v. Then, tenacity(v)
� tenacity(u, v).

Proof. We will show that odd level(v) � even level(u) + 1. If so, tenacity(v) � even level(v) + odd level(v) � even
level(v) + even level(u) + 1 � tenacity(u, v), thereby proving the lemma. Because v is getting its min level from the
unmatched edge (u, v), min level(v) � odd level(v), and therefore, v is an inner vertex.

Because u is a predecessor of v, there is an odd level(v) path, say q, that ends with the edge (u, v). Now,
odd level(v) � |q | , and even level(u) ≤ |q | � 1. Therefore, odd level(v) > even level(u).

Let p be an even level(u) path. First, assume that v lies on p. If v is odd w.r.t. p,18 then odd level(v) < even
level(u), a contradiction. Therefore, v is even w.r.t. p. However, then even level(v) < even level(u), implying that
even level(v) < odd level(v) and that v is an outer vertex, another contradiction. Therefore, v does not lie on p.
Therefore p ◦ (u, v) is an odd level(v) path, and therefore, odd level(v) � even level(u) + 1 holds, giving the
lemma. w

Lemma 3. Let (u, v) be an unmatched bridge. Then,
1. tenacity(v) ≤ tenacity(u, v); and
2. if tenacity(v) � tenacity(u, v), then v is an outer vertex.

Proof.
1. We will show that odd level(v) ≤ even level(u) + 1. If so, adding even level(v) to both sides of this inequality,

we will get tenacity(v) ≤ tenacity(u, v).
Let p be an even level(u) path starting at unmatched vertex f. If v lies on p, there are two cases. If v is odd w.r.t.

p, then p[f to v] is an odd-length alternating path from f to v, and therefore, odd level(v) ≤ |p[f to v] | < |p | �
even level(u).

Next, assume that v is even w.r.t. p. Then, p[f to v] ◦ (v, u) is an odd-length alternating path from f to u. Clearly,
the length of this path is less than that of p, implying that u is an inner vertex. If this path was an odd level(u) path,
then v would be a predecessor of u, implying that (u, v) is a prop and contradicting the fact that (u, v) is a bridge.
Therefore, odd level(u) < |p[f to v] | + 1. Let q be an odd level(u) path that starts at unmatched vertex f ′, where f �
f ′ is allowed. Let w be the first vertex of q that lies on p[v to u]. If w is odd w.r.t. p, then q[f ′ to w] ◦ p[w to u] is an
even-length alternating path from f ′ to u of length less than |p | � even level(u), giving a contradiction. Therefore, w
is even w.r.t. p. If so, q[f ′ to w] ◦ p[w to v] is an odd-length alternating path from f ′ to v of length less than |p | .
Therefore, odd level(v) < even level(u).

Next, assume that v does not lie on p. Then, p ◦ (u, v) is an odd-length alternating path from f to v. Therefore,
odd level(v) ≤ even level(u) + 1.

2. Assume that tenacity(v) � tenacity(u, v). Then, odd level(v) � even level(u) + 1. If v was an inner vertex, then
odd level(v) �min level(v), and the previous equality implies that u is a predecessor of v and that (u, v) is a prop,
leading to a contradiction. Therefore, v is an outer vertex. w

Remark 3. Let (u, v) be an unmatched edge, and let u be a predecessor of v. Then, tenacity(u) can be smaller
than, equal to, or bigger than tenacity(u, v). The first case is illustrated by prop (r1, l2), and the third case is
illustrated by the props out of f in Figure 10. Let (u, v) be an unmatched bridge, and assume that tenacity(v)
< tenacity(u, v). Then, v can be an inner vertex or an outer vertex. The bridge (a, b) in Figure 14 illustrates
both possibilities; although (a, b) has empty support, it is easy to show this for bridges with nonempty sup-
port as well.

Vazirani: A Theory of Alternating Paths and Blossoms
18 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

7. Limited BFS Honesty
Consider a minimum-length alternating path, p, from unmatched vertex f to a vertex v; p is allowed to be of either
parity. The notion of tenacity enables us to characterize a subset of vertices of p that are BFS honest on p, namely all
vertices on p whose tenacity is at least as large as that of v. This BFS honesty will be critically exploited later.

Definition 15 (Even/Odd w.r.t. p). Let p be an even level(v) or odd level(v) path starting at unmatched vertex f, and
let u lie on p. Then, |p[f to u] | will denote the length of this path from f to u, and if it is even (odd), we will say
that u is even (odd) w.r.t. p.

Definition 16 (BFS Honesty on p). Let p be an even level(v) or odd level(v) path starting at unmatched vertex f,
and let u lie on p. We will say that u is BFS honest on p if |p[f to u] | � even level(u) (odd level(u)) if u is even (odd)
w.r.t. p.

Example 12. Observe that the graphs of Figures 5 and 6 are identical, with vertex names given in the former and
vertex tenacities given in the latter. The vertices u and v are BFS honest on all even-level and odd-level paths to
the vertices of tenacity α. However, the two vertices of tenacity α�that lie on the even level(u) and even level(v)
paths are not BFS honest on these paths.

Theorem 2. Let p be an even level(v) or odd level(v) path starting at unmatched vertex f, and let vertex u ∈ p with
tenacity(u) ≥ tenacity(v). Then, u is BFS honest on p. Furthermore, if tenacity(u) > tenacity(v), then |p[f to u] | �min
level(u).

Proof. Assume without loss of generality that p is an even level(v) path and that u is even w.r.t. p (by Lemma 1).
Suppose u is not BFS honest on p, and let q be an even level(u) path (i.e., |q | < |p[f to u] |). First, consider the case
that even level(v) �max level(v), and let r be a min level(v) path. Let u′ be the matched neighbor of u. Consider
the first vertex of r that lies on p[u′ to v]. If this vertex is even w.r.t. p, then odd level(u) ≤ |r | + |p[u to v] | . Addi-
tionally, even level(u) < |p[f to u] | ; hence, tenacity(u) < tenacity(v), leading to a contradiction. On the other
hand, if this vertex is odd w.r.t. p, then min level(v) � |r | > even level(u) because otherwise, there is a shorter
even path from f to v than even level(v). We combine the remaining argument along with the case that
even level(v) �min level(v).

Consider the first vertex, say w, of q that lies on p(u to v]; there must be such a vertex because otherwise, there is
a shorter even path from f to v than even level(v). If w is odd w.r.t. p, then we get an even path to v that is shorter
than even level(v). Hence, w must be even w.r.t. p. Then, q[f to w] ◦ p[w to u] is an odd path to u with length less
than even level(v), where ◦ denotes the concatenation operator. Again, we get tenacity(u) < tenacity(v), leading to
a contradiction.

We next prove the second claim of the theorem. First, consider the case that even level(v) �min level(v), and
assume for contradiction that |p[f to u] | �max level(u). Then, tenacity(u) < 2 ·max level(u) < 2 · |p[f to v] | � 2 ·
min level(v) < tenacity(v), a contradiction.

Therefore, even level(v) �max level(v). As before, let r be a min level(v) path, and consider the first vertex of r
that lies on p[u to v]. If this vertex is even w.r.t. p, then odd level(u) ≤ |r | + |p[u to v] | . Hence, tenacity(u) ≤
tenacity(v), which leads to a contradiction. On the other hand, if this vertex is odd w.r.t. p, then min level(v) �
|r | > even level(u) because otherwise, there is a shorter even path from f to v than even level(v). Now, the claim
follows because otherwise tenacity(u) < tenacity(v). w

Corollary 1. Let p be an even level(v) or odd level(v) path, and let u lie on p. If u is not BFS honest on p, then tenacity(u)
< tenacity(v).

8. Base, Blossom, and Bridge
Recall Definitions 3 and 9, which defined lm and tm as the length of a minimum-length augmenting path and the
tenacity of a minimum tenacity vertex, respectively. As noted earlier, tm ≤ lm, and the case tm� lm is trivial. For the
rest of the paper, we will deal with the main case, namely tm< lm; Example 14 explains the importance of this
assumption. In Definition 17, we introduce the notion of eligible tenacity. Theorem 3 helps establish the central
notions of base and blossom for vertices of eligible tenacity.

Definition 17 (Eligible Tenacity). An odd number t, with tm ≤ t < lm, will be said to be an eligible tenacity.

Definition 18 (Higher and Lower on a Path). Let v be a vertex and p be an even level(v) or odd level(v) path; assume
it starts at unmatched vertex f. If u and w are two vertices on p and if u is farther away from f on p than w, then
we will say that u is higher than w and that w is lower than u on p.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 19

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Definition 19 (The Set B(v)). Let v be a vertex of eligible tenacity and p be an even level(v) or odd level(v) path
starting at unmatched vertex f. Let t � tenacity(v), and consider all vertices of tenacity > t on p; clearly, this set is
nonempty because it contains f. Among these vertices, define the highest one to be the base of v w.r.t. p, denoted
by F(p, v). Clearly, F(p, v) is even w.r.t. p, and by Theorem 2, it is an outer vertex. Finally, define

B(v) � {F(p, v) |p is an even level(v) or odd level(v) path}:

8.1. Central Structural Facts
As mentioned in Section 1.1, the central structural fact needed to prove correctness of the algorithm is the
following.

*For every vertex v such that tenacity(v) � t and tm ≤ t ≤ lm, every max level(v) path contains a bridge of tenacity t.
The proof of this fact requires several other structural facts. Among them, the most important one is the

following.
*For a vertex v of eligible tenacity, the set B(v) is a singleton.

Once this fact is proven, we can define the base of v to be the vertex in B(v) and move on to defining the notion of a
blossom and proving its properties. However, the proof of this fact is not straightforward because of the following
“chicken-and-egg problem,” which was also mentioned in Section 1.1. On the one hand, the proof of this fact
requires the notion of blossom and its associated properties, and on the other hand, blossoms can be defined only
after defining the base of a vertex.

We will break this deadlock by proving this fact via an induction on eligible tenacities. Once this fact is proven
for vertices of tenacity ≤ t, the base of vertices of tenacity ≤ t can be defined. Following this, blossoms of tenacity t
can be defined, and properties of these blossoms and properties of paths traversing through these blossoms can be
established. These properties are then used to prove this fact for tenacity t+2.

8.2. The Induction Basis
This section is devoted to proving the induction basis for Theorem 3. This involves proving all statements men-
tioned in Theorem 3 for the case t� tm; each statement is proven in a separate lemma. For this purpose, we will
define a subgraph of G, namely H′m. Its structure is fairly simple, thereby making the proofs easy; in contrast, the
analogous graph for the induction step is considerably more complex. The saving grace is that the proofs for the
base case provide much insight on how to proceed with the induction step.

Lemma 4. Let (u, v) be an edge of tenacity tm. Then, (u, v) is a bridge if and only if min level(u) �min level(v) � i, where
tm � 2i+ 1.

Proof. If (u, v) is matched, the claim follows by Lemma 1. Next, assume that (u, v) is unmatched. If so, tenacity(u,
v) � even level(u) + even level(v) + 1. First, assume (u, v) is a bridge. Because the tenacity of a vertex cannot
be less than tm, by Lemma 3, tenacity(u) � tenacity(v) � tenacity(u, v), and u and v are both outer vertices. There-
fore, min level(u) � even level(u), and min level(v) � even level(v). Therefore, odd level(v) � even level(u) + 1,
and odd level(u) � even level(v) + 1.

Because tm � 2i+ 1, min level(u) � even level(u) ≤ i, and min level(v) � even level(v) ≤ i. Assume one of them
has min level < i, say u. Then, odd level(v) � even level(u) + 1 ≤ i. This implies that even level(v) < i because v
is outer, giving tenacity(v) < 2i, a contradiction. Therefore, min level(u) �min level(v) � i.

Next, assume min level(u) �min level(v) � i. Because (u, v) is an unmatched edge of tenacity tm, even level(u)
+ even level(v) + 1 � tm. Therefore, even level(u) � even level(v) � i. Now, because (u, v) is unmatched, u is not a
predecessor of v, and v is not a predecessor of u. Therefore, (u, v) is a bridge. w

Lemma 5. Let v be a vertex of tenacity tm and p be a max level(v) path. Then, p contains a unique bridge of tenacity tm.

Proof. Assume that p starts at unmatched vertex f. Let q be a min level(v) path, and assume it starts at unmatched
vertex f ′, which may or may not be the same as f. If p and q meet only at v, then f ≠ f ′, and p ◦ q is an augmenting
path of length tm, leading to a contradiction. Therefore, the intersection of p and q contains vertices in addition to
v. Let u be the highest vertex of p[f to v) that is also on q.

Now, there are two cases. If u� f, then f � f ′, and p and q meet at two vertices, namely u� f and v. Next, assume
that u ≠ f . If so, u is matched, and p must contain the matched edge incident at u. Therefore, the vertex u must
be even w.r.t. p. By definition, tenacity(u) ≥ tm, and therefore, by Theorem 2, u is BFS honest on p as well as q.
Therefore, even level(u) � |p[f to u] | . If u is odd w.r.t. q, then odd level(u) � |q[f ′ to u] | , thereby implying that
tenacity(u) < |p ◦ q | � tm, a contradiction. Therefore, u is even w.r.t. q as well, and |q[f ′ to u] | � even level(u).

Vazirani: A Theory of Alternating Paths and Blossoms
20 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Therefore, in both cases, p[u to v] ◦ q[v to u] is an odd-length cycle having two unmatched edges incident at u
and is fully matched otherwise. By concatenating p[f to u] to an appropriate subpath of this cycle, we can obtain
even and odd alternating paths to all vertices of this cycle other than u. For any vertex w ≠ u on this cycle, the
sum of the lengths of the even and odd paths is tm. Therefore, these must be minimum-length alternating paths,
and tenacity(w) � tm. Furthermore, because this cycle has length at least three, even level(u) � |p[f to u] | < i.

Assume that this odd cycle has length 2k+ 1 and number its edges consecutively, starting at u. Let (w, w′) be
the k+ 1st edge (i.e., the middle edge). Then, clearly, min level(w) �min level(w′) � i. Therefore, by Lemma 4,
(w, w′) is a bridge of tenacity tm. Clearly, besides w and w′, no other vertices on p can have min level of i. There-
fore, there are no other bridges of tenacity tm on it. w

Note that in the proof given, v ∈ support(w, w′). In general, v may lie in the support of several bridges of tenacity tm.

8.2.1. The Graphs Hm and H9
m. Proving that the set B(v) is a singleton is not straightforward, even for vertices of

tenacity tm. A major simplification is achieved by using the power of DDFS—in particular, the DDFS Certificate pro-
vided on its termination. DDFS is carried out on a special directed, layered graph Hm, which satisfies the DDFS
Requirement. We start by defining Hm and a closely related graph, H′m; the latter is a subgraph of G.

Let Um � {v ∈ V | tenacity(v) � tm}. Let Bm denote the set of all bridges of tenacity tm. and let Tm denote the set of
endpoints of bridges in Bm.

Lemma 6. Let v ∈ Tm, and let p be a min level(v) path. Then, all edges on p are props.

Proof. Assume that p starts at unmatched vertex f, and let u be any vertex on p other than v. Clearly, tenacity(u)
≥ tenacity(v), and therefore, by Theorem 2, u is BFS honest on p. Furthermore, |p[f to u] | �min level(u) because
otherwise, tenacity(u) < tenacity(v). Therefore, p gives min levels to all vertices on it. and hence. all its edges are
props. w

Consider each vertex v ∈ Tm, and let p denote an arbitrary min level(v) path. Denote by Vm the union of all verti-
ces on all such paths p for all vertices v ∈ Tm. Furthermore, denote by Pm the union of all edges on all such paths p.
By Lemma 6, all edges in Pm are props in the original graph G. Define H′m � (Vm, (Pm ∪ Bm)), and define a matching
in H′m as follows; edge e ∈ (Pm ∪ Bm) is matched if and only if e is matched in G. Clearly, H′m is a subgraph of G.

The next definition is related to Definition 11.

Definition 20 (The Relations predm and pred∗m). If u ∈Um, v ∈ Vm, and v is a predecessor of u, then we will say that
v is predm of u, denoted by v � predm(u). Observe that under this definition, we do not allow tenacity(u) > tm;
tenacity(u) must be tm. On the other hand, tenacity(v) > tm is allowed, and v may even be an unmatched vertex.
Next, let u ∈Um and v ∈ Vm, with u ≠ v, such that there is a path from u to v in H′m and all vertices on this path
are in Um, except possibly v. Then, we will say that v is pred∗m of u, denoted by v � pred∗m(u).

Lemma 7. For every v ∈Um, H′m contains all possible even level(v) and odd level(v) paths that are present in G.

Proof. We will use the fact that, by construction, H′m contains all possible min level(u) and max level(u) paths for
all vertices u ∈ Tm.

For v ∈Um, let p and q be min level(v) and max level(v) paths, respectively, in G, which start at unmatched ver-
tex f. Let (u, u′) be the unique bridge of tenacity tm on q, with u′ being higher than u on q; for a definition of
“higher on a path,” see Definition 18. Then, q[f to u] is a min level(u) path, and therefore, it is present in H′m. Fur-
thermore, p ◦ q[v to u′] is a min level(u′) path and is also present in H′m. Therefore, H′m contains p and q, hence
proving the lemma. w

Next, we will define the directed, layered graph Hm. For each edge (u, v) ∈ Pm, direct it from v to u if u is a prede-
cessor of v. To keep notation simple, we will denote this set of directed edges by Pm as well; the context will easily
clarify which graph is being referred to.

We will partition Vm into i+ 1 layers numbered 0, : : : , i, where tm � 2i+ 1 and the layer number of v ∈ Vm is
l(v) �min level(v). Let Hm � (Vm, Pm). Observe that each edge of Hm runs from a layer, say l, to l�1 (i.e., it is of unit
length). In contrast, the graph Ht, defined in Section 8.3.1, has long edges. It is easy to check that Hm satisfies the
DDFS Requirement. We will use the information obtained from DDFS on Hm to find min-level and max-level paths
in H′m. The mapping between the vertices of Hm and H′m is the obvious one.

Corresponding to each bridge (u, v) ∈ Bm, conduct DDFS in Hm starting at u and v, and denote by k(u, v) the bottle-
neck found. Clearly, each bottleneck is an outer vertex. Note that two different bridges may have the same bottle-
neck. Using the DDFS Certificate and the mapping between Hm and H′m we get Lemma 8.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 21

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Lemma 8. Let bridge (u, v) ∈ Bm, and let w ∈ support(u, v). Then,
1. w � pred∗m(u), w � pred∗m(v), or both; and
2. k(u, v) � pred∗m(w).

8.2.1.1. Procedure Bottleneck. The input to this procedure is a bridge (u, v) ∈ Bm.
Conduct DDFS in Hm, starting at u and v, to find the bottleneck k(u, v).
If tenacity(k(u, v)) > tm, HALT.
Otherwise, there is a bridge of tenacity tm, say (u′, v′), such that k(u, v) ∈ support(u′, v′). Conduct DDFS on bridge
(u′, v′) to find its bottleneck, k(u′, v′). Clearly, min level(k(u′, v′)) < min level(k(u, v)), and k(u′, v′) � pred∗m(k(u, v)). If
tenacity(k(u′, v′)) � tm, repeat this process until a bottleneck, say b, is encountered that has tenacity > tm. This is bound
to happen because the min levels of the bottlenecks are decreasing. Eventually, the bottleneck will turn out to be an
unmatched vertex, say f, and f satisfies tenacity(f) ≥ lm > tm.

Example 13. Let us illustrate the procedure bottleneck on the graph of Figure 18. When called with bridge (u, u′),
the bottleneck found is b′. However, tenacity(b′) � tm � 15, and b′ is in the support of (v, v′). DDFS on this bridge
will result in the bottleneck of b. Because tenacity(b) > 15, the procedure halts, and b is the base of the endpoints
of both bridges.

The vertex b identified by the procedure bottleneck is very special, as will be established next. It is called a
base; a formal definition is given. Clearly, b is an outer vertex. In general, H′m will have a number of bases.

For each base b in H′m, define the set

Sb, tm � {v ∈Um |b is pred∗m of v}:

Observe that b ∉ Sb, tm , and if b, b′ are two bases in H′m, then Sb, tm ∩ Sb′, tm � ∅. The next lemma is implied by Lemma 1
and the fact that set Sb, tm is defined via the procedure bottleneck.

Lemma 9. Let v ∈ Sb, tm , and let v′ be the matched neighbor of v. Then, v′ ∈ Sb, tm .

Lemma 10. Let v ∈ Sb, tm . Then, every even level(v) and odd level(v) path in the graphs H′m and G consists of an even level(b)
path followed by an alternating path using vertices of Sb, tm .

Proof. Let (u, u′) ∈ Bm be a bridge of tenacity tm whose endpoints are in Sb, tm , and let p be any min level(u) path.
By Lemma 8 and the procedure given, p�1 starts at u and follows down predecessors until it arrives at k(u, u′). If
k(u, u′) ≠ b, p�1 follows down predecessors until it arrives at b. In either case, the rest of p�1 is an even level(b) path
followed in reverse. Therefore, p has the structure described in the statement of the lemma.

Next, assume that v ∈ Sb, tm , and let p and q be min level(v) and max level(v) paths in G, respectively. Using the
arguments given in Lemma 7, q ◦ p�1 can be decomposed into min level(u) and min level(v) paths and the unique
bridge on q. Now, by the assertion made, p and q also have the structure described in the statement of the
lemma. w

Corollary 2. For every v ∈Um, the set B(v) is a singleton.

Definition 21 (The Base of a Vertex of Tenacity tm and Basal Vertices). For each v ∈Um, define base(v) to be the
unique vertex, say b, in the set B(v). We will say that the base of v is b. Each such vertex b will be called a basal ver-
tex. Clearly, b is an outer vertex, and tenacity(b) > tm.

Example 14. In the graph of Figure 17, vertices u and v do not have a base, even though they are of finite tenac-
ity. Clearly, tenacity(u) � tenacity(v) � tenacity(f1) � tenacity(f2) � 3, and the graph has no vertex of tenacity
greater than three. Because lm�3, u and v are not of eligible tenacity; this explains why they do not have a base.
The following question arises. Can f1 be viewed as the base of u and v, even though its tenacity is the same as
that of u and v? A negative answer is easy to see after adding unmatched edge (f2, v) because then, the graph has
min level(v) and max level(u) paths that do not contain f1.

Figure 17. (Color online) Vertices u and v have no base. The tenacity of bridge (u, v) is three, and so is the tenacity of u, v, f1,
and f2.

Vazirani: A Theory of Alternating Paths and Blossoms
22 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Definition 22 (Blossom of Tenacity tm and Base b). Let b be a basal vertex as defined in Definition 21. Then, the blos-
som of tenacity tm and base b is the set Bb, tm � {v ∈Um |base(v) � b}.

Clearly, Bb, tm ≠ ∅, Bb, tm � Sb, tm , b ∉ Bb, tm , and for each vertex, v ∈ Bb, tm , b � pred∗m(v). The next fact follows from
Lemmas 1 and 9.

Corollary 3. Let (u, v) be a matched edge of tenacity tm. Then, u and v have the same base, say b, and both belong to the
same blossom of tenacity tm, namely Bb, tm .

Example 15. Blossoms of tenacity tm can be quite complex, as illustrated in Figure 18, even though they do not
contain nested blossoms. This blossom has two bridges of tenacity tm, both having nonempty support, and there-
fore, it will have two petals; see Section 5.2 for this notion. The exact petals will depend on the order in which
DDFS is conducted on bridges (u, u′) and (v, v′).

Definition 23 (Shortest Path from a Base to a Vertex of Tenacity tm). Let v ∈Um and b � base(v). Then, by an even
level(b; v) (odd level(b;v)) path, we mean a minimum even-length (odd-length) alternating path in G from b to v
that starts with an unmatched edge.

Lemma 11. Let v ∈Um and b � base(v). Let p be an even level(b) path and q be an even level(b; v) or odd level(b; v) path.
Then, q meets p at b only.

Proof. By Lemma 1, it suffices to prove this lemma for an odd level(b; v) path q. For contradiction, assume that
q meets p at vertices besides b. By Lemma 10, odd level(v) ≥ |p | + |q | . We will define certain subpaths of q as
segments as follows. Follow along q from b until it meets p, at w say. Then, q[b to w] will be called a segment.
Subsequent to this, each time q leaves p, at vertex r, say, and meets up p again at s, say, then q[r to s] is called a
segment. Eventually, q leaves p at y, say, and ends up at v. Then, q[y to v] is the last segment.

Now, there are two cases; either there is a segment, say q[u to w], such that u and w are both outer vertices, or
there is no such segment. In the first case, consider the odd-length cycle q[u to w] ◦ p[w to u], and assume that u is
higher than w on p. Then, all vertices on this cycle, other than w, have tenacity < tm, a contradiction.

In the second case, because the first segment starts at an outer vertex, namely b, it ends at an inner vertex.
Therefore, the next segment again starts at an outer vertex and so on. Finally, for the last segment, q[y to v], y
must be an outer vertex. Assume that p starts at unmatched vertex f. If so, p[f to y] ◦ q[y to v] is a shorter odd
alternating path from f to v than |p | + |q | , leading to another contradiction. The lemma follows. w

Lemma 10 and Lemma 11 give Corollary 4.

Corollary 4. Let v ∈Um and b � base(v). Then, the matched neighbor of v also lies in the blossom, and every even level(v)
(odd level(v)) path consists of an even level(b) path followed by an even level(b; v) (odd level(b; v)) path, where the latter lies
in Bb, tm ∪ {b}.

Lemma 10 and Corollary 4 give Lemma 12.

Figure 18. (Color online) The set of vertices having base b forms a blossom of tenacity 15 and tm � 15. Observe that b′ is not
basal. This blossom contains the endpoints of bridges (u, u′) and (v, v′).

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 23

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Lemma 12. Let Bb, tm and Bb′, tm be two blossoms with bases b ≠ b′. Then, Bb, tm ∩ Bb′, tm � ∅.

Finally, we need to prove one more fact, which captures the disciplined manner in which a minimum-length
alternating path that intersects a blossom of tenacity tm, Bb, tm , uses vertices of (Bb, tm ∪ {b}). This fact will be used in
the induction step.

Lemma 13. Let p be an even level(v) path from unmatched vertex f to an arbitrary vertex v such that there is a blossom
Bb, tm with p ∩ Bb, tm ≠ ∅. Then, the base of this blossom, b, also lies on p, and there is a vertex u ∈ (p ∩ Bb, tm) such that
p[b to u] contains all the vertices of p ∩ (Bb, tm ∪ {b}) and p[b to u] is an even level(b; u) path.

Proof. For the sake of contradiction, assume that p does not intersect Bb, tm ∪ {b} in the manner described. If so,
two cases arise.

Case 1. b lies on p, and there is a vertex u ∈ (p ∩ Bb, tm) such that p[b to u] contains all the vertices of p ∩ (Bb, tm ∪

{b}) as well as some vertices not in Bb, tm (i.e., p[b to u] enters and exits (Bb, tm ∪ {b})more than once).
If so, by Corollary 4, p[b to u] is longer than an even level(b; u) path. Therefore, replacing the former with the lat-

ter will result in a shorter even path to v, giving a contradiction.
Case 2. The first vertex of p in (Bb, tm ∪ {b}) is x ∈ Bb, tm , the last vertex is y ∈ Bb, tm , and p(x to y) is arbitrary (i.e., it

may visit b as well as other vertices not in Bb, tm). For ease, we will call p[f to x] the blue path and p[y to v] the red path.
Let q be an even level(b) path starting at unmatched vertex f ′, say, where f ′ � f is allowed. Now, there are sev-

eral cases. If the red path does not intersect q, then by Corollary 4, q ◦ s ◦ p[y to v] is a shorter even path19 to v
than p, where s is an even level(b; y) path.

If the red path does intersect q and the last vertex of p on q is even w.r.t. q, say w, then follow q to w, and then, fol-
low by p to v; this is shorter than p. Next, assume that the last vertex of p on q is odd w.r.t. q, say w. Then, we ask
whether the blue path intersects q(w to b]. If the answer is no, then via Corollary 4, we get that the blue path followed
by r�1 to b followed by q to w followed by p to v is a shorter even path to v, where r is an even level(b; x) path. w

8.2.1.2. The Main Case. Finally, assume that the blue and red paths both intersect q in arbitrary ways and that the
last vertex of the red path on q is odd w.r.t. q, say w. Both paths will traverse some matched edges of the path q. We
will say that such an edge is blue (red) if the blue (red) path traverses it; furthermore, we will direct the edge in the
direction in which the path traverses it. We will say that such an edge is directed up if it points toward b and is
directed down if it points toward f ′.

A subpath of q[w to b) is said to be unicolored if it does not contain matched edges of both colors; it is allowed to
contain uncolored matched edges. A maximal unicolored subpath that starts and ends with colored matched edges
is called an interval. In each interval, we will mark one edge as follows; in a blue interval, mark the lowest20 edge on
the blue path, and in a red interval, mark the highest edge on the red path. The rest of the arguments will only be
based on the marked edges and not based on the rest of the intervals. Clearly, on q[w to b), the color of the marked
edges must be alternating, with the lowest marked edge being red and directed down.

There are two cases; either all marked red edges are directed down or not. In the latter case, let e1 be the lowest
marked red edge that is directed up, and let e2 be the marked red edge just below e1; e2 is directed down. Let e3 be
the marked blue edge in between e1 and e2. Now, if e3 is directed down, then follow the blue path from f to e3, then
follow q to e2, and finally, follow the red path all the way to v. However, if e3 is directed up, then follow the blue
path from f to e3, then follow q to e1, and finally, follow the red path all the way to v.

Next, we deal with the case that all marked red edges are directed down. Now, we ask what is the color of the
highest marked edge, say e. If e is red, then we follow the entire blue path from f to x, then follow r�1 to b, then fol-
low q to e, and finally, follow the red path to v, where r is an even level(b; x) path.

Finally, assume that e is blue. Again two cases arise. If e is directed down, then we follow the blue path from f to e,
then follow q to the highest red edge (which is directed down), and finally, follow the red path to v. If e is directed
up, then we follow the blue path from f to e, then follow q to b, then follow s to y, and finally, follow the red path to
v, where s is an even level(b; y) path. In all cases, a shorter even path to v is obtained, leading to a contradiction.

Definition 24 (BFS Honesty on p with Respect to the Base). Let p be an even level(v) or odd level(v) path starting at
unmatched vertex f to an arbitrary vertex v, let u lie on p with tenacity(u) � tm, and let b � base(u). Then, we will
say that u is BFS honest on p w.r.t. b if p[b to u] is an even level(b; u) (odd level(b; u)) path assuming that |p[b to u] |
is even (odd). Note that we are allowing b to appear either before or after u on path p.

Lemma 13 and Theorem 2 yield Lemma 14.

Lemma 14. Let p be an even level(v) path from unmatched vertex f to an arbitrary vertex v. Let w ∈ p with tenacity(w) �
tm, and let b � base(w). Then, b also lies on p, and w is BFS honest on p w.r.t. b.

Vazirani: A Theory of Alternating Paths and Blossoms
24 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Proof. By Lemma 13, there is a vertex u on p such that p[b to u] contains all vertices in p ∩ (Bb, tm ∪ {b}) and
p[b to u] is an even level(b; u) path. Let q be an even level(b) path. Then, by Corollary 4, q ◦ p[b to u] is an
even level(u) path. Because w lies on this path and tenacity(w) � tenacity(u) � tm, by Theorem 2, w is BFS honest
on this path. Hence, w is BFS honest on p w.r.t. b. w

Note that in Lemmas 13 and 14, we took p to be an even level(v) path; by Remark 2, this is without loss of general-
ity. Observe that Lemma 13 allows b to appear either before or after u on path p. The following question arises. How
does this affect whether b and u are BFS honest on p? Lemma 15 provides an answer, and Example 16 illustrates the
various cases.

Lemma 15. Let p be an even level(v) path from unmatched vertex f to an arbitrary vertex v such that there is a blossom
Bb, tm with p ∩ Bb, tm ≠ ∅. Let vertex u ∈ (p ∩ Bb, tm) be such that p[b to u] contains all the vertices of p ∩ (Bb, tm ∪ {b}). Then,
the following hold.

1. If b appears before u on path p, then b and u are either both BFS honest or both not BFS honest on p.
2. If b appears after u on path p, then u is not BFS honest on p; furthermore, if b is BFS honest on p, then p[f to b] is a

max level(b) path.

Proof.
1. The proof follows from Corollary 4.
2. If b appears after u on path p, then by Corollary 4, u is not BFS honest on p. Furthermore, if b is BFS honest on

p, then because p[f to b] cannot be a min level(b) � even level(b) path, it must be an odd level(b) �max level(b)
path. w

Example 16. In the graph of Figure 23, even level(u) � 8; let p be this path. Vertex w appears on the p,
tenacity(w) � tm � 13, base(w) � b, and b appears before w on p. Observe that b and w are both BFS honest on p.
Additionally, w is BFS honest on p w.r.t. b.

In the graphs of Figures 25 and 26, tenacity(u) � tm � 11, and base(u) � b. These graphs has three bridges—of
tenacities 11, 13, and 15. Observe that even level(v) � 16, and let p denote the even level(v) path; the three bridges
appear in the order 15, 11, and 13 on p. Now, b appears before u on p. Observe that b and u are both not BFS hon-
est on p; however, u is BFS honest on p w.r.t. b.

In the graph of Figure 23, even level(c) � 12; let q be the even level(c) path. Observe that b appears after w on q
and that w is not BFS honest on q. However, b is BFS honest on q, and q[f to b] is a max level(b) path. Addition-
ally, w is BFS honest on q w.r.t. b.

In the graph of Figure 23, even level(v) � 16; let r be the even level(v) path. Observe that b appears after w on r
and that b and w are both not BFS honest on r; however, w is BFS honest on r w.r.t. b.

Remark 4. As a result of the induction basis, we have established that every vertex v of tenacity tm has a unique
base, base(v). As stated in Section 8.1, the induction step, in Theorem 3, will enable us to establish an analogous
fact about higher-tenacity vertices, eventually establishing it for every vertex of eligible tenacity. As a result,
every such vertex w will have a unique base, base(w), which is an outer vertex and satisfies tenacity(base(w)) >
tenacity(w). For ease of exposition, Definition 25 assumes that base(w) is well defined for each vertex w of eligible
tenacity in order to define the iterated bases of v, where tenacity(v) � tm. A more “correct,” although more cumber-
some, way of doing this would be to define higher and higher iterated bases of v after each induction step.

Definition 25 (Iterated Bases of a Vertex of Tenacity tm). For v ∈Um, let base(v) � b. Define the first iterated base of v
to be b, denoted as follows: base1

(v) � b. When base(b), base(base(b)), etc. get defined in the induction step, we
can define higher iterated bases of v. Thus, for k ≥ 1, we will say that basek+1

(v) � base(basek
(v)), assuming that

basek
(v) and base(basek

(v)) exist in the graph.

8.3. The Induction Step
In this section, we will prove the induction step for Theorem 3; the basis of the induction was proved in Section 8.2.

Hypothesis 1 (Induction Hypothesis). Let t be an eligible tenacity, with tm + 2 ≤ t < lm. Then, each of the statements in
Theorem 3 holds for tenacities in the range [tm, t� 2].

After proving statement 2 of Theorem 3, certain key notions will become well defined for the case of tenacity t.
These definitions are formally stated after the proof of statement 2 of Theorem 3, and they will be used for formally
stating and proving the rest of the statements. These include the base of vertices of tenacity t, blossoms of tenacity t,
and iterated bases of a vertex.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 25

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

In the induction step, we will need the following definition regarding the iterated bases of a vertex v such that
tenacity(v) < t; these bases would already be defined in the previous iterations of the induction.

Definition 26. Let vertex v be such that tenacity(v) < t. Define k(t, v) such that basek(t, v)
(v) is the first iterated base

of v having tenacity at least t: that is,

k(t, v) �min{l | tenacity(basel
(v)) ≥ t}:

Theorem 3. Let t be an eligible tenacity, Ut � {u ∈ V | tenacity(u) � t}, and v ∈Ut. The following hold.
Statement 1. Every max level(v) path contains a bridge of tenacity t.
Statement 2. The set B(v) is a singleton.
Statement 3. Let b � base(v). Then, every even level(v) (odd level(v)) path consists of an even level(b) path followed by

an even level(b; v) (odd level(b; v)) path, where the latter lies in Bb, t ∪ {b}.21

Statement 4. The blossoms of tenacity t are disjoint, and the set of blossoms of tenacity at most t forms a laminar family.
Statement 5. Let p be an even level(u) path from unmatched vertex f to an arbitrary vertex u. Let w ∈ p with

tenacity(w) � t, and let b � base(w). Then, b also lies on p, and w is BFS honest on p w.r.t. b.

Note that in statement 5 of Theorem 3, we took p to be an even level(v) path; by Remark 2, this is without loss of
generality.

Proof of Statement 1 of Theorem 3. The proof is given in Lemma 16 and is very different from the proof of the
analogous fact, given in Lemma 5, in the induction basis. The reason is that the former needs to account for blos-
soms defined in the previous iterations of the induction. w

Lemma 16. Let v be a vertex of tenacity t and p be a max level(v) path. Then, p contains a bridge of tenacity t.

Proof. Assume that p starts at unmatched vertex f, and let u be an arbitrary vertex on p. If tenacity(u) � t, then by
Theorem 2, u is BFS honest on p, and therefore, |p[f to u] | is either min level(u) or max level(u). If tenacity(u) < t,
then by applying Lemma 20 from the previous induction step to p, we get that x � basek(t, u)

(u) lies on p and that
p[x to u] lies in {x} ∪ Bx, t�2, where Bx, t�2 is the blossom of tenacity t�2 with base x.

Define sets S1, S2, and S as follows:

S1 � {w |w is on p, tenacity(w) � t, and |p[f to w] | � max level(w)}

S2 � {w |w is on p, tenacity(w) < t, and basek(t, w)
(w) is higher than w on p}

S � S1 ∪ S2:

For a definition of “higher/lower on a path,” see Definition 18. Let w be the lowest vertex of S on p, and let w′ be
the matched neighbor of w. First, assume that w ∈ S2; therefore, tenacity(w) < t. Let x � basek(t, w)

(w) and
w ∈ Bx, t�2. Applying Lemma 17 from the previous induction step, we get that w′ ∈ Bx, t�2. Because w′ is not the
lowest vertex of S on p, we get that w must be odd w.r.t. p. Consider the following two cases.

Case 1. w is even with respect to p.
By the argument given, w ∉ S2. Therefore, w ∈ S1, and hence, tenacity(w) � t and |p[f to w] | �max level(w) �

even level(w). By Lemma 1, tenacity(w′) � tenacity(w, w′) � t, and w′ is lower than w on p. Because w′ is not the
lowest vertex of S on p, w′ ∉ S, and therefore, |p[f to w′] | �min level(w′). Furthermore, because w′ is odd w.r.t. p,
w′ is an inner vertex. Because max level(w) � even level(w), w is also an inner vertex. Therefore, the predecessors of
w and w′ are given by unmatched edges incident at them. Therefore, neither is w a predecessor of w′ nor is w′ a pre-
decessor of w. Hence, (w, w′) is a bridge of tenacity t.

Case 2. w is odd with respect to p.
Let (u, w) be the unmatched edge on p incident at w. Clearly, u is lower than w on p, and |p[f to u] | is even. We

will show that (u, w) is a bridge of tenacity t.
First, let us show that w is not a predecessor of u. Suppose tenacity(u) ≥ t. By Theorem 2, u is BFS honest on p,

and because u ∉ S1, |p[f to u] | ≠ max level(u). Therefore, |p[f to u] | �min level(u) � even level(u). Furthermore,
the predecessor of u is its matched neighbor and not w.

Next, suppose that tenacity(u) < t. Let x � basek(t, u)
(u) and u ∈ Bx, t�2. Clearly, the predecessor of u is either x,

or it lies in the blossom Bx, t�2. Applying Lemma 20 from the previous induction step to p, we get that x lies on p
and that the path p[x to u] lies in {x} ∪ Bx, t�2. Because u ∉ S2, the base of Bx, t�2, namely x, is lower than u on p. If
w ∈ S1, tenacity(w) � t, and therefore, w does not lie in Bx, t�2. If w ∈ S2, the base of the blossom containing w is

Vazirani: A Theory of Alternating Paths and Blossoms
26 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

higher than w on p, and again, w does not lie in Bx, t�2. Therefore, in both cases, w is not a predecessor of u. As
stated, by Lemma 20, p[x to u] lies in {x} ∪ Bx, t�2. Furthermore, because w does not lie in Bx, t�2 and w is not the
base of Bx, t�2, we get that p[x to u] contains all vertices in p ∩ (Bx, t�2 ∪ {x}). Now, by Lemma 19 of the previous
induction step, p[x to u] is an even level(x; u) path.22 Because tenacity(x) ≥ t, by Theorem 2, x is BFS honest on p.
Therefore, |p[f to u] | � even level(u) in this case as well.

Next, let us show that u is not a predecessor of w. If tenacity(w) � t, then w ∈ S1, and |p[f to w] | �max level(w).
Therefore, the predecessor of w is its matched neighbor and not u. If tenacity(w) < t, then w ∈ S2 and w ∈ By, t�2,
where y � basek(t, w)

(w). Therefore, the predecessor of w lies in the blossom By, t�2; again, u is not a predecessor of
w. Hence, (u, w) is a bridge.

Finally, we will show that tenacity(u, w) � t, thereby completing the proof. We will consider two cases. First,
assume that tenacity(w) � t. By Theorem 2, |p[f to w] | � odd level(w) � even level(u) + 1; the last equality follows
from the fact that |p[f to u] | � even level(u). Now,

tenacity(u, w) � even level(u) + even level(w) + 1 � even level(u) + (t� odd level(w)) + 1 � t:

Next, assume that tenacity(w) < t. If so, w ∈ S2, and y � basek(t, w)
(w) is higher than w on p. Let q be a min level(v)

path from f to v. Because tenacity(v) � t, |p | + |q | � t. Because tenacity(y) ≥ t, by Theorem 2, y is BFS honest on p.
Therefore, p[f to y] is an odd level(y) path. Also, q ◦ p[v to y] is an even path from f to y, and therefore, its length
is at least even level(y).

Now, |p[f to y] | + |q ◦ p[v to y] | � |p | + |q | � t ≥ odd level(y) + even level(y) � tenacity(y) ≥ t, thereby implying
that tenacity(y) � t and q ◦ p[v to y] is an even level(y) path. Because p[y to w] contains all vertices in p ∩ (By, t�2
∪ {y}), by Lemma 19 of the previous induction step, p[y to w] is an even level(y; w) path. Together with the previ-
ous assertion, we get that q ◦ p[v to w] is an even level(w) path. Finally,

tenacity(u, w) � even level(u) + even level(w) + 1 � |p[f to u] | + |q ◦ p[v to w] | + 1 � |p | + |q | � t: w

Remark 5. As was done in Lemma 5, Lemma 16 can be strengthened to show uniqueness of the bridge as well.
Because we will not need this fact, we will not prove it.

8.3.1. The Graphs Ht and H9
t . For proving the induction step, we will define graphs Ht and H′t , which are analogous

to Hm and H′m defined in Section 8.2.1. The main difference is that whereas all edges in the directed graph Hm are of
unit length, those in Ht can be longer. The long edges help “jump” over lower-tenacity blossoms.

Recall that Ut � {v ∈ V | tenacity(v) � t}. Let Bt denote the set of all bridges of tenacity t, and let Wt denote the end-
points of all bridges in Bt.

Definition 27. For v ∈Wt, define

v∗ �
v if tenacity(v) � t,
basek(t, v)

(v) if tenacity(v) < t:

(

Note that k(t, v) is defined in Definition 26. We now explain the second case of the definition of v∗ (i.e., if
tenacity(v) < t). In this case, v is in a blossom of tenacity t�2, which must have been defined in the previous
induction step. Now, v∗ is meant to be the base of this blossom; it is given by basek(t, v)

(v).
Let W∗t � {v∗ |v ∈Wt}. For a vertex v∗ ∈W∗t , let p denote an arbitrary min level(v∗) path. Let Vt denote the set of

all vertices of tenacity at least t on all min level(v∗) paths p for all vertices v∗ ∈W∗t .
The next definition is related to Definition 20 and is motivated by statement 5 of Theorem 3 and the induction

hypothesis.

Definition 28 (The Relations predt and pred∗t). Let v ∈ Vt with tenacity(v) � t, and let u be a predecessor of v;
clearly, u may be unmatched. Define

predt(v; u) �
u if tenacity(u) ≥ t,
basek(t, u)

(u) if tenacity(u) < t:

(

We will say that a vertex w is predt of v, denoted by w � predt(v), if tenacity(v) � t and there is a predecessor u
of v such that predt(v; u) � w. The relation pred∗t is recursively defined as follows; given vertices u, v ∈ Vt, with
tenacity(v) � t, we will say that u is pred∗t of v, denoted by u � pred∗t(v) if either u � predt(v) or u � pred∗t(predt(v)).
Observe that if u � pred∗t(v), then u ≠ v.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 27

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Next, we define directed graph Ht and undirected graph H′t . Analogous to the definitions of graphs Hm and
H′m given in Section 8.2.1, the vertex sets of both Ht and H′t are the same, namely Vt. The edge set of Ht, Et, is
defined as follows. For vertices w, v ∈ Vt, if w � predt(v), then there is a directed edge (v, w) ∈ Et. This edge is of
unit length if predt(v) is obtained from the first case of Definition 28, and it is longer if predt(v) is obtained from
the second case of Definition 28. In contrast, graph Hm, defined in Section 8.2.1, has unit-length edges only.
Define directed graph Ht � (Vt, Et).

Corresponding to the set of bridges of tenacity t, Bt, define

B∗t � {(u
∗, v∗) | (u, v) ∈ Bt}:

Define undirected graph H′t � (Vt, (B∗t ∪ E′t)), where the edge set E′t is obtained from Et by making each edge undi-
rected. An edge e ∈ E′t is matched in H′t if and only if the corresponding edge is present in G and is matched in G.

Example 17. Figures 19 and 20 illustrate the graphs H′t corresponding to the graph of Figure 14 (and Figure 26)
for t�19 (and t�15).

Remark 6. In Definition 27, for v ∈Wt, if tenacity(v) < t, then v∗ � basek(t, v)
(v). This case adds an extra step in the

process of finding an augmenting path, stated in Section 5.4.1; this step could not be described in that section
because of lack of definition of v∗. We will explain this in the context of the graph of Figure 26. In order to find an
even level(v) path, the algorithm needs to find a path from d to a in the blossom Bf , 15. Because d∗ ≠ d, it realizes
that a part of this path, namely the path from d to d∗ � c, needs to be found in the nested blossom Bc, 13.

The extra complexity that arises in the proof of the induction step is captured in the various definitions given
in this section. This complexity does not change the basic ideas needed for proving statements analogous to
those given in Section 8.2 for the induction basis; the only difference in the formal statements is that subscript
“m” is replaced by “t” throughout and that tm is replaced by t. We will summarize this development. The proof
of statement 2 of Theorem 3 is followed by some key definitions, which are used by the rest of the statements of
Theorem 3.

Figure 19. (Color online) Graph H′t for t � 19 corresponding to the graph of Figure 14.

Figure 20. (Color online) Graph H′t for t � 15 corresponding to the graph of Figure 26.

Vazirani: A Theory of Alternating Paths and Blossoms
28 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Lemmas 7 and 8 carry over, and so does procedure bottleneck. The output of a run of this procedure on input
(u, v) ∈ Bt is a vertex b. As in the induction basis, this vertex is very special and is called a base; a formal definition
is given. Clearly, b is an outer vertex. In general, H′t will have a number of bases.

For each base b in H′t , define the set

Sb, t � {v ∈Ut |b is pred∗t of v}:

Clearly, b ∉ Sb, t.

Proof of Statement 2 of Theorem 3. Lemma 10 also carries over, and so does Corollary 2, thereby proving this
statement. w

Next, we formally define the base of vertices in Ut and blossoms of tenacity t.

Definition 29 (The Base of a Vertex of Tenacity t and Basal Vertices). For each v ∈Ut, define base(v) to be the unique
vertex, say b, in the set B(v). We will say that the base of v is b. Each such vertex b will be called a basal vertex.
Clearly, b is an outer vertex, and tenacity(b) > t.

We can now define the iterated bases of a vertex of tenacity at most t; this is done in Definition 30. Once the
entire induction step is proven, this definition holds for all vertices of eligible tenacity.

Definition 30 (Iterated Bases of a Vertex of Tenacity at Most t). For v ∈Ut, let base(v) � b. Define the first iterated base of
v to be b, denoted as follows: base1

(v) � b. Next, consider a vertex u with tenacity(u) < t and such that the induction
hypothesis has established that basek

(u) � v, for k ∈ Z+. Then, basek+1
(u) � b (i.e., basek+1

(u) � base(basek
(u))).

Example 18. In the graph of Figure 23, the iterated bases of vertex w are base(w) � b, base2
(w) � b′, and

base3
(w) � f . Clearly, tenacity(w) < tenacity(b) < tenacity(b′) < tenacity(f).

We next come to the key definitions of blossom of tenacity t and the nesting of blossoms.

Definition 31 (Blossom of Tenacity t and Base b). Let b be a basal vertex with tenacity(b) > t. Let Tb, t � {v ∈Ut |base
(v) � b}; observe that Tb, t � Sb, t. Then, the blossom of tenacity t and base b is the set

Bb, t � Tb, t ∪
[

v∈(Tb, t∪{b}), v is basal
Bv, t�2

0

@

1

A:

In the expression given for Bb, t, if for v ∈ (Tb, t ∪ {b}), Bv, t�2 ≠ ∅, then we will say that Bv, t�2 is a nested blossom of
Bb, t. We will assume that the latter relation is transitively closed (i.e., if set A is a nested blossom of B and B is a
nested blossom of C, then A is a nested blossom of C). Clearly, if Tb, t � ∅, then Bb, t � Bb, t�2.

The next fact is analogous to Corollary 3.

Lemma 17. Let (u, v) be a matched edge of tenacity t. Then, u and v have the same base, say b, and both belong to the same
blossom of tenacity t, namely Bb, t.

Example 19. Figures 21 and 22 show two graphs with nested blossoms. Although the two “look different,” in
both graphs, vertex b is the base of vertices u, u′, v, and v′. The tenacities of bridges (u, u′) and (v, v′) are 7 and 11,
respectively. The set Tb, 11 � {v, v′}, and the blossoms are Bb, 7 � {u, u′}, Bb, 9 � {u, u′}, and Bb, 11 � {u, u′, v, v′}.

Definition 32 (Shortest Path from a Base to a Vertex of Tenacity t). Let v ∈Ut and b � base(v). Then, by an even level
(b; v) (odd level(b; v)) path, we mean a minimum even-length (odd-length) alternating path in G from b to v that
starts with an unmatched edge.

We will extend Definition 32 to define a shortest path from an iterated base, say b, to a vertex v of tenacity t. We will
denote this path also by even level(b; v) (odd level(b; v)) depending on whether the path is even (odd) in length.

Proof of Statement 3 of Theorem 3. Claims analogous to Lemma 10 and Lemma 11 hold, thereby proving this
statement; it is analogous to Corollary 4 in the induction basis. w

A claim analogous to Lemma 12 also holds.

Lemma 18. Let Bb, t and Bb′, t be two blossoms with bases b ≠ b′. Then, Bb, t ∩ Bb′, t � ∅.

By Definition 31, if Bb, t and Bb′, t′ are two blossoms with t > t′, then either they are disjoint, or the former contains
the latter; note that we are allowing b � b′. This gives Corollary 5.

Corollary 5. The set of blossoms of tenacity at most t forms a laminar family.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 29

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Proof of Statement 4 of Theorem 3. Lemma 18 and Corollary 5 prove this statement. w

Definition 33 (BFS Honesty on p with Respect to an Iterated Base). Let p be an even level(v) path starting from
unmatched vertex f to an arbitrary vertex v, and let u lie on p with tenacity(u) ≤ t. Let b � basek

(u) be any one of
the iterated bases of u that is well defined at this stage of the induction. Then, we will say that u is BFS honest on p
w.r.t. b if p[b to u] is an even level(b; u) (odd level(b; u)) path assuming |p[b to u] | is even (odd). Note that we are
allowing b to come either before or after u on p.

Proof of Statement 5. We will state a fact that is analogous to Lemma 13; its proof is also analogous and is
omitted. w

Lemma 19. Let p be an even level(u) path from unmatched vertex f to an arbitrary vertex u such that there is a blossom
Bb, t with p ∩ Bb, t ≠ ∅. Then, the base of this blossom, b, also lies on p, and there is a vertex y ∈ (p ∩ Bb, t) such that p[b to y]
contains all vertices in p ∩ (Bb, t ∪ {b}) and p[b to y] is an even level(b; y) path.

One difference between Lemma 13 and Lemma 19 is that in the former, b � base(u), whereas in the latter, b may
be any iterated base of y that is defined at this stage. Even so, statement 5 of Theorem 3 follows from Lemma 19,
along the lines of Lemma 14. The reason is that the only iterated base of vertex w, occurring in statement 5 of Theo-
rem 3, that is defined at this stage is base(w) because tenacity(w) � t.

This completes the proof of statement 5 of Theorem 3. Next, let us integrate this statement over all the induction
steps until the current one to get the following fact about iterated bases and nested blossoms. It will be used in the
proof of Lemma 16 in the next induction step.

Figure 21. (Color online) Vertex b is the base of u, u′, v, and v′. The tenacities of bridges (u, u′) and (v, v′) are indicated.

Figure 22. (Color online) Vertex b is the base of u, u′, v, and v′. The tenacities of bridges (u, u′) and (v, v′) are indicated.

Vazirani: A Theory of Alternating Paths and Blossoms
30 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Lemma 20. Let p be an even level(v) path from unmatched vertex f to an arbitrary vertex v. Let vertex u ∈ p with
tenacity(u) ≤ t, and let l � k(t+ 2, u). Let the iterated bases of u, base1

(u), : : : , basel
(u), be x1, : : : , xl, respectively. For

1 ≤ i ≤ l, let si � tenacity(xi), and let Bxi, si�2 be the blossom of tenacity si� 2 with base xi. Then,
1. the iterated bases of u, x1, : : : , xl, lie on p; and
2. for 1 ≤ i ≤ l, the path p[xi to u] lies in {xi} ∪ Bxi, si�2.

Remark 7. In Lemma 20, u need not be BFS honest on p w.r.t. xi for 1 < i ≤ l; see Theorem 6 and Example 21.
Lemma 21, stated here, is analogous to Lemma 15. The various cases discussed in this lemma can be illustrated

for any eligible tenacity t > tm, similar to the way it was done in Example 16. However, because the examples
become large, we have illustrated only a subset of the cases in Example 20.

Lemma 21. Let p be an even level(v) path from unmatched vertex f to an arbitrary vertex v such that there is a blossom Bb, t
with p ∩ Bb, t ≠ ∅. Let vertex u ∈ (p ∩ Bb, t) be such that p[b to u] contains all the vertices of p ∩ (Bb, t ∪ {b}). Then, the fol-
lowing hold.

1. If b appears before u on path p, then b and u are either both BFS honest or both not BFS honest on p.
2. If b appears after u on path p, then u is not BFS honest on p; furthermore, if b is BFS honest on p, then p[f to b] is a

max level(b) path.

This completes the proof of Theorem 3.

Example 20. In the graphs of Figures 23 and 24, vertex u ∈ Bb′, 15. Consider the even level(v) paths in both these
graphs. On these paths, u appears before b′. Furthermore, u is not BFS honest, and b′ is BFS honest on these
paths.

In the graph of Figure 24, consider the odd level(w) path. b′ appears before u on this path, and b′ and u are
both BFS honest on this path.

Finally, in the graph of Figure 26, consider the even level(v) path, p. This path goes through the blossom Bc, 13;
it enters the blossom at vertex d. d appears before c on this path, and whereas d is not BFS honest, c is BFS honest
on this path.

As observed in Example 14, vertices of tenacity lm may have no base, and as a result, statements 2–5 of Theo-
rem 3 do not hold for them. However, statement 1 of Theorem 3 does hold and needs to be proven; in particular,
DDFS on the corresponding bridge will reveal an augmenting path if one exists. This case is singled out in the
next theorem. Its proof is identical to that of statement 1 of Theorem 3.

Theorem 4. For every vertex v of tenacity lm, every max level(v) path contains a bridge of tenacity lm.

8.4. BFS Honesty and Iterated Bases
The properties established in Sections 8.2 and 8.3 help prove that the MV algorithm correctly finds the first
minimum-length augmenting path in a phase; in particular, the information left in the graph, such as pointers, is

Figure 23. (Color online) The iterated bases of vertex w are base(w) � b, base2
(w) � b′, and base3

(w) � f , and those of vertex u
are base(u) � b′ and base2

(u) � f .

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 31

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

critical to accomplishing this task. After finding an augmenting path, the algorithm removes it and all vertices that
cannot be present on a disjoint minimum-length augmenting path.

This raises the following question. Does the remaining graph have the required structural properties and infor-
mation to enable the algorithm to find successive augmenting paths? In this section, we prove additional properties
that provide a positive answer to this question. These properties also show the sense in which minimum-length
alternating paths are not arbitrarily BFS dishonest, as stated in Section 1.

Definition 34 (The Number of Iterated Bases of a Vertex of Eligible Tenacity). Let v be a vertex of eligible tenacity. As
noted earlier, the tenacities of its iterated bases keep increasing (i.e., tenacity(base(v)) < tenacity(base2

(v)) <
tenacity(base3

(v)): : :). Let l be the smallest number such that tenacity(basel
(v)) ≥ lm; clearly, such a number exists

because the tenacity of unmatched vertices is at least lm. Because basel
(v) is not a vertex of eligible tenacity, by

definition it does not have a base. We will say that v has exactly l iterated bases.

Theorem 5. Let v be a vertex of eligible tenacity, and let p be an even level(v) or odd level(v) path, starting at unmatched
vertex f. Assume that v has exactly l iterated bases. Then, the following hold.

1. All l iterated bases of v lie on p; moreover, they occur in the order basel
(v), basel�1

(v), : : : , base(v) on p.
2. Each iterated base is BFS honest on p.
3. v is BFS honest on p w.r.t. each iterated base.

Proof. We will prove by an induction on k, for 1 ≤ k ≤ l, the following statement; basek
(v) lies on p, and

p[f to basek
(v)] is an even level(basek

(v)) path. This will establish the first two statements of the theorem, and the
third will then follow by Theorem 3.

Let base(v) � b. By statement 3 of Theorem 3, every even level(v) (odd level(v)) path consists of an even
level(b) path concatenated with an even level(b; v) (odd level(b; v)) path. Therefore, p[f to b] is an even level(b)
path, hence establishing the basis of the induction.

Assume that the claim is true for k, where 1 ≤ k < l, and let basek
(v) � u. Then, p[f to u] is an even level(u)

path. Let base(u) � w; clearly, basek+1
(v) � w. Again, by statement 3 of Theorem 3, w lies on p[f to u], and p[f to w]

is an even level(w) path, hence establishing the induction step (Figure 25). w

Theorem 6. Let v be a vertex of eligible tenacity and p be an even level(v) or odd level(v) path, starting at unmatched
vertex f. Let u be a vertex of eligible tenacity that is on p, and assume that u has exactly l iterated bases. Then, the follow-
ing hold.

1. If u is BFS honest on p, then the l iterated bases of u satisfy the three conditions stated in Theorem 5.
2. If u is not BFS honest on p, then

a. All l iterated bases of u lie on p.
b. u is BFS honest on p w.r.t. base(u), and for 1 ≤ k < l, basek

(u) is BFS honest on p w.r.t. basek+1
(u).

c. basel
(u) is BFS honest on p.

Figure 24. (Color online) Let p be the even-level(v) path. Vertex u is BFS honest on p w.r.t. b and b′; however, u is not BFS honest
on p w.r.t. f.

Vazirani: A Theory of Alternating Paths and Blossoms
32 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Proof.
1. Because p[f to u] is a minimum alternating path to u, the three conditions of Theorem 5 apply.
2. Next, assume that u is not BFS honest on p. Even so, the first and second facts follow using Lemmas 13 and 19

and an easy induction on k. Because tenacity(basel
(u)) ≥ lm and tenacity(v) < lm, by Theorem 2, basel

(u) is BFS hon-
est on p, giving the third fact. w

Example 21. In the graph of Figure 23, let p be the even level(v) path; it contains vertices u and w, which are both
not BFS honest on p. The iterated bases of w are b, b′, and f, and all three lie on p. Of these, b′ and f are BFS honest
on p, and b is not BFS honest on p; furthermore, each iterated base is BFS honest w.r.t. the next higher base, as
proved in Theorem 6. Additionally, w is BFS honest w.r.t. b′, w is not BFS honest w.r.t. f, and b is not BFS honest
w.r.t. f on p. The iterated bases of u are b′ and f. Both lie on p, both are BFS honest on p, and b′ is BFS honest on p
w.r.t. f.

In the graph of Figure 26, the even level(v) path, p, is indicated. The length of p is 16, and it contains vertex u.
The iterated bases of u are b, c, and f, and all three lie on p. Of these, c and f are BFS honest on p, and b is not BFS
honest on p. Furthermore, each iterated base is BFS honest w.r.t. the next higher base; however, u is not BFS hon-
est w.r.t. c, u is not BFS honest w.r.t. f, and b is not BFS honest w.r.t. f on p.

9. Proof of Correctness and a Postmortem
As stated in Section 1.1, one of the main ideas behind the MV algorithm is precise synchronization of events; this is
described and proved in Section 9.1. Section 9.3 proves that the MV algorithm correctly executes a phase and also
establishes the running time of the algorithm. Finally, Section 9.4 provides a postmortem by raising and answering

Figure 25. (Color online) The even level(v) is finite; the reader is encouraged to find such a path.

Figure 26. (Color online) The even-level(v) path, p, is indicated. Vertices b and u are not BFS honest on p, even though b occurs
before u on p.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 33

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

the following question. “Why is it essential to formalize such an elaborate purely graph-theoretic structure for prov-
ing correctness of the MV algorithm?”

9.1. Synchronization of Events
Theorem 7. Let t be an odd number with tm ≤ t ≤ lm (i.e., t is either an eligible tenacity or t� lm). The following hold.

1. Algorithm 1 finds Br(t), the set of bridges of tenacity t, by the end of execution of procedure MIN at search level i, where
t � 2i+ 1.

2. For each vertex v such that tenacity(v) � t, Algorithm 1 assigns min level(v) and max level(v) correctly.

Proof. We will show by strong induction on i, for i� 0 to (lm� 1)=2, that at search level i, Algorithm 1 will accom-
plish the following tasks.

Task 1. Procedure MIN assigns a min level of i+ 1 to exactly the set of vertices having this min level. It also iden-
tifies all props that assign a min level of i+ 1.

Task 2. By the end of the execution of procedure MIN at this search level, Br(2i+ 1) is the set of all bridges of
tenacity 2i+ 1.

Task 3. Procedure MAX assigns correct max levels to all vertices having tenacity 2i+ 1.
This will establish both statements of the theorem.
The base case, i� 0, is obvious; MIN will assign an odd level of one to each neighbor of each unmatched vertex.

Next, we assume the induction hypothesis for all search levels less than i and prove that Algorithm 1 will accom-
plish the three tasks at search level i.

Task 1. By the induction hypothesis, the min level assigned to vertex v at the beginning of execution of MIN at
search level i is ∞ if and only if min level(v) ≥ i+ 1. Because MIN searches from all vertices having level i along the
correct parity edges and assigns a min level to a vertex only if its currently assigned min level is ≥ i+ 1, any vertex
v that is assigned a min level in this search level must indeed satisfy min level(v) � i+ 1, and the edge that reaches
v will be correctly classified as a prop.

We next prove that every vertex v with min level(v) � i+ 1 will be assigned its min level in this search level and that
every prop that assigns a min level of i+1 will be classified as a prop. Let min level(v) � i+ 1, let p be a min level(v)
path, and let (u, v) be the last edge on p. Clearly, (u, v) is a prop, and every prop that assigns a min level of i+1 is of this
type. Now, u must be BFS honest on p. If not, then v must occur on a shorter path to u, contradicting min level(v) < i+ 1.
If |p[f to u] | � i �max level(u), then tenacity(u) < 2i+ 1. Otherwise, |p[f to u] | � i �min level(u).

In either case, by the induction hypothesis, u has already been assigned a level of i. Therefore, at search level i,
MIN will search from u along edge (u, v) and will find v. By the induction hypothesis, at this point, either the min
level of v is set to either ∞ or i+1.23 In either case, v will be assigned a min level of i+1, u will be declared a prede-
cessor of v, and (u, v) will be declared a prop.

Task 2. Let (u, v) be a matched bridge with tenacity(u, v) � 2i+ 1. By Lemma 1, tenacity(u) � tenacity(v) �
tenacity(u, v), and u and v are both inner. Therefore, odd level(u) � odd level(v) � i. Hence, during search level i,
MIN will determine that (u, v) is a bridge, will determine that its tenacity is 2i+ 1, and will insert it in Br(2i+ 1).

Next, assume that (u, v) is an unmatched bridge with tenacity(u, v) � 2i+ 1. By Lemma 3, if tenacity(v) �
tenacity(u, v) � 2i+ 1, then v is an outer vertex, and even level(v) ≤ i. Therefore, the algorithm has already deter-
mined even level(v). On the other hand, if tenacity(v) < 2i+ 1, then both its levels were determined by the end of
the previous search level. By Lemma 3, these are the only two cases.

Therefore, in both cases, tenacity(u, v) will be ascertained by the end of execution of procedure MIN at search
level i, and Br(2i+ 1)will be the set of all bridges of tenacity 2i+ 1.

Task 3. Let tenacity(v) � t. By statement 1 of Theorem 3 or by Theorem 4, depending on whether t is an eligible
tenacity or t� lm, v lies in the support of a bridge of tenacity 2i+ 1, and by task 2 of the proof of Theorem 7, this
bridge is in Br(2i+ 1) at the start of MAX in search level i. Therefore, DDFS will ascertain max level(v) in this search
level. w

Example 22. This example gives an insight into the idea of synchronizing of events. In Figure 27, the algorithm
determines that (u, v) is a bridge of tenacity 15 at search level 6. However, according to Algorithm 1, DDFS
should be performed on (u, v) at search level 7. The question arises as follows: “Why wait until search level 7;
why not perform DDFS on (u, v) when procedure MAX is run at search level 6?” In the graph of Figure 27, no
mistakes will be made, provided that the algorithm assigns tenacities of 15 vertices to a and b (i.e., the same as
the tenacity of bridge (u, v)).

However, in the graph of Figure 28, when DDFS is performed on the bridge of tenacity 13 at search level 6, a
and b will be assigned tenacities of 13; these are their correct tenacities in the graph of Figure 28. Next, assume

Vazirani: A Theory of Alternating Paths and Blossoms
34 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

that bridge (u, v) is also processed at search level 6, and assume that it is processed before the bridge of tenacity
13; this is consistent with the arbitrary order in which bridges are processed. If so, a and b will be wrongly
assigned tenacities of 15.

The synchronization of events imposed by the MV algorithm helps avoid such errors. Even though the tenacity
of bridge (u, v) is determined at search level 6, DDFS on it is performed at search level 7, consistent with its tenac-
ity. As a result, when the bridge of tenacity 13 is processed at search level 6, a and b are assigned their correct
tenacities (i.e., 13). When processing bridge (u, v), DDFS will skip over the blossom of tenacity 13 and will not
encounter a and b.

Remark 8. The proper synchronization of events, described here, is central to guaranteeing that the MV algo-
rithm can accomplish its task in linear time. In the absence of synchronization, if DDFS is executed for a bridge
of tenacity t and it finds a vertex v, the only guarantee is that tenacity(v) ≤ t, and determining its exact tenacity
would be a time-consuming task. However, in the presence of synchronization, tenacity(v) < t is not possible.24

Therefore, in the presence of synchronization, if DDFS finds a vertex v, it is sure that tenacity(v) � t.

9.2. Relationship Between Graph-Theoretic and Algorithmic Notions
As stated in Section 5.2, the notions of petal and bud are intimately related to the notions of blossom and base;
whereas the former is an algorithmic notion, the latter is graph theoretic. This relationship is formally established in
Lemma 22. At the end of search level i, once MAX is done processing all bridges of tenacity t � 2i+ 1, all blossoms
of tenacity t can be identified via this lemma; its proof is straightforward and is omitted.

Figure 27. (Color online) Can DDFS be performed on bridge (u, v) at search level 6?

Figure 28. (Color online) If so, vertices a and b will get wrong tenacities.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 35

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Lemma 22. Let tenacity(v) � t, and at the end of search level i � (t� 1)=2, assume that bud∗(v) is b. Then, base(v) � b,
and the set Tb, t defined in Definition 31 is

Tb, t � {u | tenacity(u) � t and bud∗(u) � b}:

Furthermore, the blossom Bb, t consists of the union of all petals whose bud* is b at the end of search level i � (t� 1)=2,
together with each blossom of tenacity (t� 2) whose base is b or any of the vertices of these petals.

Observe that if bud∗(v) is computed at the end of search level j> i, then it may not be b anymore; however, it will
be an iterated base of v.

9.3. Execution of a Phase and Proof of Running Time
The proofs given in Section 9.1 show that the MV algorithm correctly finds one minimum-length augmenting path
in the given graph with an initial matching. Lemma 24 shows that it correctly finds a maximal set of such paths as
well; it critically uses Lemma 23. Finally, Theorem 8 concludes with a proof of the running time.

Lemma 23. For a blossom Bb, t, if b is removed, then procedure RECURSIVE REMOVE will remove all vertices of this
blossom.

Proof. We will prove the lemma by induction on the tenacity t of the blossom. The basis follows easily because
for each v ∈ Bb, tm , b � pred∗m(v), and therefore, RECURSIVE REMOVE will remove the vertices of this blossom in
order of increasing min level.

Next, assume that the statement is true for all blossoms of tenacity t� 2, where tm < t < lm. Consider a blossom
Bb, t. For each vertex, v ∈ Tb, t, b � pred∗t(v); see Definition 31. Moreover, the base of each blossom of tenacity t�2
nested in Bb, t is a vertex from {b} ∪ Tb, t. Once b is removed, the vertices of Tb, t will be removed in order of
increasing min levels together with nested blossoms of tenacity t�2; the latter follows by the induction hypothe-
sis. Hence, Bb, t will be fully removed. w

Lemma 24. The procedures given in Section 5.4 will find a maximal set of disjoint minimum-length augmenting paths
in G.

Proof. Clearly, the first path, say p, found by the algorithm will be of length lm (i.e., it will be a minimum-length
augmenting path). As argued earlier, the vertices removed by procedure RECURSIVE REMOVE of Section 5.4.2
cannot be part of a minimum-length augmenting path that is disjoint from p.

The crux of the matter is how do we guarantee that the remaining graph will “look like” a graph in which the
first path is found (i.e., it has all the pointers and properties needed). The theorems of Section 8.4 guarantee that
if a vertex v ∈ p, then each of its iterated bases is on p and will be removed. By Lemma 23, once the base of a blos-
som is removed, RECURSIVE REMOVE will remove all its vertices, and therefore, there will be no “half-eaten”
blossoms in the graph when the next path needs to be found. The lemma follows. w

Theorem 8. The MV algorithm finds a maximum matching in general graphs in time O(m
ffiffiffi
n
√
) on the RAM model and

O(m
ffiffiffi
n
√
·α(m, n)) on the pointer model, where α�is the inverse Ackerman function.

Proof. In a phase, each of the procedures MIN, MAX, finding augmenting paths, and RECURSIVE REMOVE
examine each edge a constant number of times. The only other operation performed by the algorithm is that of
computing bud∗ during DDFS. This can be implemented on the pointer model using the set union algorithm of
Tarjan [31], which will take O(m · α(m, n)) time per phase. Alternatively, it can be implemented on the RAM
model using the linear time algorithm for a special case of set union (Gabow and Tarjan [12]); this will take O(m)
time per phase. Because O(

ffiffiffi
n
√
) phases suffice for finding a maximum matching (Hopcroft and Karp [15] and Kar-

zanov [19]), the theorem follows. w

Remark 9. A question arising from Theorem 8 is whether there is a linear time implementation of bud∗ in the
pointer model. Micali and Vazirani [24] had claimed, without proof, that path compression by itself suffices
to achieve this. They stated that because of the special structure of blossoms, a charging argument could be
given that assigns a constant cost to each edge. This claim is left as an open problem. See a related open prob-
lem in Section 10.

Finally, we note that because the MV algorithm consists of simple operations involving no hidden constants,
especially if implemented using the set union algorithm (Tarjan [31]), it is not only fast in theory but also, fast in
practice. Over the years, several researchers have produced very fast implementations.

Vazirani: A Theory of Alternating Paths and Blossoms
36 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

9.4. The Role of Graph-Theoretic Structural Properties in the MV Algorithm
Finally, we address the following question: “Why was it essential to formalize such an elaborate purely graph-
theoretic structure for proving correctness of the MV algorithm?” Now that the reader is familiar with the structural
definitions and claims, this question can be answered.

Assume that min level(v) � i+ 1 and max level(v) � j+ 1 so that tenacity(v) � i+ j+ 2 � t, where t is an eligible
tenacity or t� lm. It is easy to see that there must be a neighbor, say u, of v such that even level(u) � i or
odd level(u) � i, depending on the parity of i. Therefore, one step of breadth first search, while searching from u,
will lead to assigning v its correct min level. We will say that u is the agent that assigns v its min level.

In contrast, none of the neighbors of v may have j as one of its levels. For instance, vertex b in the graph of
Figure 5 has max level(b) � odd level(b) � 11. Observe that even level(a) � even level(c) � 8 and even level(u) �
12 (i.e., none of the neighbors of b have an even level of 10). The following questions arise.

1. What is the agent that assigns v its max level, and does it exist for each “relevant” vertex v?
2. Can this agent be found for each relevant vertex v?
3. How does this agent help assign v its max level?
This paper provides very precise answers to all these questions. The agent that assigns v its max level is a bridge

whose tenacity equals tenacity(v). Statement 1 of Theorem 3 and Theorem 4 prove that every max level(v) path con-
tains such a bridge. Thus, in a sense, this was the central structural fact that needed to be proved.

“Relevant” vertices are those whose tenacity is eligible or is lm. Theorem 3 proves that for each such vertex v, it is
in the support of a bridge whose tenacity is tenacity(v), and Theorem 7 proves that such a bridge will be found
“well in time.” The answer to the third question is execute the procedure of DDFS on the endpoints of this bridge.

These structural properties suffice for finding the first minimum-length augmenting path. However, after its
removal, could it be that the graph is left with “half-eaten blossoms,” which simply do not support finding the next
path via the same process as the first one, even though a path exists? Lemma 24, which is based on additional prop-
erties established in Section 8.4, shows that subsequent paths do not use “half-eaten blossoms.” Indeed, the proce-
dure RECURSIVE REMOVE will remove all of them. Hence, subsequent paths are found in the same way as the
first one.

10. Discussion
Matching is one of the “big three” problems in combinatorial optimization along with linear programming and
flow. Spectacular progress in this field has led to improved running times of the last two as well as other fundamen-
tal problems in the last three decades (e.g., see Schrijver [29] as well as recent papers). Recent improvements in flow
algorithms have also led to improved running times for the maximum matching problem in bipartite graphs:
O(m10=7) (Madry [23]), O(m4=3) (Liu and Sidford [21]), and Õ(m+ n1:5) (van den Brand et al. [33]). Very recently, an
almost linear time O(m1+o(1)) algorithm was obtained (Chen et al. [3]); however, it is currently unclear if this theoret-
ical running time translates into very fast implementations for use in practice. A concerted effort has been made to
improve the running time for general graph matching as well, but so far, the MV algorithm has stood the test of
time.

As is well known, the general graph matching problem has numerous applications. We single out a particularly
interesting and important one—to the kidney exchange matching market, which was first studied in Roth et al. [28];
see also the scientific background (Economic Sciences Prize Committee of the Royal Swedish Academy of Sciences
[6]) for the 2012 Nobel Prize in Economics awarded to Alvin Roth and Lloyd Shapley.

Assume that agent A requires a kidney transplant and that agent B has agreed to donate one of her kidneys to A;
however, their kidney types are not compatible. Assume further that (A′, B′) is another pair of people with an
incompatibility. If it turns out that (A, B′) and (A′, B) are both compatible pairs, then let us say that the two pairs are
consistent; if so, both transplants can be performed.

Next, assume that a number of incompatible pairs are specified, (A1, B1), : : : , (An, Bn), and for every two pairs, we
know whether they are consistent. Then, the rudimentary problem25 of finding the maximum number of disjoint
consistent pairs reduces to maximum matching as follows. Let G � (V, E) be a graph with V � {v1, : : : , vn}, where vi
represents the pair (Ai, Bi) and (vi, vj) ∈ E if and only if the two pairs (Ai, Bi) and (Aj, Bj) are consistent. Clearly, a max-
imum matching in G will yield the answer.

In addition to the profound influence that matching has had on the theory of algorithms (see Section 1), it has
also played a significant role in game theory and economics; we describe this next. The matching game forms one
of the cornerstones of cooperative game theory (e.g., see Moulin [25]), and its special case, the assignment game,
forms a paradigmatic setting for studying the quintessential solution concept of the core26 of a game (Shapley and
Shubik [30]).

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 37

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Several matching-based problems form essential ingredients in the area of online and matching-based market
design. Besides the application of general graph matching to kidney exchange (described here), two other variants
of matching, namely stable matching (Gale and Shapley [13]) and online bipartite matching (Karp et al. [18]), lie at
the core of this area (e.g., see Echenique et al. [5]). The seminal 1962 paper of Gale and Shapley [13], on stable match-
ing initiated this area. With the advent of the internet and mobile computing, it underwent a resurgence, leading to
the launching of highly impactful new matching markets (e.g., the digital ads marketplaces, Uber, Lyft, Airbnb,
Upwork, and Match.com). The online bipartite matching problem has emerged as a paradigm for this area because
of the online decision-making feature of these marketplaces.

Finally, here is an open question. Is there a linear time implementation of a phase of MV on the pointer model?
Remark 9 states the approach mentioned in Micali and Vazirani [24] for addressing this question. The following
approach may be easier. Is it the case that the MV algorithm, implemented using the set union algorithm of Tarjan
[31], actually runs in linear time per phase? The running time of O(m

ffiffiffi
n
√
·α(m, n)), reported in Theorem 8, is based

on imprecise assumptions that the number of calls to this data structure is O(m) and that the number of elements
manipulated is O(n). More precise bounds on these two quantities are the number of calls to DDFS (i.e., the number
of bridges of eligible tenacity) and the number of buds of petals,27 respectively. Using these facts and structural
properties established in this paper, can one show that the total time devoted to set union in a phase is bounded by
O(m)?

Acknowledgments
The author thanks Rohith Gangam and Ruta Mehta for diligently helping to verify this proof and Silvio Micali for embarking
on a year-long journey that led to the discovery of this algorithm. The author also thanks the two referees for providing
in-depth critiques of this paper, covering all aspects of the exposition and the proof.

Endnotes
1 Section 10 puts this fact in context by comparing with recent improvements in running times of other combinatorial optimization problems.
2 For ease of comparison of the pseudocode given in Micali and Vazirani [24] with the description of the algorithm presented in the current
paper, we note that a key algorithmic structure, called “petal” in the current paper, was called “blossom” in Micali and Vazirani [24].
3 See Section 1.2 for a definition.
4 Recall that the problem of finding long paths, such as Hamiltonian paths, is NP hard.
5 See Section 10 for the role played by matching in game theory and economics.
6 In a sense, the current proof owes its existence to a chance event: our attempt at simplifying the exposition of DDFS.
7 This viewpoint is not unreasonable (e.g., see Section 9.4).
8 As is standard, n denotes the number of vertices and m denotes the number of edges in the given graph.
9 Observe that either of the trees could have arrived at v first. This happens despite our convention that Cr keeps ahead of Cg; the reason is
that Cg may have used a long edge to arrive at v before Cr. In Figure 2, this happens when the two trees meet at vertex c.
10 Observe that if M � ∅, then any edge is an augmenting path of length 1.
11 This bridge is very unusual; on the one hand, neither endpoint of a bridge is a predecessor of the other, and on the other hand, in the case
of this bridge, one of its endpoints u � pred∗v, as per Definition 11.
12 Not every bridge will lead to the formation of a petal (e.g., see Example 10).
13 To avoid cluttering up Figure 10, only two vertices are pointing to the petal node.
14 It is possible that bud∗(r) � bud∗(g). This happens if the bridge (r, g) has empty support, and therefore, a new petal is not formed (e.g., see
Example 10).
15 In the language of Definition 23, p�1

2 is an even-level(b; v) path.
16 Observe that bud∗(w) right after DDFS is performed on bridge (c, d) is b.
17 Again, in the language of Definition 23, this is an even-level(a; w) path.
18 For this notion, see Definition 7.
19 For clarity, in subsequent cases, we will describe the path constructed in plain English as follows. Follow q to b, then s to y, then the red
path to v, where s is an even-level(b; y) path.
20 See Definition 18.
21 Note that Bb, t, namely a blossom of tenacity t and base b, is defined in Definition 31 after proving statement 2 of Theorem 3.
22 Observe that the conclusion of Remark 7 does not apply here.
23 The latter case happens if even level(u) � i and v has been reached earlier in this search level while searching along an edge (u′, v) with
even level(u′) � i.
24 If tenacity(v) < t, v would have already been assigned to a petal, and the current DDFS would skip it.

Vazirani: A Theory of Alternating Paths and Blossoms
38 Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

25 Solution concepts proposed by economists are more involved, taking into account issues such as incentive compatibility, more general
exchanges, etc.; see Echenique et al. [5].
26 The recent paper by Vazirani [35] rectifies the fact that the core of the general graph matching game is empty via the notion of an approxi-
mate core.
27 Observe that it suffices to maintain the set union structure over the set of buds of petals only. If during DDFS, a vertex v, in a previously
constructed petal, is encountered, then the algorithm will follow pointers from v to its petal node to bud(v). Next, the set union algorithm
will find bud∗(v). The work done to go from v to bud(v) is charged to the edge that led to v, and the rest of the work is charged to the set
union algorithm.

References
0[1] Ahuja RK, Magnanti TL, Orlin JB (1995) Network Flows: Theory, Algorithms and Applications (Prentice Hall, Hoboken, NJ).
0[2] Berge C (1957) Two theorems in graph theory. Proc. Natl. Acad. Sci. USA 43(9):842–844.
0[3] Chen L, Kyng R, Liu YP, Peng R, Gutenberg MP, Sachdeva S (2022) Maximum flow and minimum-cost flow in almost-linear time. 2022 IEEE

63rd Annual Sympos. Foundations Comput. Sci. (FOCS) (IEEE, Piscataway, NJ), 612–623.
0[4] Dinitz EA (1970) Algorithm for solution of a problem of maximum flow in networks with power estimation. Soviet Math. Doklady 11:

1277–1280.
0[5] Echenique F, Immorlica N, Vazirani VV, eds. (2023) Online and Matching-Based Market Design (Cambridge University Press, Cambridge, UK).
0[6] Economic Sciences Prize Committee of the Royal Swedish Academy of Sciences (2012) Stable allocations and the practice of market design.

Accessed June 24, 2020, https://www.nobelprize.org/uploads/2018/06/advanced-economicsciences2012.pdf.
0[7] Edmonds J (1965) Maximum matching and a polyhedron with 0,1-vertices. J. Res. National Bureau Standards B 69B:125–130.
0[8] Edmonds J (1965) Paths, trees, and flowers. Canadian J. Math. 17(3):449–467.
0[9] Even S, Kariv O (1975) An O(n2:5) algorithm for maximum matching in general graphs. 16th Annual Sympos. Foundations Comput. Sci. (IEEE

Computer Society, Piscataway, NJ), 100–112.
[10] Gabow HN (2017) The weighted matching approach to maximum cardinality matching. Fundamenta Informaticae 154(1–4):109–130.
[11] Gabow HN, Tarjan RE (1985) A linear-time algorithm for a special case of disjoint set union. J. Comput. System Sci. 30:209–221.
[12] Gabow HN, Tarjan RE (1991) Faster scaling algorithms for general graph matching problems. J. ACM 38:815–853.
[13] Gale D, Shapley LS (1962) College admissions and the stability of marriage. Amer. Math. Monthly 69(1):9–15.
[14] Goldberg AV, Karzanov AV (2004) Maximum skew-symmetric flows and matchings. Math. Programming Ser. A 100:537–568.
[15] Hopcroft J, Karp RM (1973) An n5=2 algorithm for maximum matching in bipartite graphs. SIAM J. Comput. 2:225–231.
[16] Jerrum MR, Sinclair A (1989) Approximating the permanent. SIAM J. Comput. 18:1149–1178.
[17] Jerrum MR, Valiant LG, Vazirani VV (1986) Random generation of combinatorial structures from a uniform distribution. Theoret. Comput.

Sci. 43:169–188.
[18] Karp RM, Vazirani UV, Vazirani VV (1990) An optimal algorithm for on-line bipartite matching. Proc. Twenty-Second Annual ACM Sympos.

Theory Comput. (Association for Computing Machinery, New York), 352–358.
[19] Karzanov AV (1973) An exact estimate of an algorithm for finding a maximum flow, applied to the problem on representatives. Problems

Cybernetics Seminar Combinatorial Math. (Sovetskoe Radio, Moscow), 66–70.
[20] Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res. Logist. Quart. 2:83–97.
[21] Liu YP, Sidford A (2020) Faster energy maximization for faster maximum flow. Proc. 52nd Annual ACM SIGACT Sympos. Theory Comput.

(Association for Computing Machinery, New York), 803–814.
[22] Lovász L, Plummer MD (1986) Matching Theory (North-Holland, Amsterdam).
[23] Madry A (2013) Navigating central path with electrical flows: From flows to matchings, and back. 2013 IEEE 54th Annual Sympos. Foundations

Comput. Sci. (FOCS) (IEEE, Piscataway, NJ), 253–262.
[24] Micali S, Vazirani VV (1980) An O(

ffiffiffiffi
V
√

E) algorithm for finding maximum matching in general graphs. 21st Annual Sympos. Foundations Com-
put. Sci. (IEEE, Piscataway, NJ), 17–27.

[25] Moulin H (2014) Cooperative Microeconomics: A Game-Theoretic Introduction, vol. 313 (Princeton University Press, Princeton, NJ).
[26] Mucha M, Sankowski P (2004) Maximum matchings via Gaussian elimination. 45th Annual IEEE Sympos. Foundations Comput. Sci. (IEEE,

Piscataway, NJ), 248–255.
[27] Mulmuley K, Vazirani UV, Vazirani VV (1987) Matching is as easy as matrix inversion. Combinatorica 7(1):105–113.
[28] Roth AE, Sönmez T, Ünver MU (2005) Pairwise kidney exchange. J. Econom. Theory 125(2):151–188.
[29] Schrijver A (1986) Theory of Linear and Integer Programming (John Wiley & Sons, New York).
[30] Shapley LS, Shubik M (1971) The assignment game I: The core. Internat. J. Game Theory 1(1):111–130.
[31] Tarjan RE (1975) Efficiency of a good but not linear set union algorithm. J. ACM 22:215–225.
[32] Valiant LG (1979) The complexity of computing the permanent. Theoret. Comput. Sci. 8:189–201.
[33] van den Brand J, Lee Y-T, Nanongkai D, Peng R, Saranurak T, Sidford A, Song Z, Wang D (2020) Bipartite matching in nearly-linear time on

moderately dense graphs. 2020 IEEE 61st Annual Sympos. Foundations Comput. Sci. (FOCS) (IEEE, Piscataway, NJ), 919–930.
[34] Vazirani VV (1994) A theory of alternating paths and blossoms for proving correctness of the O(

ffiffiffiffi
V
√

E) general graph maximum matching
algorithm. Combinatorica 14(1):71–109.

[35] Vazirani VV (2022) The general graph matching game: Approximate core. Games Econom. Behav. 132:478–486.
[36] Wikipedia (2023) Harold W. Kuhn. Accessed August 7, 2018, https://en.wikipedia.org/wiki/Harold_W._Kuhn.
[37] Wikipedia (2023) Isolation lemma. Accessed August 7, 2018, https://en.wikipedia.org/wiki/Isolation_lemma.

Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research, Articles in Advance, pp. 1–39, © 2024 INFORMS 39

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:8
80

2:
29

11
:6

20
0:

ad
2b

:e
aa

f:
89

22
:9

74
]

on
 0

7
M

ay
 2

02
4,

 a
t 1

5:
31

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

https://www.nobelprize.org/uploads/2018/06/advanced-economicsciences2012.pdf
https://en.wikipedia.org/wiki/Harold_W._Kuhn
https://en.wikipedia.org/wiki/Isolation_lemma

	A Theory of Alternating Paths and Blossoms from thePerspective of Minimum Length
	Introduction
	DDFS
	Elementary Definitions and a Fundamental Notion
	Some Essential Definitions
	A Description of the MV Algorithm
	Relationship Between the Tenacity of an Edge and Tenacities of Its Endpoints
	Limited BFS Honesty
	Base, Blossom, and Bridge
	Proof of Correctness and a Postmortem
	Discussion

