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The Notion of a Rational Convex Program, and an Algorithm
for the Arrow-Debreu Nash Bargaining Game

VIJAY V. VAZIRANI, Georgia Institute of Technology

We introduce the notion of a rational convex program (RCP) and we classify the known RCPs into two classes:
quadratic and logarithmic. The importance of rationality is that it opens up the possibility of computing an
optimal solution to the program via an algorithm that is either combinatorial or uses an LP-oracle. Next, we
define a new Nash bargaining game, called ADNB, which is derived from the linear case of the Arrow-Debreu
market model. We show that the convex program for ADNB is a logarithmic RCP, but unlike other known
members of this class, it is nontotal.

Our main result is a combinatorial, polynomial-time algorithm for ADNB. It turns out that the reason for
infeasibility of logarithmic RCPs is quite different from that for LPs and quadratic RCPs. We believe that
our ideas for surmounting the new difficulties will be useful for dealing with other nontotal RCPs as well. We
give an application of our combinatorial algorithm for ADNB to an important “fair” throughput allocation
problem on a wireless channel. Finally, we present a number of interesting questions that the new notion of
RCP raises.
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1. INTRODUCTION

Nash bargaining [Nash 1950] is a central solution concept within game theory for “fair”
allocation of utility among competing players in the presence of complete information;
it has numerous applications and a large following, for example, see Kalai [1985],
Thomson and Lensberg [1989], and Osborne and Rubinstein [1994]. In this paper,
we define a very general Nash bargaining game, which is derived from the linear
case of the Arrow-Debreu market model. The setup is the same as this model, but
instead of resorting to the solution concept of a market equilibrium for reallocating
goods among the agents, we resort to the Nash bargaining solution. We call this game
the Arrow-Debreu Nash Bargaining Game, abbreviated ADNB. Our main result is a
combinatorial,1 polynomial-time algorithm for ADNB.

1In this article, we will use combinatorial in the same sense as in Schrijver [2003] (Volume A, page 1); such
algorithms do not assume access to an LP or convex program solver.
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7:2 V. V. Vazirani

The solution to a Nash bargaining game is obtained by maximizing a concave function
over a convex set, that is, it is the solution to a convex program. It turns out that the
convex program for ADNB has special structural properties that makes possible such
an algorithm. In this article, we explain these properties in a larger context so as to
point out the novelty and significance of deriving such an algorithm for ADNB.

1.1. Rational Convex Programs

The central problems of the field of combinatorial optimization, such as matching,
flow and minimum spanning tree, share the feature that they possess LP-relaxations
that always have integral optimal solutions. Let us call such an LP an integral linear
program (ILP). In a sense, the solution produced by an ILP is qualitatively “better” than
that produced by an arbitrary LP; in fact, it is similar in quality to the solution produced
by an linear integer program. When LP solvers were not fast enough, this feature was
not directly useful, and it made sense to seek efficient combinatorial algorithms for
these problems. Now that LP-solvers have improved considerably, are combinatorial
algorithms relevant anymore? To answer this question, one only needs to consider
the highly acclaimed three-volume series, Combinatorial Optimization, published by
Schrijver a few years ago [Schrijver 2003].

The reason, of course, is that the design of these special-purpose algorithms, for indi-
vidual problems, have revealed a very rich theory that underlies not only combinatorics
but also the theory of algorithms. Indeed, as far as the latter field is concerned, some
of its formative and most fundamental notions, such as polynomial-time solvability
[Edmonds 1965], were conceived within combinatorial optimization. Additionally, over
the years, ideas and notions developed within combinatorial optimization have helped
spawn off new algorithmic areas such as approximation algorithms and parallel
algorithms.

In the first part of this article, we introduce the notion of a rational convex program
(RCP)—a nonlinear convex program that always has a rational optimal solution (see
Section 2 for a formal definition). Again, the solution produced by an RCP is quali-
tatively “better” than that produced by an arbitrary convex program, and is like that
produced by an LP. A convex program solver, based on either the ellipsoid algorithm
or interior point methods [Grotschel et al. 1988], can find an optimal solution to such
a program in polynomial time; however, at present, convex program solvers are con-
siderably slower than LP-solvers and are practical only for small instance sizes, for
example, see the benchmarks in Mittlemann. Besides issues of efficiency, we claim
that it will be a mistake if we do not explore RCPs further—indeed, we believe that
in many ways, the situation is similar to that of ILPs. In both cases, the existence of
much higher quality solution is indicative of combinatorial structure that can not only
lead to efficient algorithms but also deep insights that yield unexpected gains. We are
proposing the following two programs of study.

Program A. Design polynomial time (or better, strongly polynomial) combinatorial
algorithms that solve individual RCPs.

Program B. Design polynomial time (or better, strongly polynomial) algorithms that
solve individual RCPs, given an LP-oracle (each call counts as 1 step). Since LP-
solvers are much faster than convex program solvers, such algorithms may be
valuable in practice.

In Section 2, we formally define two classes of RCPs that have been studied so far.
Convex programs belonging to the first class, quadratic RCPs, are obviously rational
and have been studied for several decades. Although the first program belonging to
the second class, logarithmic RCPs, was discovered in 1956 [Eisenberg and Gale 1959],
the rest were found only in the last decade in the context of the fascinating question of
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understanding the computability of equilibria for various market models. Rationality
for programs in this class is not automatic and has to be established piecemeal.
Numerous open questions remain, not the least of which is to determine if there are
other classes of RCPs.

We show that the program corresponding to ADNB is a rational convex program
that lies in the second class. For our purposes, the novelty of this program lies in that
whereas the previously known candidates of this class were all total, that is, had finite
optimal solutions for each setting of the parameters, this program is nontotal. It turns
out that the reason for infeasibility of logarithmic RCPs is quite different from that for
LPs and quadratic RCPs. In the settings of ILPs and quadratic RCPs, the reason for
infeasibility is that the polytope defined by the constraints is empty, and it turns out
that designing a combinatorial algorithm for a nontotal problem has been found to be
no harder than that for a total problem.2 However, a logarithmic RCP can be infeasible
even though its polytope is guaranteed to be nonempty—the reason for infeasibility is
that at each point in the polytope, the objective function is undefined. This is the case
for ADNB.

1.2. A Combinatorial Algorithm for ADNB

In the second part of this article, we give a polynomial-time combinatorial algorithm
for ADNB. Consider the set of instances of ADNB in which the disagreement utility of
each agent is zero (see Section 3 for definitions and explanation). The convex programs
corresponding to this set of instances are precisely those arising for linear Fisher
markets in which each buyer has unit money. It is therefore natural that our algorithm
builds on the combinatorial algorithm for linear Fisher markets [Devanur et al. 2008].
The latter algorithm, which is based on the primal-dual paradigm, starts with low
prices that are guaranteed to be weakly dominated by equilibrium prices on each
component. Selling all goods at these prices leaves buyers with surplus money, in
general. The algorithm increases prices iteratively, in a principled manner, thereby
decreasing the surplus money of buyers. It terminates when the surplus is driven
down to zero. The notion of a balanced flow is used to establish polynomial running
time.

Using KKT conditions of the convex program of ADNB and interpreting dual vari-
ables as prices, we can reduce a given instance it to a new, natural market model,
which we call flexible budget market. This model differs from the linear Fisher market
in the following ways: whereas the latter market always has an equilibrium, the former
doesn’t, and whereas in the latter market, each buyer has a fixed amount of money, in
the former, the money of each buyer is a function (increasing) of the prices of goods. We
note that in both these market models, equilibrium prices are unique. Now, it suffices
to check if the reduced market instance has an equilibrium, that is, is feasible, and if
so find an equilibrium. This leads to the first new issue to be dealt with.

First Difficulty. Determine if the given instance is feasible.
Our algorithm consists of two stages. Stage I starts with prices that are weakly

dominated by equilibrium prices and it terminates with prices that help establish fea-
sibility or infeasibility of the given instance; if feasible, Stage II computes equilibrium
prices. The second stage is similar to the DPSV algorithm: it also systematically raises
prices until the surplus is driven down to zero and it also uses balanced flow. The new
difficulty in implementing this idea comes from the following fact. In a flexible budget
market, the money of each buyer is an increasing function of the prices of goods. Hence,

2As an example, recall algorithms for finding a maximum weight perfect matching (a nontotal problem) and
a maximum weight matching (a total problem) in a bipartite graph.
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7:4 V. V. Vazirani

as the algorithm raises prices of goods, the money of buyers also increases – as a result,
the surplus money of a buyer is not guaranteed to decrease!

Second Difficulty. Ensure polynomial time termination of Stage II, even though the
algorithm is “chasing a moving target.”

1.3. Algorithmic Contributions

We now give a high-level description of ideas needed to deal with the two difficulties.
For the first one, we give an LP that determines feasibility and we use its dual to prove,
in the Main Lemma, Lemma 8.3, that nonzero prices such that the total surplus of all
buyers is at least n−ε, for a suitable ε, yield a proof that the given instance is infeasible;
here n is the total number of buyers. On the other hand, prices such that the surplus of
each buyer is less than 1 yield a proof of feasibility. In order to ensure polynomial time
termination of Stage I, it is essential to ensure that ε is at least inverse exponential –
our proof of rationality of the convex program for ADNB yields this bound.

Now, the ostensible goal of Stage I is to arrive at a proof of infeasibility. This requires
increasing the total surplus of buyers and this can be achieved by systematically de-
creasing prices. However, if the given instance is feasible, as Stage I proceeds, the low
surplus buyers will manage to “neutralize” the surplus of high surplus buyers and
eventually drive down the surplus of each buyer to less than 1, hence giving a proof of
feasibility. The exact mechanism is quite intricate and making it work in polynomial
time is challenging—it requires using balanced flow in a different manner than in
Devanur et al. [2008] or in our Stage II. In particular, the potential function used for
showing polynomial time termination of Stage I does not have a fixed number of terms
(see Section 11.1). Observe that unlike Stage II, which monotonically increases prices,
Stage I decreases prices, even though current prices are dominated by equilibrium
prices (if the instance is feasible). We believe that some of these ideas will be useful for
dealing with other nontotal RCPs as well.

For dealing with the second difficulty, we prove that if Stage II is started with prices
satisfying the feasibility condition stated above, then as prices are increased, the money
of buyers increases slowly enough that the surplus keeps decreasing. We then give a
potential function argument to show that the surplus must drop to zero in polynomial
time.

An obvious question is the following. Is Stage I really needed? Why not simply
run Stage II and if it fails to give a solution, we would realize that the instance is
infeasible. It turns out that if Stage II is run with arbitrary initial prices, it is not
guaranteed to terminate, even if the given instance is feasible. The reason lies in the
second difficulty—when started with arbitrary initial prices, as prices are increased,
the money of buyers may increase even faster, thereby increasing the surplus instead of
decreasing it. Thus Stage I is essential even for solving an instance that is guaranteed
to be feasible, that is, the promise problem.3

We note that Tseng and Bertsekas [2000] give a combinatorial algorithm for gener-
alized network flow problems under separable convex cost functions. It is easy to see
that ADNB can be cast in their framework; however, their algorithm does not run in
polynomial time and moreover it assumes a feasible solution to start off. On the other
hand, one of the main points of our algorithm is testing feasibility.

3Stage I can also be accomplished quite easily via the use of an LP-solver. Feasibility can be tested by solving
the LP (5), and one of the referees of this paper has given a clever LP that finds feasible prices as well, in
case the instance is feasile. However, our emphasis is not on a practical solution with commercial solvers but
rather on obtaining a fully combinatorial algorithm and studying the combinatorial aspects of the problem
in depth.
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2. RATIONAL CONVEX PROGRAMS

A nonlinear convex program is said to be rational if, for any setting of its parameters to
rational numbers such that it has a finite optimal solution, it admits an optimal solution
that is rational and can be written using polynomially many bits in the number of bits
needed to write all the parameters.4 We will abbreviate the name to RCP.

How is it that despite its nonlinearity, an RCP always has a rational optimal solution?
The answer lies in studying KKT conditions, which characterize optimality for a large
class of convex programs. For this purpose, consider the following general form of
a convex program, where f0, f1, . . . , fm are convex functions and the second set of
constraints are affine.

minimize f0(x) (1)
subject to ∀i, 1 ≤ i ≤ m : fi(x) ≤ 0

∀ j, 1 ≤ j ≤ p : ai
T x = bi

Clearly, the optimal solution must satisfy all the constraints. In addition, the KKT
conditions involve a equations containing partial derivatives of the objective. Hence,
one way of obtaining an RCP is to ensure that all constraints are linear and the
derivative of the objective can be written as a linear function. This gives two classes
of RCPs: quadratic and logarithmic. (Intuitively, the latter case works because the
derivative of logx is 1/x, and sometimes, we can replace 1/x by a new variable, say y.)
Are there more classes of RCPs? We leave this as an important open question.

Assume that in program (1), the functions f1, . . . , fm are all linear and that f0 is
the quadratic function xT Px + qT x. Now, f0 will be convex if and only if its Hessian,
∇2 f0 � 0, that is, if and only if P is a positive semidefinite matrix. If so, program (1) will
be an RCP. This gives us the class of quadratic RCPs. Such programs have numerous
important applications, such as constrained regression or constrained least-squares
(see Chapter 4 of Boyd and Vandenberghe [2004]) and there have been attempts at
designing efficient algorithms, for example, see Lobo et al. [2006] for special algorithms
for portfolio optimization.

Next, assume that in program (1), the functions f1, . . . , fm are all linear and that f0
is the logarithmic function

f0(x) = −
n∑

i=1

ci log gi(x),

where g1, . . . , gn are linear functions and ci ’s are constants. Clearly, this is a convex pro-
gram; however, it is not always rational. For specific choices of the functions f1, . . . , fm
and g1, . . . , gn, it turns out to be an RCP, and this needs to be established piecemeal. One
such proof of rationality is provided in Theorem 4.1. We will call this class logarithmic
RCPs.

The following strongly polynomial algorithms, under Program A, have been given
for solving specific quadratic RCPs. To the best of our knowledge, the first such result
was due to Helgason et al. [1980], who gave an algorithm for the very special case of
a single equality constraint

∑
j x j = c, together with nonnegativity and upper bounds

on the xj ’s. Minoux [1984] extended to minimum quadratic cost flow problems. Frank
and Karzanov [1992] solved the problem of finding the closest point, from the origin, to
the perfect matching polytope of a given bipartite graph. Hochbaum and Shantikumar

4Strictly speaking, a more general definition is called for which considers a countably infinite set of “well-
formed” convex programs, and this definition can be made precise by assuming a polynomial-time procedure
that determines whether a given program is “well formed”. We have avoided this level of generality for the
sake of simplicity; however, the reader should be able to easily reconstruct it.
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7:6 V. V. Vazirani

[1990] and Karzanov and McCormick [1997] generalized all the previous problems by
solving the problem of minimizing an arbitrary quadratic function subject to the sys-
tem Ax = 0, where A is an arbitrary totally unimodular matrix. An arbitrary quadratic
RCP can be solved in polynomial time by using an LP-oracle, that is, Program B, using
an idea of Ben-Tal and Nemirovski [2001], given in the context of polyhedral approxi-
mations of the second order cone. This idea shows how to write a (weakly) polynomially
long LP whose optimal solution gives an answer to the given instance. Obtaining a
strongly polynomial algorithm, which uses an LP oracle, remains an important open
question.

For solving specific logarithmic RCPs, the following polynomial algorithms, under
Program A, have been given. The Eisenberg-Gale program, which captures equilibrium
for linear Fisher markets is solved in Devanur et al. [2008] and a strongly polynomial
algorithm was given by Orlin [2010]. Other Fisher markets include utility functions
defined via combinatorial problems [Jain and Vazirani 2008], including some in Kelly’s
[Kelly 1997] resource allocation model, spending constraint utilities [Vazirani 2010;
Birnbaum et al. 2010], and piecewise-linear concave utilities in a market model that al-
lows for perfect price discrimination [Goel and Vazirani 2011]. The following papers give
algorithms using an LP-oracle, that is, Program B: Eisenberg-Gale markets with 2 buy-
ers [Chakrabarty et al. 2010] and Nash bargaining games with 2 agents [Vazirani 2012].

As in the case of ILPs, insights gained from combinatorial algorithms for RCPs
have also led to major progress—this includes definitions of several of the models and
RCPs described in the previous paragraph. As another instance, the recent proof of
membership in PPAD of markets under piecewise-linear concave utilities [Vazirani and
Yannakakis 2011] followed from a new, combinatorial way of characterizing equilibria
[Devanur et al. 2008] and helped settle, together with Chen et al. [2009] and Chen and
Teng [2009], the long-standing open problem of determining the exact complexity of
this key market model.

Combinatorial algorithms also have several advantages over continuous algorithms
in applications. For instance, recently Nisan et al. [2009] faced with the problem of
designing an auction system for Google for TV ads, converged to a market equilibrium
based method, after exploring several different options. As stated by Nisan [2009],
the actual implementation of this algorithm was inspired by combinatorial market
equilibrium algorithms, which in turn solve convex programs combinatorially. Indeed,
the easy adaptability of combinatorial algorithms to the special idiosyncrasies of an
application often makes them the preferred method. In Section 5, we present an appli-
cation of our combinatorial algorithm for ADNB to a throughput allocation problem on
a wireless channel.

3. NASH BARGAINING GAMES

An n-person Nash bargaining game consists of a pair (N , c), whereN ⊆ Rn
+ is a compact,

convex set and c ∈ N . Set N is the feasible set and its elements give utilities that the
n players can simultaneously accrue. Point c is the disagreement point—it gives the
utilities that the n players obtain if they decide not to cooperate. The set of n agents
will be denoted by B and the agents will be numbered 1, 2, . . . n. Game (N , c) is said to
be feasible if there is a point v ∈ N such that ∀i ∈ B, vi > ci, and infeasible otherwise.

The solution to a feasible game is the point v ∈ N that satisfies the following four
axioms.

(1) Pareto Optimality. No point in N can weakly dominate v.
(2) Invariance under Affine Transformations of Utilities. If the utilities of any player

are redefined by multiplying by a scalar and adding a constant, then the solution
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to the transformed game is obtained by applying these operations to the particular
coordinate of v.

(3) Symmetry. If the players are renumbered, then it suffices to renumber the coordi-
nates of v accordingly.

(4) Independence of Irrelevant Alternatives. If v is the solution for (N , c), and S ⊆ Rn
+

is a compact, convex set satisfying c ∈ S and v ∈ S ⊆ N , then v is also the solution
for (S, c).

Via an elegant proof, Nash proved:

THEOREM 3.1 [NASH 1950]. If game (N , c) is feasible, then there is a unique point in
N satisfying the axioms stated previously. This is also the unique point that maximizes
�i∈B(vi − ci), over all v ∈ N .

Most papers in game theory assume that the given Nash bargaining game (N , c) is
feasible. However, in this article, it will be more natural to not make this assumption
and to determine this fact algorithmically. Henceforth, we will drop the assumption
that the given game is feasible.

Thus, Nash’s solution to his bargaining game involves maximizing a concave function
over a convex domain, and is therefore the optimal solution to the following convex
program.

maximize
∑
i∈B

log(vi − ci) (2)

subject to v ∈ N .

As a consequence, if for a specific game, a separation oracle can be implemented in
polynomial time, then using the ellipsoid algorithm one can get as good an approxima-
tion to the solution of this convex program as desired in time polynomial in the number
of bits of accuracy needed [Grotschel et al. 1988].

4. THE GAME ADNB

The game ADNB, short for Arrow-Debreu Nash Bargaining game, is derived from the
linear case of the Arrow-Debreu model.

We first state formally the linear case of the Arrow-Debreu model. Let B =
{1, 2, . . . , n} be a set of agents and G = {1, 2, . . . , g} be a set of divisible goods. We
will assume without loss of generality, that there is a unit amount of each good. Let
uij be the utility derived by agent i on receiving one unit of good j. We will assume
that uij is integral; this is without loss of generality, for proving existence of a polyno-
mial time algorithm since multiplying all utilities by the least common multiple of the
denominators leaves the problem unchanged and preserves polynomial running time.
If xij is the amount of good j that agent i gets, for 1 ≤ j ≤ g, then she derives total
utility

vi(x) =
∑
j∈G

uij xij .

Finally, we assume that each agent has an initial endowment of these goods; for each
good, the total amount possessed by the agents is 1 unit.

Without loss of generality, we may assume that each good is desired by at least one
agent and each agent desires at least one good, that is,

∀ j ∈ G, ∃i ∈ B : uij > 0 and ∀i ∈ B, ∃ j ∈ G : uij > 0.

If not, we can remove the good or the agent from consideration.
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7:8 V. V. Vazirani

The question is to find prices for these goods so that if each agent sells her entire
initial endowment at these prices and uses the money to buy an optimal bundle of
goods, the market clears exactly, that is, there is no deficiency or surplus of any good.
Such prices are called equilibrium prices.

The Arrow–Debreu market model gives one mechanism by which the agents can
redistribute goods to achieve higher utilities. Another mechanism is to view this setup
as a Nash bargaining game as follows. For each i ∈ B, let ci denote the utility derived
by agent i from her initial endowment; again, without loss of generality, we will assume
that ci is integral. Regard this as agent i’s disagreement utility and redistribute the
goods in accordance with the Nash bargaining solution.

We next define the Arrow-Debreu Nash Bargaining game. The setup is different from
above only in that in the given instance, instead of initial endowments of agents, we
are specified disagreement utilities, cis, which are arbitrary non-negative numbers.
The Nash bargaining solution to this instance is the optimal solution to the following
convex program:

maximize
∑
i∈B

log(vi − ci) (3)

subject to ∀i ∈ B : vi =
∑
j∈G

uij xij

∀ j ∈ G :
∑
i∈B

xij ≤ 1

∀i ∈ B, ∀ j ∈ G : xij ≥ 0.

Let pj be the Lagrange variable corresponding to the inequality constraint in this
program. Note that since the objective is strictly concave, the dual p will be unique.
The KKT conditions for this program are:

(1) ∀ j ∈ G : pj ≥ 0.
(2) ∀ j ∈ G : pj > 0 ⇒ ∑

i∈B xij = 1.
(3) ∀i ∈ B, ∀ j ∈ G : pj ≥ uij/(vi − ci).
(4) ∀i ∈ B, ∀ j ∈ G : xij > 0 ⇒pj = uij/(vi − ci).

THEOREM 4.1. Program (3) is a rational convex program. Moreover, if it is feasible,
then the dual solution is unique.

PROOF. We will show that there is a exponential family of LPs, each with rational
parameters, one of which provide the solution to program (3); hence, the solution is
rational and can be written using polynomially many bits. Observe that this argument
will also show that the feasibility problem lies in the class NP.

Guess the xij ’s that are non-zero in the optimal solution to program (3). By the
assumption made on the instance, each pj will be positive. Each guess will give one LP:
The variables of the LP will be the non-zero xij ’s and for each good j, a new variable
qj , which is supposed to represent 1/pj . The LP will have the following constraints:
for each qj , there is one equation corresponding to the KKT condition (2), and for each
nonzero xij there is one equation corresponding to the KKT condition (4). In addition,
the LP has inequality constraints corresponding to KKT condition (3), for each i ∈ Band
j ∈ G. In all these constraints, vi is replaced by

∑
j∈G uij xij . Finally, it has nonnegativity

constraints for all xij ’s and qj ’s. It is easy to check that all constraints are linear.
Since program (3) is feasible, so is the LP corresponding to the correct guess and yield

an optimal solution to program (3). Strict concavity of the objective function of program
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(3) implies that the optimal values of vi ’s is unique. Now, using the KKT condition (4),
we get the uniqueness of pj ’s as well.

Theorem 4.1 establishes “granularity” in ADNB, which is crucial for establishing
an upper bound on the running time of our algorithm. For this purpose, we give the
following crucial definition.

Definition. Let us define μ to be an upper bound on the largest denominator that can
arise in the rational solution to program (3). Define U = maxi∈B, j∈G{uij}. By the proof
of Theorem 4.1, μ ≤ U g(n+1).

5. AN APPLICATION TO THROUGHPUT ALLOCATION ON A WIRELESS CHANNEL

A central throughput allocation problem arising in the context of a wireless channel,
such as in 3G technologies, is the following. There are n users 1, 2, . . . , n, and the
wireless router can be in any of m different states 1, 2, . . . , m whose probabilities, π ( j),
can be estimated by sampling. Each user i derives utility at rate uij if it is connected
to the router while the router is in state j; the uij ’s are known. No matter what state
the router is in, only one user can be connected to it. If user i is given connection for
xij ≤ π ( j) of the time the router is in state j, for 1 ≤ j ≤ m, then the total utility derived
by i is vi = ∑m

j=1 uij xij . Clearly, we must ensure the constraint
∑n

i=1 xij ≤ π ( j), for each
j. The question is to find a “fair” way of dividing the π ( j)’s among the users.

The method of choice in the networking community is to use Kelly’s proportional
fair scheme [Kelly 1997], which entails maximizing

∑
i log vi subject to the constraints

given previously, that is, solving the Eisenberg–Gale convex program [Eisenberg and
Gale 1959]. Observe that this setting can be viewed as a linear Fisher market with n
users and mdivisible goods. An elegant gradient descent algorithm for solving this con-
vex program, given by David Tse [Tse] (see also Jalali et al. [2000]), was implemented
by Qualcomm in their chip sets and is used by numerous 3G wireless base stations [M.
Andrews, Personal communication]. However, this solution may at times allocate un-
acceptably low utility to certain users. This was countered by giving users the ability to
put a lower bound on channel rates, say ci for user i. This enhanced problem was solved
by changing the objective function of the convex program to maximizing

∑
i log(vi − ci);

observe that this is precisely an instance of ADNB! However, now the gradient descent
implementation ran into problems of instability, since it involved computing uij/(v′

i −ci),
where v′

i is the current estimate of vi; at intermediate points, the denominator may be
too small or even negative.

A different solution, proposed and implemented by researchers at Lucent [Andrews
et al. 2005], was to introduce the constraints vi > ci in the Eisenberg–Gale program
itself. The fairness guarantee achieved by this solution is unclear. Additionally, de-
termining feasibility of the convex program now became a major issue [M. Andrews
Personal communication]. Instead, we have proposed experimenting with a heuristic
adaptation of our combinatorial algorithm for ADNB, which will not have stability
issues. As reported in the FOCS 2002 version of Devanur et al. [2008], an analogous
heuristic adaptation of the DPSV algorithm was found to perform well on fairly large-
sized linear Fisher instances.

6. FISHER’S MODEL AND ITS EXTENSION VIA FLEXIBLE BUDGETS

First, we specify Fisher’s market model for the case of linear utilities [Brainard and
Scarf 2000]. Consider a market consisting of a set of n buyers B = {1, 2, . . . , n}, and a
set of g divisible goods, G = {1, 2, . . . , g}; we may assume without loss of generality that
there is a unit amount of each good. Let mi be the money possessed by buyer i, i ∈ B.
Let uij be the utility derived by buyer i on receiving one unit of good j. Thus, if xij is
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the amount of good j that buyer i gets, for 1 ≤ j ≤ g, then the total utility derived by i
is

vi(x) =
g∑

j=1

uij xij .

The problem is to find prices p = {p1, p2, . . . , pg} for the goods so that when each
buyer is given her utility maximizing bundle of goods, the market clears, that is, each
good having a positive price is exactly sold, without there being any deficiency or
surplus. Such prices are called market clearing prices or equilibrium prices.

The following is the Eisenberg–Gale convex program. Using the KKT conditions,
one can show that its optimal solution is an equilibrium allocation for Fisher’s linear
market and the Lagrange variables corresponding to the inequalities give equilibrium
prices for the goods (e.g., see Theorem 5.1 in Vazirani [2007]).

maximize
∑
i∈B

mi log vi (4)

subject to ∀i ∈ B : vi =
∑
j∈G

uij xij

∀ j ∈ G :
∑
i∈B

xij ≤ 1

∀i ∈ B, ∀ j ∈ G : xij ≥ 0

Next, we introduce a flexible budget market as a modification of Fisher’s linear case;
this market will be used for solving ADNB. The utility functions of buyers are as before.
The two main differences are that each buyer i now has a parameter ci giving a strict
lower bound on the amount of utility she wants to derive, and buyers do not come to the
market with a fixed amount of money, but instead the money they spend is a function
of prices of goods in the following manner.

Let us convince the reader that the notion of a flexible budget market is a natural
one. Suppose the goods are different foods uij represents the number of calories agent
i derives from 1 unit of good j. Assume that ci is a strict lower bound on the total
number of calories agent i wants from her bundle. To achieve this, she is willing to
spend 1 dollar more than the minimum money needed to get ci calories. The problem
is to find prices such that the market clears. Clearly, this is a flexible budget market.

Definition. Given prices p for the goods, define the maximum bang-per-buck of buyer
i to be

γ i = maxj

{
uij

pj

}
.

We will say that set Si = argmax j{uij/pj} constitutes i’s maximum bang-per-buck
goods. Now, buyer i’s money is defined to be mi = 1 + (ci/γ i). We will denote ci/γ i by αi.

Clearly, at prices p, any utility maximizing bundle of goods for i will consist of goods
from Si costing mi money. Again the problem is to find market clearing or equilibrium
prices. Observe that in an equilibrium, if it exists, each buyer i will derive utility
exceeding ci.

6.1. The Reduction

An instance I of ADNB is transformed to a flexible budget market M as stated
previously.
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THEOREM 6.1. Instance I of ADNB is feasible if and only if there is a feasible solution
for the corresponding flexible budget market. Moreover, if I and M are both feasible,
then allocations x and dual p are optimal for I if and only if they are equilibrium
allocations and prices for the flexible budget market M.

PROOF. We will use the fact that since convex program (3) has a concave objective and
linear constraints, the KKT conditions are both necessary and sufficient for optimality.

(⇒) First assume that I is feasible and that allocations x and dual pare optimal for
ADNB game I. Then I must satisfy the KKT conditions for convex program (3).

By the second KKT condition, each good having a positive price is fully sold. Assume
that xij > 0. Then, by the definition of γ i and the fourth KKT condition,

γ i = uij

pj
= vi − ci.

The money of buyer i at prices p in market M is defined to be mi = 1 + ci/γ i. The
money spent by i in market M is:∑

j∈G

xij pj =
∑
j∈G

xijuij

γ i

= 1
vi − ci

∑
j∈G

xijuij

= vi

vi − ci

= 1 + ci

vi − ci

= 1 + ci

γ i
= mi.

Furthermore, by the third and fourth KKT conditions, i buys only her maximum
bang-per-buck objects, thereby getting an optimal bundle. This proves that x and p
constitute equilibrium allocations and prices for market M.

(⇐) Next, assume that M is feasible and that x and p are equilibrium allocations
and prices for market M. Now, x is clearly feasible for program (3); we will show that
x and p satisfy all the KKT conditions for this program. The first two conditions are
obvious.

Since i gets an optimal bundle of objects at prices p,

xij > 0 ⇒ uij

pj
= γ i.

Since i spends all her money,

mi = 1 + ci

γ i
=

∑
j∈G

xij pj =
∑
k∈Ti

xik
uik

γ i
= vi

γ i
.

Therefore, γ i = vi − ci. This gives the last two conditions as well.

By the KKT conditions, if convex program (3) is feasible, its dual is unique. Hence, in
this case, market M will have unique equilibrium prices. In contrast, Arrow–Debreu
markets do not have unique equilibrium prices, since a scaling of such prices still yields
equilibrium prices.
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7:12 V. V. Vazirani

7. SOME PROPERTIES OF EQUILIBRIUM PRICES

Our goal is to present an efficient algorithm for solving an instance I of the game
ADNB by first reducing it to a flexible budget market M, say. First we give an efficient
algorithm for the following simpler question: Given prices p= {p1, . . . pg} for the goods
inM, determine if these are equilibrium prices, and if so, find an equilibrium allocation.

The algorithm begins by constructing a directed network N( p) as follows. N( p) has
a source s, a sink t, and vertex subsets B and G corresponding to the buyers and goods,
respectively. For each good j ∈ G, there is an edge (s, j) of capacity pj , and for each
buyer i ∈ B, there is an edge (i, t) of capacity mi, where mi = 1+ci/γ i is i’s money in M.
Recall that Si contains i’s maximum bang-per-buck goods. The edges between G and B
are precisely the maximum bang-per-buck edges, i.e., those ( j, i) such that j ∈ Si. Each
of these edges has infinite capacity.

LEMMA 7.1. Prices pare equilibrium prices for M if and only if the two cuts (s, B∪
G ∪ t) and (s ∪ B ∪ G, t) are min-cuts in network N( p). Moreover, if p are equilibrium
prices, then the set of equilibrium allocations corresponds exactly to max-flows in N( p).

The proof of this lemma is straightforward using the transformation between a max-
flow f in N( p) and an allocation x in M given by xij = f ( j, i)/pj . The condition that
(s, B ∪ G ∪ t) and (s ∪ B ∪ G, t) are min-cuts in network N( p), and hence saturated by
f , corresponds to all goods being sold and all buyers’ money being spent. The fact that
( j, i) is an edge in N( p) if and only if j ∈ Si ensures that buyers get only their maximum
bang-per-buck goods. Clearly, one max-flow computation suffices to determine if prices
pare equilibrium prices for M.

Previously, we have shown how to derive H and equilibrium allocations from prices
p∗. Next, we show how to determine p∗ from H efficiently, thereby showing that H is
the combinatorial object that yields equilibrium prices. Assume that p∗ are equilibrium
prices, i.e., N( p∗) satisfies the condition in Lemma 7.1. Let H be the uncapacitated
directed subgraph of N( p∗) induced on B∪ G.

LEMMA 7.2. Given H, p∗ can be computed in strongly polynomial time.

PROOF. Consider the connected components of H after ignoring directions on its
edges. In each component, pick a good and assign it price p, say. The prices of the rest
of the goods in this component can be obtained in terms of p. The bang-per-buck, and
hence the money, of each buyer in this component can also be obtained in terms of p.
Finally, by equating the money of all buyers in this component with the total value of
all goods in this component, we can compute p.

Given two d-dimensional vectors with non-negative coordinates, pand q, we will say
that p weakly dominates q if for each coordinate j, qj ≤ pj . The following characteri-
zation will be useful in Algorithm 3.

LEMMA 7.3. Assume that market M is feasible and p is its unique equilibrium price
vector. Let q be a vector of positive prices such that (s, B∪ G ∪ t) is a min-cut in network
N(q). Then pweakly dominates q.

PROOF. Let us assume, for establishing a contradiction, that there are goods j such
that qj > pj and yet (s, B∪ G ∪ t) is a min-cut in N(q). Let

θ = max
j∈G

{
qj

pj

}
and S = { j ∈ G | qj = θpj}.

Clearly, θ > 1.
Let Tp and Tq be the set of buyers who are interested in goods in S at prices p and

q, respectively. Since S represents the set of goods whose prices increase by the largest
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factor in going from prices pto q, Tq ⊆ Tp. We claim that a buyer i ∈ Tq is not interested
in any goods in G− S at prices p (because otherwise at prices q, i will not be interested
in any goods in S, since their prices increased the most).

Therefore, in any max-flow in N( p), all flow going through nodes in Tq must also
have used nodes in S. Therefore,∑

j∈S

pj ≥
∑
i∈Tq

(
1 + ci

γ i

)
,

where γ i is the maximum bang-per-buck of buyer i with respect to prices p. Multiplying
this inequality by θ and using the fact that θ > 1, we get,

θ
∑
j∈S

pj ≥
∑
i∈Tq

(
θ + ciθ

γ i

)
>

∑
i∈Tq

(
1 + ciθ

γ i

)
,

Observe that the maximum bang-per-buck of buyer i ∈ Tq with respect to prices q is
γ i/θ . Therefore, the last inequality implies that with respect to prices q, the total value
of goods in S is strictly more than the total value of money possessed by buyers in Tq.
On the other hand, since in N(q) all flow using nodes of Tq goes through S, we get that
(s, B∪ G ∪ t) is not a min-cut in network N(q), leading to a contradiction.

Next assume that M is an arbitrary flexible budget market, not necessarily feasible.
We will say that prices q are small if q is a positive vector and (s, B∪ G∪ t) is a min-cut
in network N(q). Observe that in this case, each good j must have an edge ( j, i), for
some buyer i, incident at it. By Lemma 7.3, if M is feasible and prices q are small,
then they are weakly dominated by the equilibrium prices, p. Observe however that
the contrapositive of Lemma 7.3 does not hold, that is, pmay dominate positive prices
q, yet (s, B∪ G ∪ t) may not be a min-cut in network N(q).

The background given so far will suffice to read Appendix A, which gives an algorithm
that converges to the solution of a given feasible instance of ADNB in the limit. This
section may also be viewed as a warm-up for the polynomial-time algorithm, which is
quite involved.

8. CHARACTERIZING FEASIBILITY AND INFEASIBILITY

In this section, we will address the question of determining whether the given flexible
budget market, M, is feasible. We will give a characterization of feasible markets and
we will derive conditions that yield a proof of infeasibility.

Clearly, if we can find small prices pand a max-flow f in network N( p) such that the
flow gives each buyer i strictly more than ci utility, then M is feasible. We first show,
using the notion of balanced flows, that this test of feasibility is in fact a property of
prices ponly.

8.1. Balanced Flows

We will follow the exposition in Vazirani [2007] and refer the reader to this chapter for
all facts stated below without proof. For simplicity, let N denote the current network,
N( p). Given a feasible flow f in N, let R( f ) denote the residual graph with respect to
f . Define the surplus of buyer i with respect to flow f in network N, θ i(N, f ), to be the
residual capacity of the edge (i, t) with respect to flow f in network N, that is, mi minus
the flow sent through the edge (i, t). The surplus vector with respect to flow f is defined
to be θ (N, f ) := (θ1(N, f ), θ2(N, f ), . . . , θn(N, f )). Let ‖v‖ denote the l2 norm of vector
v. A balanced flow in network N is a flow that minimizes ‖θ (N, f )‖. A balanced flow
must be a max-flow in N because augmenting a given flow can only lead to a decrease
in the l2 norm of the surplus vector.
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A balanced flow in N can be computed using at most n max-flow computations. It
is easy to see that all balanced flows in N have the same surplus vector. Hence, for
each buyer i, we can define θ i(N) to be the surplus of i with respect to any balanced
flow in N; we will shorten this to θ i when the network is understood. The key property
of a balanced flow that our algorithm will rely on is that a maximum flow f in N is
balanced if and only if it satisfies Property 1.

Property 1. For any two buyers i and j, if θ i(N, f ) < θ j(N, f ), then there is no path
from node i to node j in R( f ) − {s, t}.

Balanced flows play a crucial role in both stages of our algorithm; moreover, they have
multiple uses. In Section 10.4, after stating the full algorithm, we state the various
uses of this notion.

8.2. A Characterization of Feasibility

Let p be small prices and let (θ1, . . . , θn) be the surplus vector of a balanced flow in
N( p). We will say that pare feasible prices if for each buyer i, θi < 1.

LEMMA 8.1. Market M is feasible if and only if it admits feasible prices.

PROOF. If M is feasible, its equilibrium prices are feasible, since for each buyer i,
θ i = 0. Next, assume that p are feasible prices for M. By definition, the flow sent on
edge (i, t) in a balanced flow in N( p) is

mi − θ i > mi − 1 =
(

1 + ci

γ i

)
− 1 = ci

γ i
.

The utility accrued by i from this allocation is γ i(mi − θ i) > ci. Hence, M is feasible.

Observe that if a max-flow f in network N( p) gives each buyer i strictly more than
ci utility, then so will a balanced flow in N( p). Hence, feasibility is a property of prices
ponly.

Rather than working with θ i, it will sometimes be more convenient to work with
θ i − 1.

Definition. Let pbe small prices. With respect to these prices, define the 1-surplus of
buyer i to be βi = θ i − 1.

Now, another definition of feasible prices is that they be small and for each buyer i,
βi < 0.

8.3. A Characterization of Infeasibility

We will establish infeasibility of the given market N by using the dual of an LP that
tests for feasibility of M. As defined in Section 3, the given game is feasible if and
only if there is a point v ∈ N such that for each agent i ∈ B, vi > ci. In order to
capture feasibility via a linear program, let us restate as follows: an instance of ADNB
is feasible if and only if

max
v∈N

min
i∈B

{vi − ci} > 0.

By Theorem 4.1, an instance of ADNB is feasible if and only if

max
v∈N

min
i∈B

{vi − ci} ≥ 1
μ

.

Observe that the expression on the left-hand side is the optimal objective function
value of LP (5). Clearly, this LP is maximizing t; however, in order to obtain a convenient
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dual, we will write it as minimizing −t:

minimize −t (5)

subject to ∀i ∈ B :
∑
j∈G

uij xij ≥ ci + t

∀ j ∈ G : −
∑
i∈B

xij ≥ −1

∀i ∈ B, ∀ j ∈ G : xij ≥ 0

Let yi ’s and zj ’s be the dual variables corresponding to the first and second set of
inequalities, respectively. The dual program is:

maximize
∑
i∈I

ci yi −
∑
j∈G

zj (6)

subject to ∀i ∈ B, ∀ j ∈ G : uij yi − zj ≤ 0∑
i∈B

yi = 1

∀i ∈ B : yi ≥ 0
∀ j ∈ G : zj ≥ 0

In Lemma 8.2, we will establish a useful fact. For agent i, denote ci/γ i by αi. Hence,
mi = 1 + αi.

LEMMA 8.2. ∑
i∈B

αi −
∑
j∈G

pj =
∑
i∈B

βi.

PROOF. The total surplus of all buyers is∑
i∈B

θi =
∑
i∈B

mi −
∑
j∈G

pj =
∑
i∈B

(1 + αi) −
∑
j∈G

pj = n +
∑
i∈B

αi −
∑
j∈G

pj .

On the other hand, ∑
i∈B

θi =
∑
i∈B

(1 + βi) = n +
∑
i∈B

βi.

Equating the two we get the lemma.

LEMMA 8.3 (MAIN LEMMA). If there exist prices p such that

n ≥
∑
j∈G

pj > 0 and
∑
i∈B

βi ≥ −n2

μ
,

then market M is infeasible.

PROOF. We will consider 2 cases, by splitting the range [−n2/μ,∞) into the 2 ranges
[0,∞) and [−n2/μ, 0); the former will be called Case 1 and the latter Case 2. For the
first case we’ll use LP (5) and for the second case we will modify this LP by adding a
nonnegativity condition on t.

For each buyer i, let γ i denote the maximum bang-per-buck of buyer i with respect
to prices p. By definition of maximum bang-per-buck,

∀i ∈ B, ∀ j ∈ G : γ i ≥ uij

pj
.
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Case 1. Let ν = ∑
i∈B 1/γ i. Since

∑
j∈G pj > 0, ν > 0. Consider prices q, where

for each j ∈ G, qj = pj/ν. Since all the prices have been scaled by the same factor,
the network remains unchanged. Clearly, the maximum bang-per-buck of buyer i with
respect to q is γ ′

i = νγ i and

∀i ∈ B, ∀ j ∈ G : γ ′
i ≥ uij

qj
.

Let yi = 1/γ ′
i, for i ∈ B, and zj = qj , for j ∈ G. We will show that (y, z) is a feasible

solution for the dual LP (6). The first set of inequalities is established by noting that

∀i ∈ B, ∀ j ∈ G : γ ′
i ≥ uij

qj
hence uij yi ≤ zj .

Next we show that the equality constraint holds:∑
i∈B

yi =
∑
i∈B

1
γ ′

i
=

(
1
ν

)
·
∑
i∈B

1
γ i

= 1.

Let α′
i = ci/γ

′
i and let β ′

i be the 1-surplus of buyer i with respect to prices q. The
objective function value of the dual solution (y, z) is∑

i∈B

ci yi −
∑
j∈G

zj =
∑
i∈B

ci

γ ′
i
−

∑
j∈G

zj =
∑
i∈B

α′
i −

∑
j∈G

qj =
∑
i∈B

β ′
i =

(
1
ν

)
·
∑
i∈B

βi ≥ 0.

We have used Lemma 8.2 in the third equality. Therefore, at optimality, −t ≥ ∑
i∈B ci yi−∑

j∈G zj ≥ 0, that is, t < 0, hence establishing infeasibility of the game.
Case 2. For the second range, it suffices to show a feasible solution of value at least

−1/μ to the dual of the following LP:

minimize −t (7)

subject to ∀i ∈ B :
∑
j∈G

uij xij ≥ ci + t

∀ j ∈ G : −
∑
i∈B

xij ≥ −1

t ≥ 0
∀i ∈ B, ∀ j ∈ G : xij ≥ 0

Again, let yi ’s and zj ’s be the dual variables corresponding to the first and second set
of inequalities, respectively. The dual program is:

maximize
∑
i∈I

ci yi −
∑
j∈G

zj (8)

subject to ∀i ∈ B, ∀ j ∈ G : uij yi − zj ≤ 0∑
i∈B

yi ≤ 1

∀i ∈ B : yi ≥ 0
∀ j ∈ G : zj ≥ 0

For this case, let

yi = 1
γ in2 and zj = pj

n2 .
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The first set of inequalities of the dual LP (8) is established by noting that

∀i ∈ B, ∀ j ∈ G : γ i ≥ uij

pj
.

Hence,

uij yi ≤ zj .

Since
∑

j∈G pj ≤ n, in particular pj ≤ n for each j ∈ G. Furthermore, for each i ∈ B, j ∈
G, uij ≥ 1, hence we get that for each i ∈ B, γ i ≥ 1/n. Hence,∑

i∈B

yi = 1
n2

∑
i∈B

1
γ i

≤ 1,

thereby establishing the second inequality. Hence, this solution is feasible for the dual
LP (8). Its objective function value is

∑
i∈B

ci yi −
∑
j∈G

zj = 1
n2

⎛
⎝∑

i∈B

αi −
∑
j∈G

pj

⎞
⎠ = 1

n2

∑
i∈B

βi ≥ − 1
μ

,

where the second equality follows from Lemma 8.2. This completes the proof.

9. HIGH-LEVEL DESCRIPTION OF THE ALGORITHM FOR ADNB

The full algorithm and its proof appear in Sections 10 and 11, respectively. We will
impose the following condition throughout; by Lemma 7.3, it will ensure that prices
are always small.

Invariant. With respect to current prices, p, (s, B ∪ G ∪ t) is a min-cut in network
N( p).

In the Initialization step, we set the money of each buyer to unit to obtain a linear
Fisher market and we compute its equilibrium prices using the DPSV algorithm. It is
easy to see that these prices satisfy the Invariant for the flexible budget market instance
M. Furthermore, these prices satisfy

∑
j∈G pj = n. Since Stage I only decreases prices

of goods, the condition
∑

j∈G pj ≤ nneeded in Lemma 8.3 will be automatically satisfied.
Let f be a balanced flow in N( p). Since the Invariant is always maintained, for each

buyer i, θ i ≥ 0 and hence βi ≥ −1. In the algorithm, we will change prices of a well-
chosen set J of goods as follows. Multiply the price of each good in J by a variable x
and initialize x to 1. In Stage I, we will decrease x and in Stage II we will raise x until
the next event happens.

In the next lemma, we will assume that J = G and we will study how the 1-surplus
of buyers changes as a function of x. Define x · f to be the flow obtained by multiplying
by x the flow on each edge with respect to f . Let βi(x) denote i’s 1-surplus with respect
to flow x · p. Let B′ be the set of buyers having negative 1-surplus with respect to prices
p. If B′ = ∅, define b = ∞; else, define b = mini∈B′ {−1/βi}. Observe that in both cases,
b > 1.

LEMMA 9.1. Flow x · f is a balanced flow in N(x p) for 0 < x ≤ b, and for each
i ∈ B, βi(x) = xβi .

PROOF. Since the Invariant holds and f is a max-flow in N( p), the cut (s, G ∪ B ∪ t)
is saturated by f , and hence by x · f in N(x p). Next, we show that x · f is a feasible
flow in N(x p), that is, for each buyer i ∈ B, edge (i, t) is not over saturated. Now,
βi = αi − f (i, t). Therefore, the surplus on edge (i, t) with respect to flow x · f is
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1 + x(αi − f (i, t)) = 1 + xβi ≥ 0 for 0 < x ≤ b. Hence, edge (i, t) is not over saturated.
Furthermore, βi(x) = xβi. Finally, since f satisfies Property 1 in N( p), x · f satisfies it
in N(x p), thereby showing that it is a balanced flow.

Let us give a simplified description of Stage I; for efficiency considerations, the
actual algorithm is more complicated. Say that buyer i is helpful if βi < 0 and harmful
otherwise. Stage I terminates when either:

—all buyers are rendered helpful, if so, the instance is feasible and the algorithm moves
to Stage II to find equilibrium prices, or

—
∑

i∈B βi ≥ 0 and
∑

j pj > 0. If so, Lemma 8.3 yields a proof of infeasibility.

Gradually decrease the prices of goods desired by helpful buyers. As a result, the
β ’s of these buyers increase and, in a sense, we are heading for a proof of infeasibility.
However, at some point a new edge may enter the network and on recomputing a
balanced flow, some helpful buyers may become harmful or vice-versa. Lemma 11.8
proves that (the more involved and efficient version of) this iterative process must
terminate in one of the 2 conditions given above.

Since Stage II starts with a price vector p that is small, it needs to raise prices of
goods to get to the equilibrium. Additionally, at this point buyers have surplus money,
and hence Stage II needs to drop their surplus to zero, as demanded by the definition of
equilibrium. The feasibility of pensures that these are compatible goals, and moreover,
raising prices does not violate their feasibility. The following lemma establishes this
crucial point in the simplified setting of Lemma 9.1, that is, prices of all goods are
raised; of course, Stage II will raise the prices of well-chosen subsets of G.

LEMMA 9.2. If in the setting of Lemma 9.1, prices pare feasible and x is raised with-
out violating the Invariant, then the surplus of each buyer decreases and the resulting
price vector is still feasible.

PROOF. Since p is feasible, for each buyer i, βi < 0. Clearly, if x > 1, x · βi < βi, that
is, the surplus of buyer i decreases. Moreover, the property that the β of each buyer is
negative is preserved. Hence, the resulting price vector is still feasible.

10. DETAILS OF THE ALGORITHM FOR ADNB

Algorithm 1 gives the pseudo code for Stage I and Algorithm 2 gives the pseudocode
for Stage II.5 The next two sections give the subroutines used by Stage I and Stage
II, respectively, and Section 10.3 gives formal definitions of the predicates used in the
While loops.

10.1. Details of Stage I

A run of Stage I is partitioned into phases, which are further partitioned into iterations.
In Stage I, an iteration ends when a new edge is added to the network. A phase ends
either when the condition of Step 7 holds or if for some i ∈ I, βi ≥ 0. In each iteration,
the algorithm computes a balanced flow in the current network, N( p).

We employ the following notation. For J ⊆ G, define p(J) = ∑
j∈J pj and 
(J) =

{i ∈ B | ∃ j ∈ J such that ( j, i) ∈ N( p)}. Similarly, for I ⊆ B, define α(I) = ∑
i∈I αi,

m(I) = ∑
i∈I mi and 
(I) = { j ∈ G | ∃i ∈ B such that ( j, i) ∈ N( p)}.

The sets Bc and Gc denote the current sets of buyers and goods being considered
by the algorithm. These sets are initialized to B and G, respectively. At any point the

5The following power point presentations may make the algorithm easier to understand:
http://www.cc.gatech.edu/ vazirani/Waterloo1.ppt.
http://www.cc.gatech.edu/ vazirani/Waterloo2.ppt.
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algorithm, B = Bc ∪ B′ and G = Gc ∪ G′, where B′ and G′ are the sets of adaptable
buyers and goods, respectively; their purpose is explained in this section. B′ and G′ are
both initialized to ∅. As the algorithm proceeds, buyers are moved from Bc to B′ and
goods are moved from Gc to G′.

As stated in the Introduction, the ostensible goal of Stage I is to arrive at a proof of
infeasibility. It does this by decreasing the prices of goods desired by helpful buyers, as
a result increasing their βis and hence increasing

∑
i∈B βi. In order to make substantial

progress in each phase and terminate in polynomial time, Stage I deals with a well-
chosen subset, I, of helpful buyers, rather than all helpful buyers. At the start of a
phase, the set I ⊆ Bc is initialized to buyers having the smallest β values. The goods
they desire are put in set J.

The algorithm lowers the prices of goods in J until a new edge ( j, i), with j ∈ J
and i ∈ (Bc − I) is added to the network. On recomputing a balanced flow, either βi
becomes negative, if so i moves into I and the iteration comes to an end, or for some
buyer(s) i′ ∈ I, βi′ increases. If for some buyer i ∈ I, βi becomes nonnegative, the phase
comes to an end. Also, if at any point, I and J are found to be adaptable, the algorithm
updates B′ and G′ and the phase comes to an end; in this case also, for the sake of upper
bounding the number of phases executed, we will assume that prices of goods in G′ are
set to zero and for each i ∈ B′, βi = 0.

Lemma 11.8 shows that eventually, either all buyers are rendered helpful or the
conditions of Lemma 8.3 start holding. In the former case, the algorithm moves on to
Stage II to find equilibrium prices. One way to view the operation of Stage I is as a
tug-of-war between two sets of buyers: the helpful buyers and the harmful buyers. The
algorithm decreases the prices of goods desired by buyers in I, thereby increasing their
βis. This helps towards reaching the infeasibility condition previously stated. How-
ever, as new edges enter the network and a balanced flow is recomputed, buyers may
move between the two sets. In particular, if harmful buyers become helpful, then this
particular phase actually made some progress towards arriving at a proof of feasibility.

The subroutines used in Stage I are as follows.

—FindSetsI. Sets I ⊆ Bc and J ⊆ Gc are initialized as follows.

I ← arg min
i∈Bc

{βi} and J ← (
(I) − 
(Bc − I)).

Observe that J consists of goods that are the maximum bang-per-buck goods for
buyers in I but not for other buyers. All edges from goods in Gc − J to buyers in I
are removed; this is justified in Lemma 10.3 where we show that there is no flow on
these edges.

—UpdateSetsI. Find the set, I′, of all buyers in Bc − I such that there is a residual
path, in R( f ) − {s, t}, from a buyer in I to a buyer in I′. Update

I ← (I ∪ I′);

J ← (
(I) − 
(Bc − I)).
All edges from goods in Gc − J to buyers in I are removed. Once again, this is justified
in Lemma 10.3.

Assume that ( j, i), j ∈ J, i ∈ (Bc − I) is the new edge added to Si in the current
iteration; recall that Si contains i’s maximum bang-per-buck goods. Observe that if
I′ = ∅, then all the flow from j, which was going to buyers in I before the addition
of this edge, must go to i, since there is no residual path from I to i. Accordingly,
UpdateSetsI will move good j from J to Gc − J. As soon as the prices of goods in J
are reduced by an infinitesimally small amount (by decreasing x) buyers in I will not
be interested in good j anymore.
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LEMMA 10.1. In Stage I, at the start of each iteration, for each buyer i ∈ I there is a
good j ∈ J such that edge ( j, i) is in the network N( p).

PROOF. Since at the start of each iteration, for each buyer i ∈ I, βi < 0, balanced flow
must be sending flow on some edge ( j, i). Now, by the specification of set J, j ∈ J.

We now explain the purpose of the sets B′ and G′. Once a good is moved into G′, its
price is updated in the same way as that of goods in the current set J. As a result, once
a buyer enters B′ she does not change her preferences. Furthermore, at any point in
Stage I, these sets satisfy the following properties.

(1) For each buyer i ∈ B′, βi < 0.
(2) Buyers in Bc are totally uninterested in goods in G′ at any price, that is, for every

i ∈ Bc and every j ∈ G′, uij = 0. Hence, if later the prices of goods in G′ are decreased
to zero (see below), no edge from Bc to G′ will ever enter the network.

The reason for the name “adaptable” is that as far as determining feasibility or
infeasibility goes, buyers in B′ can be made either helpful or harmful, and hence be
made consistent with the outcome of the remaining buyers. If ∀i ∈ Bc, βi < 0, we
assign goods in G′ the prices as computed above hence ensuring that ∀i ∈ B′, βi < 0.
The resulting price vector is clearly feasible. In Step 9 in Algorithm 1, we have referred
to this process as “restoring prices of adjustable goods.”

ALGORITHM 1 (Initialization and Stage I of the Algorithm for ADNB)

(1) Initialization:
(i). ∀i ∈ B : mi ← 1.
(ii). Use the DPSV algorithm to compute equilibrium prices, p.
(iii). ∀i ∈ B : mi ← 1 + ci

γ i
.

(iv). Bc ← B; Gc ← G.
(v). B′ ← ∅; G′ ← ∅.
(vi). Compute a balanced flow in N( p).

Stage I

(2) (New Phase) While a proof of feasibility or infeasibility is not reached do:
(3) FindSetsI.
(4) (New Iteration) While Bc − I desire J and buyers in I have small surplus do:
(5) . Multiply the prices of goods in (J ∪ G′) and α’s of buyers in (I ∪ B′) by x.

. Initialize x ← 1, and decrease x continuously until:

. A new edge ( j, i) enters Si, for j ∈ J and i ∈ (Bc − I).
Add ( j, i) to N( p) and compute a balanced flow in it.
UpdateSetsI.

(6) End (End Iteration)
(7) If ∀i ∈ (Bc − I), ∀ j ∈ J : uij = 0, then:

. Declare I and J adaptable, i.e,,

. G′ ← (G′ ∪ J) and Gc ← (Gc − J).

. B′ ← (B′ ∪ I) and Bc ← (Bc − I).
(8) End (End Phase)
(9) If ∀i ∈ Bc, βi < 0, then:

. Compute a balanced flow in N( p).

. Go to Step 1 in Stage II.
(10) Else (i.e.,

∑
i∈Bc

βi ≥ 0), output “The game is infeasible”.
HALT.
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If, on the other hand,
∑

i∈Bc
βi ≥ −(n2/μ), then we set the prices of all goods in G′ to

zero. Observe that doing this does not introduce any new edges in the network and we
get that ∀i ∈ B′, βi = 0, thereby ensuring that these buyers don’t affect the sum of βi ’s.
As shown in detail in Section 8.3, all the conditions of Lemma 8.3 now hold and yield
a proof of infeasibility.

Observe that in each iteration, the algorithm needs to compute the largest value of x
at which a new edge is added to the network. For any one edge, this is straightforward;
taking the maximum over all relevant edges gives the required value.

10.2. Details of Stage II

A run of Stage II is also partitioned into phases, which are further partitioned into
iterations. An iteration ends when a new edge is added to the network. A phase ends
when a new set goes tight. We will say that S ⊆ G is a tight set if the total price of goods
in S exactly equals the money possessed by buyers who are interested in goods in S,
that is, p(S) = m(
(S)). Clearly, if S is tight, buyers in 
(S) must have zero surplus
and hence have βi = −1. In each iteration, the algorithm computes a balanced flow in
the current network, N( p).

The subroutines used in Stage II are the following.

—FindSetsII: Sets I ⊆ B and J ⊆ G are initialized as follows.
I ← arg max

i∈B
{θi} and J ← 
(I).

All edges are removed from goods in J to buyers in B − I; this is justified in
Lemma 10.3 below.

—UpdateSetsII: Find the set, I′, of all buyers in B − I that have residual paths to
buyers in I. Update

I ← (I ∪ I′);

J ← 
(I).
All edges are removed from goods in J to buyers in B− I. Once again, this is justified
in Lemma 10.3.

Observe that if ( j, i) is the new edge added to Si, the set of i’s maximum bang-per-
buck goods, then good j must move from G− J to J, whether or not I′ = ∅. The choice of
set J above ensures that if the prices of goods in J are increased by an infinitesimally
small amount (by increasing x as stated in Algorithm 2), there is no change in the
maximum bang-per-buck goods of buyers in (B− I).

ALGORITHM 2 (Stage II of the Algorithm for ADNB)

(1) (New Phase) While a buyer in B has surplus money do:
(2) FindSetsII.
(3) (New Iteration) While no set in J is tight do:
(4) . Multiply prices of goods in J and α’s of buyers in I by x.

. Initialize x ← 1, and raise x continuously until:

. A new edge ( j, i) enters Si , for j ∈ (G − J) and i ∈ I.
If so, add ( j, i) to N( p) and compute a balanced flow in it.
UpdateSetsII.

(5) End (End Iteration)
(6) End (End Phase)
(7) Output the current allocations and prices.

HALT.
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LEMMA 10.2. In Stage II, at the start of each iteration, for each buyer i ∈ (B − I),
there is a good j ∈ (G − J) such that edge ( j, i) is in the network.

PROOF. Since θi < 1, the balanced flow must be sending flow on some edge ( j, i). If
j ∈ J, then there will be a residual path from i to a buyer in I, violating Property 1.
Therefore, j ∈ (G − J).

LEMMA 10.3. In Stage I (Stage II), the Invariant holds after all edges from goods in
G − J (J) to buyers in I (B− I) are removed.

PROOF. The idea of the proof is the same for both statements. In Stage I, right after
UpdateSetsI is executed, there are no residual paths from I to B − I. Therefore, by
Property 1, any edges from G − J to I could not be carrying any flow and hence their
removal will not affect the Invariant.

In Stage II, right after UpdateSetsII is executed, there are no residual paths from
B − I to I. Therefore, by Property 1, any edges from J to B − I could not be carrying
any flow and hence their removal will not affect the Invariant.

In each iteration, we need to compute the smallest value of x at which a new edge
is added to the network or a new set goes tight. The former computation is the same
as in Stage I. Let the smallest value of x at which a new set goes tight be x∗. Let
b = mini∈I{−1/βi}. Clearly, b > 1. Using Lemma 9.1, proved in Section 8, for x in the
range 1 ≤ x ≤ b, we prove in this section that x∗ = b.

LEMMA 10.4. x∗ = b.

PROOF. By definition of b, for 1 ≤ x < b, for each i ∈ I, the surplus of i will be
1 + xβi > 0, since xβi > −1. Thus, each edge (i, t) will have positive surplus, implying
that there are no tight sets.

Next, assume that x = b. Let

T =
{

i ∈ I | − 1
βi

= b
}

and S = { j ∈ J | f ( j, i) > 0, for some i ∈ T }.

Since f is a balanced flow in N( p), there cannot be an edge ( j, i) for j ∈ S and
i ∈ (I − T ) in N( p). This is so because otherwise there would be a path from T to i
in the residual graph, contradicting Property 1 (observe that βi < −1/b). Therefore,

(S) = T . Moreover, for i ∈ T , the surplus on edge (i, t) with respect to flow x · f in
N(x p) is 1 + x(−1/b) = 0. Hence, S is a tight set in network N(x p) for x = b.

10.3. Predicates used in While Loops

In Step 2 (Stage I), “a proof of feasibility is reached” when ∀i ∈ B, βi < 0. “a proof of
infeasibility is reached” when

∑
i∈B

βi ≥ −n2

μ
.

In the latter case, Lemma 11.8 shows that all the conditions of Lemma 8.3 will be
satisfied and the given game is infeasible.

In Step 4 (Stage I), “B − I desire J” is satisfied if and only if ∃i ∈ (B − I), ∃ j ∈ J :
uij > 0, and “buyers in I have small surplus” is satisfied if and only if ∀i ∈ I, βi < 0.

In Step 1 (Stage II), “a buyer in B has surplus money” is satisfied if and only if
∃i ∈ B, θi > 0).

In Step 3 (Stage II), “no set in J is tight” is satisfied if and only if ¬(∃S, ∅ ⊂ S ⊆
J s.t. S is tight).
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10.4. The Role of Balanced Flow

Besides being used for defining the central notion of feasible prices, balanced flow plays
the following three, rather diverse, crucial roles in both stages of our algorithm.

(1) Ensure that edges that need to be removed as prices of goods in J are raised did
not carry any flow. Hence, their removal would not violate the Invariant; this is
argued in Lemma 10.3

(2) Ensure that in each iteration, buyers entering I in Stage I (Stage II) have suffi-
ciently large |βi| (|θi|); this is established in Lemma 11.5 (Lemma 11.14).

(3) Prove that sufficient progress is made in an iteration and hence in a phase. This is
established in Lemma 11.6 for Stage I and Lemma 11.15 for Stage II.

As stated in Devanur et al. [2008] (see also Section B), balanced flow could have been
defined without resorting to the l2 norm—as a max-flow that makes the surplus vector
lexicographically smallest, after its components are sorted in decreasing order (and
hence making the components as balanced as possible). It is easy to prove Property 1
with this definition as well. The first two roles listed here make use of Property 1 only.
On the other hand, the third role uses the definition of balanced flow via the l2 norm
and as argued in Section B, the use of the l2 norm seems indispensable.

11. RUNNING TIME ANALYSIS

We first define some parameters of the given problem instance. Recall that g = |G|,
n = |B| and U = maxi∈B, j∈G{uij}. Let C = maxi∈B ci, and � = nCU n. Observe that
program (3) with all ci = 0 is the same as the convex program for a linear Fisher
market with all buyers having unit money. Hence, Theorem 4.1 gives a lower bound of
1/μ on the price of a good computed in Initialization.

The following enhanced version of Lemma 9.1 will be needed in both stages.

LEMMA 11.1. Let f be a balanced flow in network N( p). Then, for 0 < x ≤ b, the flow
x · f is a balanced flow in N(x p).

PROOF. For i, j ∈ B, assume that 1 + xβi < 1 + xβ j . Since x > 0, 1 + βi < 1 + β j ,
that is, with respect to flow f in N( p), the surplus of i is smaller than that of j. Since
f is a balanced flow in N( p), by Property 1, there is no path from i to j in the residual
graph. Therefore, with respect to flow x · f in N(x p) also there is no path from i to j
in the residual graph. Therefore, flow x · f in N(x p) satisfies Property 1 and hence is a
balanced flow.

11.1. Stage I

Throughout Stage I, we will consider a partitioning of Bc into two sets, B1 and B2,
containing buyers having βi < 0 and βi ≥ 0, respectively. For Stage I, we will work
with the following potential function:

� =
∑
i∈B1

β2
i .

As Stage I proceeds, buyers move from Bc to B′, and within Bc between the sets B1 and
B2. For this reason, it will be convenient to define � using an n-dimensional vector, ψ ,
called the associated vector of network N. The ith component of this vector, ψi, is βi
for i ∈ B1, and is 0 for i ∈ (B′ ∪ B2). Hence, an alternative definition for the potential
function is:

� = ‖ψ‖2.

LEMMA 11.2. In Stage I, a phase consists of at most ng iterations.
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PROOF. Observe that if in UpdateSetsI, I′ = ∅, then a good must move from J to
Gc − J. Otherwise, a buyer must move from Bc − I to I. Clearly, there can be at most
|J| < |Gc| contiguous iterations of the first type and a total of at most |Bc − I0| < |Bc|
iterations of the second type, where I0 is the set I at the start of the phase. Observe
that set I only grows.

The central fact established below is that � drops by a factor of (1−1/(gn2)) in a phase
(Lemma 11.7). Towards this end, assume that a given phase consists of k iterations.
Let I0 denote set I at the start of the phase and let Il denote the set I at the end of the
lth iteration, 1 ≤ l ≤ k. Assume that at the start of this phase, maxi∈B1{|βi|} = δ = δ0.
Clearly, for each i ∈ I0, βi = −δ0. Let

δl = min
i∈Il

{|βi|}, for 1 ≤ l < k.

As a result of the assumption made in Section 10.1, no matter how the phase ends,
δk = 0. As we will see in this section, the potential function � drops monotonically
in each iteration in a phase. Within an iteration, we will account for the drop in two
steps. Note that βi < 0 for i ∈ I at the start of a phase. Hence, by Lemma 9.1, as x
decreases, βi increases. Thus, as prices of goods in J are reduced, the βi ’s of buyers
i ∈ I increase, leading to a reduction in �. Second, when a new edge ( j, i), with j ∈ J
and i ∈ (Bc − I), is added to the network, the flow becomes more balanced, leading
to a further drop. We will account for these two reductions separately, via different
arguments (see Lemma 11.6). For the first step, we work with the l1 norm, establishing
an increase in

∑
i∈B1

βi. In the second step,
∑

i∈B1
βi will not change if i ∈ (B1 − I).

Instead, we establish a decrease in ‖ψ‖2 using an l2 norm-based argument. We observe
that the latter argument is difficult to apply to the first step since the money of buyers
changes as prices change. Also, we do not know of a simple one-step argument that
accounts for the entire reduction in an iteration.

Next, we prove a key fact that accounts for the second decrease. Just before new edge
( j, i) is added to Si, let N be the network and p be the prices of goods. Let N′ be the
network obtained by adding this edge to N; of course, the prices remain unchanged.
Let f and f ∗ be balanced flows in N and N′, respectively, and let ψi and ψ∗

i be their
associated vectors.

LEMMA 11.3. ‖ψ‖2 − ‖ψ∗‖2 ≥ ∑
h∈B1

(ψh − ψ∗
h)2.

PROOF. Since the Invariant holds and the prices are unchanged, f and f ∗ have the
same value. Therefore, flow f ∗ − f will consist of circulations. Since f is a balanced
flow, all these circulations must use the edge ( j, i), because otherwise a circulation not
using edge ( j, i) could be used for making f more balanced. These circulations will
have the effect of increasing the surplus of certain buyers in I, say il, for 1 ≤ l ≤ d,
and decreasing the surplus of buyer i ∈ (Bc − I). Let βi − β∗

i = ν, and for 1 ≤ l ≤ d,
β∗

il − βil = νl. Then,
∑k

l=1 νl = ν.
For each buyer il, 1 ≤ l ≤ d, there is a path from il to i in the corresponding circulation

and hence there is a path from i to il in the residual graph with respect to flow f ∗.
Since f ∗ is balanced, by Property 1, the surplus of buyer i is at least as large as that of
il. Therefore, β∗

i ≥ β∗
il .

In going from N to N′, the ψh values can change only for h = i, and h = il, for
1 ≤ l ≤ d. We will consider three cases.

Case 1. βi ≥ 0, that is, i ∈ B2, and β∗
i ≥ 0.

In this case, ψi = ψ∗
i = 0 and the lemma is obvious.

Case 2. βi ≥ 0, that is, i ∈ B2, and β∗
i < 0.

Let a = −β∗
i . In this case, ψi = 0 and ψ∗

i = −a. Also, let bl = −βil , for 1 ≤ l ≤ d.
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Clearly, a ≤ ∑k
l=1 νl. Since β∗

i ≥ β∗
il , a ≤ bl − νl. Now,

‖ψ‖2 − ‖ψ∗‖2 =
(

02 +
k∑

l=1

b2
l

)
−

(
a2 +

k∑
l=1

(bl − νl)2

)
= −a2 +

k∑
l=1

(2bl − νl)νl

≥ −a2 +
k∑

l=1

(2a + νl)νl ≥ −a2 +
k∑

l=1

ν2
l + 2a

k∑
l=1

νl ≥ a2 +
k∑

l=1

ν2
l ,

where the first inequality follows from a ≤ bl − νl and the third one from a ≤ ∑k
l=1 νl.

Case 3. β∗
i < 0, that is, i ∈ (B1 − I).

Clearly, in this case, βi < 0. Let a = −βi, and for 1 ≤ il ≤ d, let bl = −βil . Now, apply
Lemma 11.4, to get ‖ψ‖2 − ‖ψ∗‖2 ≥ ν2. Clearly, ν2 ≥ ∑k

l=1 δ2
l , giving the lemma.

LEMMA 11.4. Let δ, δl ≥ 0, l = 1, 2, . . . , k, with δ = ∑k
l=1 δl. If a + δ ≤ bl − δl, for

l = 1, 2, . . . , k then

‖(a, b1, b2, . . . , bk)‖2 − ‖(a + δ, b1 − δ1, b2 − δ2, . . . , bk − δk)‖2 ≥ δ2.

PROOF. (
a2 +

k∑
l=1

bl
2

)
−

(
(a + δ)2 +

k∑
l=1

(bl − δl)2

)

≥
(

(a + δ − δ)2 +
k∑

l=1

(bl − δl + δl)2

)
−

(
(a + δ)2 +

k∑
l=1

(bl − δl)2

)

≥ δ2 + 2(a + δ)

((
k∑

l=1

δl

)
− δ

)
≥ δ2.

Let ψ0 denote vector ψ at the start of the phase and ψ l denote ψ at the end of
iteration l, for 1 ≤ l ≤ k.

LEMMA 11.5. In the lth iteration, there is a buyer i ∈ Il−1 such that |βi| decreases by
at least (δl−1 − δl), for 1 ≤ l < k.

PROOF. By Property 1, if there is a residual path from i to i′, then θi ≥ θi′ . Hence,
by the definition of set I′ in procedure UpdateSetsI, there is a buyer i ∈ Il−1 which
achieves mini∈Il{|βi|} at the end of iteration l. Clearly, βi increases (and hence |βi|
decreases) by at least (δl−1 − δl) in the lth iteration, for 1 ≤ l < k.

LEMMA 11.6. For 1 ≤ l ≤ k,

‖ψ l−1‖2 − ‖ψ l‖2 ≥ (δl−1 − δl)2.

PROOF. We first prove the statement for 1 ≤ l < k. By Lemma 11.5, there is a buyer
i ∈ Il−1 such that βi increases by at least (δl−1 − δl) in the lth iteration. Let us split
this increase into two parts, the increase due to decrease in the prices of goods in J
and that due to a new edge entering the network. Let these be a and b, respectively.
Therefore, a + b = δl−1 − δl.

Let ψ ′ be the vector ψ just before the new edge is added to the network in iteration l,
that is, right after all the decrease in prices of J has happened. As prices in J decrease,
the βs of buyers in I increase, each leading to a decrease in ‖ψ ′‖2; clearly, the βs of
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buyers in Bc − I remain unchanged. Let c be the value of βi at the beginning of iteration
l. Clearly, −c > a + b. Now,

‖ψ l−1‖2 − ‖ψ ′‖2 ≥ c2 − (c + a)2 = −a2 − 2ac.

By Lemma 11.3,

‖ψ ′‖2 − ‖ψ l‖2 ≥ b2.

Adding the two and using −c > a + b we get

‖ψ l−1‖2 − ‖ψ l‖2 ≥ −a2 − 2ac + b2 > a2 + 2ab + b2 = (a + b)2 ≥ (δl−1 − δl)2,

where the second last inequality follows from the observation that b ≤ −c.
Finally, in the kth iteration, there is a buyer i ∈ Ik−1 whose ψi changes from βi < 0

to 0. Therefore,

‖ψk−1‖2 − ‖ψk‖2 ≥ β2
i ≥ (δk−1 − δk)2,

since δk−1 ≤ −βi and δk = 0.

LEMMA 11.7. In a phase in Stage I, the potential drops by a factor of(
1 − 1

n2g

)
.

PROOF. Now, ‖ψ0‖2 − ‖ψk‖2 can be written as a telescoping sum of k terms, each of
which is the decrease in the potential in one of the k iterations. Lemma 11.6 gives a
lower bound on each of these terms. The total lower bound is minimized when each of
the differences (δl−1 − δl) is equal. Now using the fact that δ0 = δ and δk = 0, we get:

‖ψ0‖2 − ‖ψk‖2 ≥ δ2

k
.

Finally, since ‖ψ0‖2 ≤ nδ2, and by Lemma 11.2 k ≤ ng, we get:

‖ψk‖2 ≤ ‖ψ0‖2
(

1 − 1
n2g

)
.

LEMMA 11.8. Stage I terminates with either a feasible price vector or a proof of
infeasibility. Moreover, its execution requires at most

O(n5g3 log U )

max-flow computations.

PROOF. At the start of the algorithm, the potential is at most n. Assume that the
feasibility condition is not reached in the execution of Stage I. Then, as soon as the
potential drops below n3/(μ2),

∑
i∈B1

|βi| ≤ n2

μ
.

Hence, at this point,
∑

i∈B βi ≥ −(n2/μ), therefore, the algorithm will halt. We next
show that in this case, all the conditions of Lemma 8.3 hold and market M is indeed
infeasible.

As stated in Section 9, the initialization and the fact that Stage I only decreases
prices of goods will ensure that the condition

∑
j∈G pj ≤ n is satisfied. Also, since Gc

must be nonempty, there is a good having positive price and hence
∑

j∈G pj > 0.
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By Lemma 11.7, the potential drops by a factor of two after O(n2g) type 1 phases.
Hence, an upper bound on the number of such phases needed is

O
(

n2g log
(

nμ2

n3

))
= O(n3g2 log U ).

Clearly, this dominates the number of type 2 phases.
By Lemma 11.2, each phase consists of at most ng iterations and each iteration

requires n max-flow computations for finding a balanced flow. The lemma follows.

11.2. Stage II

When ∀i ∈ B : βi < 0, the algorithm starts with Stage II. Since, in this stage, the
algorithm only raises prices of goods (i.e., increases x), by Lemma 9.2, ∀i ∈ B : βi < 0
holds until termination.

In this section, we will work with the θis of buyers, rather than their βis. Thus,
throughout Stage II, ∀i ∈ B : θi < 1. For Stage II, we will use the following potential
function:

� =
∑
i∈B

θ2
i .

LEMMA 11.9. In Stage II, at the termination of a phase, the prices of goods in the
newly tight set must be rational numbers with denominator ≤ �.

PROOF. The idea is to show that prices can be obtained by solving a system of linear
equations. Let S be the newly tight set. Consider the subgraph of the network induced
on the bipartition (S, 
(S)), and view this as an undirected graph, say H. Assume
without loss of generality that this graph is connected (otherwise, we prove the lemma
for each connected component of H). Pick a spanning tree in H.

Pick any good j ∈ S, and find a path in the spanning tree from j to each good j ′ ∈ S.
If j reaches j ′ with a path of length 2l, then pj ′ = apj/b where a and b are products of
l utility parameters (uik’s) each. Since alternate edges of this path contribute to a and
b, we can partition the uik’s of edges in the spanning tree into two sets, T1 and T2, such
that a uses uik’s from T1 and b uses those from T2.

Next, consider αi = ci/γ i, for i ∈ 
(S). Now, γ i = ui, j ′/pj ′ , where (i, j ′) is any edge
in the network. Find the path in the spanning tree from i to j and use the first edge
on this path for computing γ i (it is easy to see that this edge will come from T2), and
substitute pj ′ using the expression previously stated, that is, pj ′ = apj/b.

Since S is a tight set, ∑
j ′∈S

pj ′ =
∑

i∈
(S)

1 + αi.

In this equation, substitute for pj ′ and αi using the expressions constructed above to
get an equation with one variable, that is, pj . Now, the denominator of pj will be the
product of |T2| terms each of size at most U . Hence, the denominator of pj is ≤ �.

LEMMA 11.10. In Stage II, consider two phases P and P ′, not necessarily consecutive,
with P ′ subsequent to P and such that good j lies in the newly tight sets at the end of P
as well as P ′. Then, the increase in the price of j, going from P to P ′, is at least 1/�2.

PROOF. Let the prices of j at the end of P and P ′ be p/q and r/s, respectively. Since
prices only increase in Stage II and during a phase, prices in the newly tight set must
increase, r/s > p/q. By Lemma 11.9, q ≤ � and r ≤ �. Therefore, the increase in the
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price of j,

r
s

− p
q

≥ 1
�2 .

LEMMA 11.11. In Stage II, a phase consists of at most g iterations.

PROOF. After each iteration, other than the last one, at least one good will move from
G − J to J. Moreover, the algorithm never moves a good from J to G − J during the
phase. Hence, the lemma follows.

The structure of the rest of the argument is quite similar to that of Stage I. Once
again, the central fact established is that � drops by an inverse polynomial factor, of
(1−1/ng), in a phase (Lemma 11.16). Assume that a given phase consists of k iterations.
Let I0 denote set I at the start of the phase, and let Il denote the set I at the end of the
lth iteration, 1 ≤ l ≤ k. Assume that at the start of this phase, maxi∈B{θi} = δ = δ0. Let

δl = min
i∈Il

{θ i}, for 1 ≤ l < k, and θk = 0.

As in Stage I, we will account for the drop in � in two steps in each iteration. First,
as prices of goods in J are increased, the θ i ’s of buyers i ∈ I decrease, leading to a
reduction in �. Second, when a new edge ( j, i), with j ∈ (Gc − J) and i ∈ I, is added
to the network, the flow becomes more balanced, leading to a further drop. As in Stage
I, we will account for the first drop using the l1 norm and the second drop using the l2
norm.

We begin by accounting for the second decrease. Just before new edge ( j, i) is added,
let N be the network and p be the prices of goods. Let N′ be the network obtained by
adding this edge to N; of course, the prices remain unchanged. Let f and f ∗ be balanced
flows in N and N′, respectively. Denote by θ (θ∗) the surplus vector with respect to flow
f in N (flow f ∗ in N′).

LEMMA 11.12. ‖θ‖2 − ‖θ∗‖2 ≥ ν2, where ν = θ i − θ∗
i .

PROOF. Since the Invariant holds and the prices are unchanged, f and f ∗ have the
same value. Therefore, flow f ∗ − f will consist of circulations. Since f is a balanced
flow, all these circulations must use the edge ( j, i), because otherwise a circulation not
using edge ( j, i) could be used for making f more balanced. These circulations will
have the effect of decreasing the surplus of buyer i ∈ I, and increasing the surplus of
buyers il ∈ (B− I), for 1 ≤ l ≤ d. Let θ∗

il − θ il = νl, for 1 ≤ l ≤ d. Then,
∑h

l=1 νl = ν.
For each buyer il, 1 ≤ il ≤ d, there is a path from il to i in the corresponding

circulation and hence there is a path from i to il in the residual graph with respect to
flow f ∗. Since f ∗ is balanced, by Property 1, the surplus of buyer i with respect to f ∗ is
at least as large as that of il. Therefore, θ∗

i ≥ θ∗
il . The inequality ‖θ‖2 − ‖θ∗‖2 ≥ ν2 now

follows from Lemma 11.13, on substituting a = θ∗
i , and for 1 ≤ l ≤ d, bl = θ∗

il .

LEMMA 11.13. If a ≥ bl ≥ 0, l = 1, 2, . . . , k and δ = ∑k
l=1 δl where δ, δl ≥ 0, l =

1, 2, . . . , k, then

‖(a + δ, b1 − δ1, b2 − δ2, . . . , bk − δk)‖2 − ‖(a, b1, b2, . . . , bk)‖2 ≥ δ2.

PROOF.

(a + δ)2 +
k∑

i=1

(bi − δi)2 − a2 −
k∑

i=1

bi
2 ≥ δ2 + 2a

(
δ −

k∑
i=1

δi

)
≥ δ2.
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Let θ0 denote the surplus vector at the start of the phase and let θ l denote the surplus
vector at the end of iteration l, for 1 ≤ l ≤ k.

LEMMA 11.14. In the lth iteration, there is a buyer i ∈ Il−1 whose surplus decreases
by at least (δl−1 − δl), for 1 ≤ l < k.

PROOF. By Property 1, if there is a residual path from i to i′, then θi ≥ θi′ . Hence,
by the definition of set I′ in procedure UpdateSetsII, there is a buyer i ∈ Il−1 which
achieves mini∈Il{|θ i|} at the end of iteration l. Clearly, the surplus of i decreases by at
least (δl−1 − δl) in the lth iteration, for 1 ≤ l < k.

LEMMA 11.15. For 1 ≤ l ≤ k,

‖θ l−1‖2 − ‖θ l‖2 ≥ (δl−1 − δl)2.

PROOF. We first prove the statement for 1 ≤ l < k. By Lemma 11.14, there is a buyer
i ∈ Il−1 whose surplus decreases by at least (δl−1 − δl) in the lth iteration. Let us split
this decrease into two parts, the decrease due to increase in the prices of goods in J
and that due to a new edge entering the network. Let these be a and b, respectively.
Clearly, a + b ≥ δl−1 − δl.

Let θ ′ be the surplus vector just before the new edge is added to the network in
iteration l, that is, right after all the increase in prices of J has happened. As prices in
J increase, the surpluses of buyers in I decrease, but those of buyers in B − I remain
unchanged. Let c be the surplus of buyer i at the beginning of iteration l. Clearly,
c > a + b. Now,

‖θ l−1‖2 − ‖θ ′‖2 ≥ c2 − (c − a)2 = −a2 + 2ac.

By Lemma 11.12,

‖θ ′‖2 − ‖θ l‖2 ≥ b2.

Adding the two, we get

‖θ l−1‖2 − ‖θ l‖2 ≥ −a2 + 2ac + b2 > a2 + 2ab + b2 = (a + b)2 ≥ (δl−1 − δl)2,

where the second to last inequality follows from the observation that b ≤ c.
Finally, in the kth iteration, there is a buyer i ∈ Ik−1 whose surplus changes from

θ i > 0 to 0. Therefore,

‖θk−1‖2 − ‖θk‖2 ≥ θ2
i ≥ (δk−1 − δk)2,

since δk−1 ≤ θ i and δk = 0.

LEMMA 11.16. In a phase in Stage II, the potential drops by a factor of(
1 − 1

ng

)
.

PROOF. Now, ‖θ0‖2 − ‖θk‖2 can be written as a telescoping sum of k terms, each of
which is the decrease in the potential in one of the k iterations. Lemma 11.15 gives a
lower bound on each of these terms. The total lower bound is minimized when each of
the differences (δl−1 − δl) is equal. Now using the fact that δ0 = δ and δk = 0, we get:

‖θ0‖2 − ‖θk‖2 ≥ δ2

k
.

Finally, since ‖θ0‖2 ≤ nδ2, and by Lemma 11.11 k ≤ g, we get:

‖θk‖2 ≤ ‖θ0‖2
(

1 − 1
n2

)
.
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LEMMA 11.17. The execution of Stage II requires at most

O(n2g2(n log U + log C))

max-flow computations.

PROOF. By Lemma 11.16, the potential drops by a factor of half after O(ng) phases.
At the start of Stage II, the potential is at most n. Once its value drops below 1/�4, by
Lemma 11.9 and Lemma 11.10 in at most n more phases, the price of some good must
increase by at least 1/�2, leading to a corresponding decrease in the surplus money.
Hence, the potential must drop by 1/�4, obtaining equilibrium prices. Therefore, the
number of phases is

O(ng log(�4n)) = O(ng(n log U + log C)).

By Lemma 11.11, each phase consists of g iterations and each iteration requires n
max-flow computations for computing a balanced flow. The lemma follows.

Lemmas 11.8 and 11.17 give:

THEOREM 11.18. Algorithms 1 and 2 solve the decision and search versions of Nash
bargaining game ADNB using

O(n2g2(n3g log U + log C))

max-flow computations.

12. HOW WERE THE KKT CONDITIONS RELAXED?

As pointed out in Section 4 in Devanur et al. [2008], the primal-dual paradigm operates
in a fundamentally different way in the setting of logarithmic RCPs than in the setting
of an integral linear program. In the latter setting, in each iteration, it picks an un-
satisfied complementary slackness condition and satisfies it. On the other hand, in the
former setting, the algorithm starts off with a suboptimal solution that can be viewed
as relaxing a class of the KKT conditions. It then tightens these conditions gradually;
when they are all fully tightened, the optimal solution has been reached.

Let us first show that this high-level picture applies to Stage II of our algorithm as
well. Consider the situation right after a balanced flow has been computed at any point
in Stage II, and consider an arbitrary buyer i. At this point, let fi be the flow sent on
edge (i, t) by the balanced flow; fi is also the money spent by i in the current allocation.
Buyer i’s available money at this point is mi = 1 + ci/γ i. Therefore,

fi = mi − βi − 1 = ci

γ i
− βi.

Let vi be the total utility derived by i from the current allocation and suppose that
xij > 0. Then,

γ i = uij

pj
= vi

fi
= vi

(−βi) + ci/γ i
.

This yields (
(−βi) + ci

γ i

)
γ i = vi ⇒ γ i = vi − ci

−βi
.

Substituting for γ i and rearranging we get
pj

−βi
= uij

vi − ci
.
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To summarize, at any point in Stage II, we have ensured the first two KKT conditions
and relaxed the last two as follows:

(1) ∀ j ∈ G : pj ≥ 0.
(2) ∀ j ∈ G : pj > 0 ⇒ ∑

i∈B xij = 1.
(3’) ∀i ∈ B, ∀ j ∈ G : pj

−β i
≥ uij

vi−ci
.

(4’) ∀i ∈ B, ∀ j ∈ G : xij > 0 ⇒ pj

−β i
= uij

vi−ci
.

Observe that if prices are not feasible, then for some i, βi ≥ 0. If so, the relaxed KKT
conditions (3’) and (4’) will be meaningless. Recall that throughout Stage II, 0 < −βi ≤ 1
and (−βi) monotonically increases and reaches 1 at termination. Thus, at termination,
the last two KKT conditions are also ensured. For establishing a bound on the number
of phases needed in Stage II, it suffices to study the potential function

�′ =
∑
i∈B

β2
i .

Clearly, �′ > 0 at the start of Stage II and increases monotonically to n. However, it
turns out to be more convenient to study the potential function � given in Section 11.2,
which clearly achieves the same end.

13. DISCUSSION

Perhaps the most basic question remaining about RCPs is whether there are other
classes of such programs besides the two given in this article. It is quite clear that the
answer should eventually involve the use of algebraic geometry.

Sturmfels and Uhler [2010] have given the following interesting RCP which does not
lie in either of the classes of RCPs defined in this paper. Let S be an n × n positive
semidefinite matrix; this is the sample covariance matrix. Let G = (V, E) be a graph
on n vertices. They prove that if G is chordal, then the following is an RCP:

minimize log det � (9)
subject to ∀(i, j) such that (i, j) ∈ E or i = j : �i j = Sij

We ask if one can define a class of RCPs that contains this and other RCPs.
As in the case of the EG-program, the optimal solutions of convex program (3) resem-

ble those of a linear program rather than a nonlinear program. So, we repeat a question
raised in Vazirani [2007] namely, can the solution to ADNB be captured via a linear
program? We believe the answers to these questions are “no” and that establishing this
in a suitable formal framework will provide new insights into the boundary between
linear and nonlinear programs.

For the linear case of the Arrow-Debreu market model, Jain [2007] gives a rather
unusual convex program, which yields a polynomial-time algorithm. Eaves [1976] gives
an LCP for this model, hence showing that it always has a rational equilibrium if all
parameters are rational. However, rationality cannot be established directly from Jain’s
program and no combinatorial algorithm is known. We believe that there should be an
RCP for this market model that directly yields a proof of rationality. Also, in the absence
of a combinatorial algorithm, we ask if there is a polynomial time algorithm for this
market that uses an LP solver, that is, under Program B? A much more general question
along these lines is whether all RCPs have a strongly polynomial algorithm under
Program B. Perhaps the latter question can be made easier by assuming knowledge of
a proof of rationality via an exponential family of LPs, one of which yields the optimal
solution to the RCP. Another question, stated in the Introduction, is to obtain a strongly
polynomial algorithm for solving quadratic RCPs, assuming an LP-oracle.
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Next, we list some RCPs and leave the problem of finding combinatorial algorithms
for them. First, generalize ADNB to additively separable, piecewise-linear, concave
utilities. This problem has a rational convex program, and the question of finding a
combinatorial algorithm for it becomes even more significant in view of recent results
showing PPAD-completeness of computing an equilibrium in the Arrow-Debreu model
with these utility functions [Chen et al. 2009; Chen and Teng 2009; Vazirani and
Yannakakis 2011].

In an interesting paper, Kalai [1977] relaxed Nash’s axiom of symmetry and derived
the solution concept of nonsymmetric bargaining games. The convex program capturing
the solution to the nonsymmetric extension of ADNB is also rational; moreover, this
convex program generalizes the Eisenberg-Gale program and hence captures Fisher’s
linear case as well. Despite substantial effort, this problem has not yielded to a com-
binatorial algorithm. Once it is obtained, one could consider the common generaliza-
tion of the last two problems, that is, nonsymmetric ADNB with additively separable,
piecewise-linear, concave utilities.

On restricting ADNB (nonsymmetric ADNB) to zero disagreement utilities we get
the problems of computing equilibria for linear Fisher markets with unit (arbitrary)
money among buyers. Of course, both these problems are total. It turns out that a
combinatorial algorithm for the unit money case is no easier than that for the arbitrary
money case. In view of this, the difficulty of obtaining a combinatorial algorithm for
nonsymmetric ADNB comes as a surprise and may be substantiating the observation
that in the setting of logarithmic RCPs, nontotal problems behave quite differently
from total problems.

It is easy to see that if the given market is feasible and Stage I is started off with
any small price vector, not necessarily the one found by Initialization, it will terminate
with a feasible price vector. Hence, we get the following interesting fact:

LEMMA 13.1. Let M be a feasible flexible budget market and let pbe small, positive
prices for it. Then, there exist positive prices q such that p weakly dominates q and
prices q are feasible.

In view of Lemma 7.3 and the remarks made after it, and of Lemma 13.1, character-
izing the sets of small and feasible price vectors for a feasible flexible budget market is
an interesting question.

Approximation algorithms came as a natural generalization of combinatorial opti-
mization, which studied exact algorithms. In the same vein, we believe that combinato-
rial algorithms for RCPs should naturally lead to the study and design of combinatorial
algorithms that yield rational approximations to special families of nonlinear convex
programs.

APPENDIX

A. SOLUTION TO ADNB IN THE LIMIT

Assume that we are given an instance of game ADNB that is feasible and let M be the
flexible budget market obtained from it. In this section, we present an algorithm that
converges to the equilibrium of M in the limit.

Algorithm 3 will use the DPSV algorithm as a subroutine [Devanur et al. 2008].
When this subroutine is called, we assume that the money of each agent is fixed and is
specified in the vector m.

Let N′( p) denote the network for the case that the money of agents is fixed and
specified by vector m; this network differs from network N( p) only in that the capacities
of edges going from buyers to t are specified by m, rather than being defined as a function
of the prices.
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ALGORITHM 3 (Solution to ADNB in the Limit)

(1) Initialization: ∀i ∈ B : mi ← 1.
(2) Compute equilibrium prices, p, for market (u, m) using the DPSV algorithm.
(3) For each i ∈ B, compute γ i with respect to prices p, and set m′

i ← 1 + ci
γ i

.

(4) If m′ = m, then output equilibrium allocations and HALT.
Else, update m to m′ and go to Step 2.

Let p∗ and m∗ be the equilibrium prices and monies for the flexible budget market
M, and let p(k) and m(k) denote the prices and moneys computed by the algorithm in
the k-th iteration, k ≥ 1.

LEMMA A.1. p(k) and m(k) are monotone increasing and are weakly dominated by p∗
and m∗, respectively.

PROOF. We will use the following 2 facts. First, the DPSV algorithm maintains the
following invariant throughout:

Invariant. With respect to current prices, p, (s, B ∪ G ∪ t) is a min-cut in network
N′( p).
Second, if p are equilibrium prices for money m and if m′ is at least as large as m in
each component, then the equilibrium prices for money m′ cannot be smaller than p in
any component.

Consider the following induction hypothesis:

—the algorithm given above maintains the Invariant throughout.
— p(k) is monotone increasing (hence, for each agent i, γ i is monotonically decreasing).
—m(k) is monotone increasing.

It is easy to carry out this induction simultaneously for all three assertions.
Using the first assertion and Lemma 7.3, p(k) is weakly dominated bounded by p∗.

Now, using the formula for money in flexible budget markets, it is easy to see that m(k)

is weakly dominated by m∗.

THEOREM A.2. Algorithm 3 converges to the equilibrium prices and moneys of market
M in the limit.

PROOF. We will use the following fact: for the linear case of Fisher’s model, the analog
of Lemma 7.1 holds, that is, if p are equilibrium prices for money m, then in network
N′( p), (s, B∪ G∪ y) and (s ∪ B∪ G, t) must both be min-cuts (for a proof, see Lemma 5.2
in Vazirani [2007]).

Since p(k) and m(k) are monotone increasing and bounded, they must converge. Let
p(0) and m(0) be their limit points. With respect to these prices and moneys, it must be
the case that for each i ∈ B, mi = 1 + ci/γ i and (s, B∪ G ∪ t) and (s ∪ B∪ G, t) must both
be min-cuts in the corresponding network (by the fact stated above). Using lemma 7.1
we get that p(0) and m(0) are equilibrium prices and moneys for market M.

Finally, by Theorem 6.1, we get:

COROLLARY A.3. Algorithm 3 converges to the Nash bargaining solution for ADNB.

B. L 1 -NORM DOES NOT SUFFICE

Fundamental differences between complementary slackness conditions for an LP and
the KKT conditions for a convex program (see Section 4 in Devanur et al. [2008] and
Section 12) lead to new difficulties in designing an algorithm in the latter setting.
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The new algorithmic idea of balanced flows, introduced in Devanur et al. [2008], helps
overcome these difficulties. Although this notion yields the desired efficient algorithm,
the use of the l2 norm in the potential function used for proving polynomial time
termination makes the proofs quite difficult. Devanur et al. [2008] observe that the
l2 norm can be dispensed with for defining balanced flows and ask, “Can a polyno-
mial running time be established for the algorithm using the alternative definition,
thereby dispensing with the l2 norm altogether? At present, we see no way of doing
this . . . .”

In this section, we answer this question in the negative by providing an infinite
family of examples in which, under the natural l1 norm-based potential function, the
DPSV algorithm for Fisher’s linear case, makes inverse exponentially small progress
whereas the l2 norm-based potential function makes inverse polynomial progress. We
remark that the main idea underlying this family of examples yields similar examples
for Stage I and Stage II of Algorithm 1.

We will define the example in terms of 2 parameters, δ and H, which will be set at
the end. Assume B = {b0, b1, . . . , bn−1, bn} and G = {g0, g1, . . . , gn−1, gn}. At the start of
the phase, the only edges present in the network are (gi, bi), for 0 ≤ i ≤ n. The money
of the buyers are as follows:

m0 = 1 + δ, and for 1 ≤ i ≤ n − 1, mi = δ

2i , and mn = H.

The prices of goods are as follows:

p0 = 1, and for 1 ≤ i ≤ n − 1, pi = δ

2i , and pn = H.

Hence, at the start of the phase, the surplus of b0 is δ, and that of the rest of the
buyers is 0.

We will set δ = 1 and H to be a large number, say n. The phase starts with I = {b0}
and J = {g0}. Assume that at the end of iteration i, edge (gi, bi−1) enters the network,
and as a result, bi enters I and gi enters J, for 1 ≤ i ≤ n. The increment in price in
each iteration is very small—this is easily arranged by choosing the right utilities uij ’s.

To keep the description clean, let us assume the increments in price are all zero; the
numbers can be easily modified by inverse exponential amounts to yield the desired
outcome, even if the prices need to increase in each iteration. If so, at the end of all
this, the surplus of bi is

δ

2i+1 , for 0 ≤ i ≤ n − 1,

and that of bn is δ
2n .

Finally, in iteration n + 1, a very slight increase in x leads to set {gn} going tight.
Observe that the reason for choosing H to be a large number is to ensure that this
slight increase in x will not make a larger set go tight. Observe that 
({gn}) = {bn, bn−1}.
Now, the increase in the price of gn needed for this is δ

2n−1 . Since H is a large number
and the increase in x is very small, the total increase in the prices of other goods is less
than δ/2n−1.

In summary, the total increase in the l1 norm of the surplus vector in this phase is
an inverse exponential factor.
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