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Abstract

In 1979, Hylland and Zeckhauser [HZ79] gave a simple and general mechanism for a one-
sided matching market, given cardinal utilities of agents over goods. They use the power
of a pricing mechanism, which endows their mechanism with several desirable properties
– it produces an allocation that is Pareto optimal and envy-free, and the mechanism is in-
centive compatible in the large. It therefore provides an attractive, off-the-shelf method for
running an application involving such a market. With matching markets becoming ever more
prevalent and impactful, it is imperative to characterize the computational complexity of this
mechanism .

We present the following results:
1. A combinatorial, strongly polynomial time algorithm for the dichotomous case, i.e., 0/1

utilities, and more generally, when each agent’s utilities come from a bi-valued set.
2. An example that has only irrational equilibria; hence this problem is not in PPAD.
3. A proof of membership of the problem in the class FIXP. This involves a new proof of

the existence of an HZ equilibrium using Brouwer’s fixed point theorem; the proof of
Hylland and Zeckhauser used Kakutani’s fixed point theorem, which is more involved.

4. A proof of membership of the problem of computing an approximate HZ equilibrium
in the class PPAD.

In subsequent work [CCPY22], the problem of computing an approximate HZ equilibrium
was shown to be PPAD-hard, thereby establishing it to be PPAD-complete. We leave open the
(difficult) question of determining if computing an exact HZ equilibrium is FIXP-hard. We
also give pointers to the substantial body of work on cardinal-utility matching markets which
followed [VY21].

∗An extended abstract of this work appeared in the Proceedings of the 12th Innovations in Theoretical Computer
Science Conference [VY21]. The current version contains all the proofs which were omitted or only sketched in the
conference version.
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1 Introduction

A one-sided matching market consists of n agents, n indivisible goods and the preferences of the
agents for the goods, provided in a suitable form. A mechanism is called for which produces
allocations satisfying desirable optimality and fairness properties, such as Pareto optimality and
envy-freeness. In addition, the mechanism should have desirable game theoretic properties, such
as strategy-proofness. This problem arises in various settings, where individuals have to be
assigned to available positions, for example, assignment of students to dormitories, people to
committees, workers to tasks, etc.

Since different agents may prefer the same goods, randomization is often needed to achieve
fairness. A randomized mechanism yields a random assignment, which matches each agent i to
good j with some probability xij ∈ [0, 1]; the probabilities xij form a doubly stochastic matrix,
i.e., a fractional perfect matching in the bipartite graph between agents and goods. In some
applications in fact, the goods may represent resources that can be shared or divided (e.g. time-
shared housing units), in which case the quantities xij represent the shares of the agents in the
goods.

In a brilliant and by-now classic paper, Hylland and Zeckhauser [HZ79] studied the one-sided
matching problem and gave a simple and general mechanism, henceforth called HZ. In their
model, the preferences of agents are stated using von Neumann-Morgenstern utilities uij, spec-
ifying the utility of agent i for each good j ∈ [n] (these are called cardinal preferences). The HZ
mechanism produces a randomized allocation that has several desirable properties: it is ex-ante
Pareto optimal, i.e. there is no other random assignment in which some agent has strictly higher
expected utility and no agent has lower utility; it is envy-free, i.e. no agent prefers the allocation
of any other agent [HZ79]; and it is incentive compatible in the large [HMPY18].

The HZ mechanism uses the power of a pricing mechanism to produce its allocation: The goods
are first rendered divisible by viewing each one as one unit of probability shares, and each
agent is assumed to have one dollar of fake money. An HZ equilibrium consists of prices for the
goods and allocations xij for the agents so that each agent gets a total of one unit of probability
shares across all goods; moreover, this should be a utility-maximizing bundle w.r.t. the prices.
Hylland and Zeckhauser showed that there is always an HZ equilibrium, using Kakutani’s fixed
point theorem. The equilibrium allocation can be viewed as a fractional perfect matching in the
complete bipartite graph over n agents and n goods. Using the Birkhoff-von Neumann Theorem,
this fractional allocation can be converted into an integral one whose ex ante utility for each agent
is the same as the expected utility of her bundle of probability shares. Furthermore, if each agent
is allocated a minimum cost utility-maximizing bundle, then Hylland and Zeckhauser showed
that the allocation is Pareto optimal; it is envy-free simply because it was produced by a pricing
mechanism where all the agents have the same budget.

Despite the prominent standing of the HZ mechanism in economics and the large body of work
it has spawned on pseudo-markets, its computational complexity remains unexplored. The con-
ference version of the current paper, [VY21], initiated work on filling this gap; see Section 1.1.3
for a summary of work on cardinal-utility matching markets that happened in its wake. We note
that even though HZ was discovered forty-five years ago, the significance of matching markets
has only grown in recent years, with ever more diverse and impactful ones being launched into
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our economy, e.g., see [ftToC19, EIV23].

HZ can be viewed as a marriage between fractional perfect matching and a linear Fisher market,
both of which admit strongly polynomial time algorithms, and furthermore combinatorial ones
(i.e., not requiring an LP or a convex program solver). These facts had enticed researchers over
the years to seek an efficient algorithm for it. Observe that the HZ market model differs from
a linear Fisher market in only one respect, namely in the former, each agent is allocated exactly
one unit of goods and in the latter, there is no such restriction. The underlying reason for the
polynomial time solvability of the latter [DPSV08] is the property of weak gross substitutability1.
We note that this property is destroyed as soon as one goes to a slightly more general utility
function, namely piecewise-linear, concave and separable over goods (SPLC utilities), and this
case is PPAD-complete2 [VY11]. For the case of HZ, this property is destroyed by the restriction
that each agent be allocated exactly one unit of goods, e.g., see Example 8 and Remark 9. Indeed
this is a key stumbling block one faces while attempting to obtain a polynomial time algorithm
for HZ. The only known method for computing an HZ equilibrium is using an algebraic cell
decomposition [BPR95], which requires exploration of n5n2

> 1080 cells for a problem of size
n = 5; note that this number is more than the number of atoms in the known universe!

The problem of computing an HZ equilibrium is a total search problem, where the existence of a
solution is proved through a fixed point theorem. Two complexity classes for other problems of
this type (e.g. Nash equilibria and market equilibria) are PPAD and FIXP. We note that a crucial
requirement for membership in PPAD is that there is always a rational solution if all parameters
of the instance are rational numbers. In this paper we show that this is not true for HZ equilibria:
we give an example consisting of four agents and goods that has only irrational equilibria (in fact,
a unique equilibrium), see Section 5.

This irrationality of solutions suggests that the appropriate class for the problem of computing an
HZ equilibrium is the class FIXP. The proof in [HZ79], showing the existence of an equilibrium,
uses Kakutani’s fixed point theorem and it does not seem to lend itself in any easy way to
showing membership in FIXP. For this purpose, we give a new proof of the existence of an
HZ equilibrium. We define a suitable Brouwer function (a continuous function from a convex,
compact set to itself) which uses elementary arithmetic operations to improve the optimality or
the feasibility of the current prices and allocations, in case they do not form an equilibrium.
Consequently the only fixed points of the adjustment mechanism are equilibria. This yields our
proof of membership in FIXP, see Section 6. Showing FIXP-hardness remains open.

We define in Section 7 a notion of approximate HZ equilibrium: a set of prices and allocations,
where the agent’s allocations are only approximately optimal. Approximate HZ equilibria are
approximately Pareto optimal and envy-free. Using the same Brouwer function as in the FIXP
proof, we show membership of the approximate HZ equilibrium problem in PPAD. In subsequent
work, [CCPY22] showed PPAD-hardness for the approximate HZ equilibrium problem, hence the
problem is PPAD-complete.

We give one positive result for HZ: we give a combinatorial, strongly polynomial time algorithm
for the dichotomous case, i.e., all utilities are 0/1. This involves melding a bipartite graph prefect

1Namely, if you increase the price of one good, the demand of another good cannot decrease.
2Independently, PPAD-hardness, though not PPAD membership, was also established in [CT09].
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matching algorithm with ideas from the combinatorial algorithm of [DPSV08] for the linear Fisher
market, see Section 4. We also extend this result to solving a more general problem which we call
the bi-valued utilities case, in which each agent’s utilities can take one of only two values, though
the two values can be different for different agents.

However, this approach did not extend any further, say from the bi-valued utilities case to tri-
valued utilities, in particular, to the case of {0, 1

2 , 1} utilities. Indeed, this case appears to be
intractable and its status is discussed in Section 8. Note that the case of four-valued utilities is
PPAD-hard, as shown in [CCPY22].

1.1 Related work

1.1.1 Past Work on Matching Markets

Matching markets can be classified into two classes based on the type of agents’ preferences:
cardinal, where each agent i specifies a numerical utility uij for each good j, and ordinal, where
each agent specifies an ordering of the goods. Whereas ordinal-based matching markets are well-
developed from the viewpoint of both theory and practice, the status of cardinal-based matching
markets has been in a state a flux for some time; however, very recent developments seem to
have restored a semblance of order, see Section 1.1.3. These two types of preferences have their
individual pros and cons: Whereas ordinal preferences are easier to elicit, cardinal preferences
are more expressive, thereby producing higher quality allocations and leading to significant gain
in efficiency, e.g., [ILWM17] give a striking example with n types of agents and goods, in which
an allocation under cardinal utilities improves every agent by a factor of θ(n) over the (coarse)
allocation made under ordinal information.

Important mechanisms for matching markets under ordinal preferences, together with their prop-
erties, are the following. For two-sided matching markets, the Gale-Shapley Deferred Acceptance
algorithm finds a stable matching, i.e, a matching which is in the core of this game. The algorithm
is incentive compatible for the proposing side. For one-sided matching markets, the famous Top
Trading Cycles mechanism is an algorithm for reallocating goods which is Pareto efficient (op-
timal), strategyproof and core-stable; it was discovered by Gale and reported in [SS74]. Two
prominent randomized mechanisms for the one-sided matching problem with ordinal prefer-
ences are Random Priority (also known as Random Serial Dictatorship) and Probabilistic Serial
[BM01]. Random Priority [Mou18] is strategy-proof, ex-post Pareto efficient (but not ex-ante),
and is not envy-free. Probabilistic Serial [BM01] is envy-free, it is ‘ordinally efficient” (a notion
of efficiency appropriate for ordinal preferences that lies in strength between ex-ante and ex-
post Pareto efficiency), and satisfies a weak form of strategy-proofness. Both Random Priority
and Probabilistic Serial are simple randomized mechanisms that can be computed efficiently (in
probabilistic) polynomial time).

Before the conference version of this paper [VY21], only the following computational result on
the HZ mechanism was known: using the algebraic cell decomposition technique of [BPR95],
[AJKT17] gave a polynomial time algorithm for computing an equilibrium for the case that n is
a fixed constant. As stated in the Introduction, this algorithm is far from practical even for small
values of n.

4



An immediate generalization of HZ is its exchange extension in which each agent’s initial en-
dowment consists of one unit of goods and after trading, each agent desires one unit of goods.
[HZ79] gave an example showing that this model may not even admit an equilibrium. That es-
sentially put an end to the exploration of more general cardinal-utility matching markets, other
than two exceptions.

First, Echenique et al. [EMZ19], considered a hybrid model that is a convex combination of HZ
and exchange HZ, and showed that if the convex combination has a non-zero extent of the first
model, then equilibrium exists. [GTV22] defined an -approximate Arrow-Debreu extension of
HZ and, using the previous result, proved existence of equilibrium3. The second was work on
the dichotomous utilities case: For two-sided matching markets under symmetric4 dichotomous
utilities, existence of equilibrium was shown in [BM04] and a polynomial time algorithm for
finding an equilibrium follows by applying the methods of Section 4 of the current paper. For
non-bipartite matching markets under dichotomous utilities, existence of equilibrium was shown
in [RSÜ05] and a polynomial time algorithm for finding an equilibrium was given in [LLHT14].

As stated in the Introduction, HZ led to pseudo-markets for a number of applications, e.g., see
[Bud11, HMPY18, Le17, McL18].

1.1.2 Past Work on Complexity Classes PPAD and FIXP

Several papers have established membership and hardness in PPAD and FIXP for equilibrium
computation problems in different settings. The quintessential complete problem for PPAD is
2-Nash [DGP09, CDDT09] and that for FIXP is multiplayer Nash equilibrium [EY10]. For the
latter problem, computing an approximate equilibrium is PPAD-complete [DGP09].

For the case of market equilibrium, there are two parallel streams of results in the economics
literature: one assumes that an excess demand function is given and the other assumes a specific
class of utility functions. [EY10] proved FIXP-completeness of Arrow-Debreu markets whose
excess demand functions are algebraic. This result is for the first stream and it does not estab-
lish FIXP-completeness of Arrow-Debreu markets under any specific class of utility functions.
Results for the second stream include proofs of membership in FIXP for Arrow-Debreu markets
under Leontief and piecewise-linear concave (PLC) utility functions in [Yan13] and [GMV16],
respectively. This was followed by a proof of FIXP-hardness for Arrow-Debreu markets with
Leontief and PLC utilities [GMVY17]. For the case of Arrow-Debreu markets with CES (constant
elasticity of substitution) utility functions, [CPY17] show membership in FIXP but leave open
FIXP-hardness.

For the CES market problem stated above, computing an approximate equilibrium is PPAD-
complete, and the same holds more generally for a large class of ‘non-monotonic’ markets
[CPY17]. Computing an (exact or approximate) equilibrium under separable, piecewise-linear,
concave (SPLC) utilities for Arrow-Debreu and Fisher markets is also known to be PPAD-complete
[CDT09, CT09, VY11].

3Furthermore, they proved that this equilibrium satisfies Pareto optimality, approximate envy-freeness, and ap-
proximate weak core stability.

4Under symmetric dichotomous utilities, if i and j are on different sides of the bipartition, then the utility of i for j
is the same as that of j for i.
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1.1.3 The Current Status of Cardinal-Utility Matching Markets

In this section, we will summarize the developments that followed [VY21]. First, Chen et al.
[CCPY22], proved that computing an approximate HZ equilibrium is PPAD-hard. That naturally
raised the question of finding alternative mechanisms, especially because of the ever-increasing
impact of matching markets in the economy [ftToC19, EIV23] and the advantage of cardinal-
utility matching markets over ordinal ones. Fortunately, alternatives to pricing-based mecha-
nisms for market models had been explored in the past: [Vaz12] gave a Nash-bargaining-based
mechanism for the linear Arrow-Debreu model (which was traditionally addressed via the pric-
ing mechanism), and it led to the paper [HV22].

[HV22] addressed two issues: the intractability of HZ and the paucity of matching market mod-
els, in sharp contrast with General Equilibrium Theory, which had defined and extensively stud-
ied several fundamental market models to address a number of specialized and realistic situa-
tions. [HV22] defined a rich collection of Nash-bargaining-based matching market models, not
only one-sided but also two-sided, and not only in Fisher but also in the Arrow-Debreu setting.
Since the Nash bargaining solution is captured by a convex program, these models can be solved
in polynomial time. However, to demonstrate their practicality, [HV22] gave very fast imple-
mentations, using Frank Wolfe and cutting plane algorithms, which solved very large instances,
with 20,000 agents and goods, in minutes on a laptop, even for a two-sided matching market.
Subsequently, [PTV21] obtained efficient combinatorial algorithms with proven running times,
using the techniques of multiplicative weights update and conditional gradient descent,

The next question was determining whether these models match the nice game-theoretic prop-
erties of HZ. The solution to a Nash bargaining game is Pareto optimal; however it is neither
envy-free nor incentive compatible. Recently [TV24] showed that for the case of linear utilities,
the Nash-bargaining-based models satisfy envy-freeness within factor two and incentive compat-
ibility within factor two; moreover, both results are tight. Additionally, via a reduction from HZ,
they showed that the problem of finding an envy free and Pareto optimal allocation in a one-
sided market is PPAD-hard; membership of this problem in PPAD was established by [CHR23].
Hence the properties of the Nash-bargaining-based models are almost as good as is feasible.

Another question is whether two-sided markets admit envy free and Pareto optimal allocations.
[BM04] gave a positive answer for the case of symmetric dichotomous utilities. However, [TV24]
show that on relaxing either of the conditions, symmetry or dichotomous utilities, such an allo-
cation may not exist5. In contrast, the Nash bargaining approach easily yields models for these
and more general matching market settings [HV22].

A couple of recent papers provide alternative ways of obtaining some of our results: First,
[FHHH21] prove membership of HZ in FIXP by first developing machinery for proving FIXP
membership of problems by constructing a ‘pseudo-gate’ (i.e., a FIXP sub-circuit) that solves lin-
ear or convex programs, suitably presented. They then use such a pseudo-gate as a gadget in
the construction of a FIXP circuit for various problems, including HZ. In contrast, our poof of
membership of HZ in FIXP is more direct, since we construct a circuit for a Brouwer function that
adjusts prices and allocations if they do not form an HZ equilibrium. An advantage of our ap-

5[TV24] give examples of two-sided matching markets with symmetric {0, 1, 2} utilities, and those with asymmetric
dichotomous utilities for which such allocations don’t exist, hence precluding pricing-based mechanisms.
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proach is that the same function is used to show membership of the approximate HZ equilibrium
problem in PPAD. Second, [GTV22] gave a rational convex program6 for the dichotomous case of
HZ, thereby implying its polynomial time solvability via an LP-solver. Once again, our approach
has advantages: it is more efficient and it gives an insight into the combinatorial structure of the
problem.

Organization of the paper:
Section 2 describes the Hylland-Zeckhauser mechanism in more detail and Section 3 gives basic
properties of optimal allocations and prices. Section 4 presents our polynomial-time algorithm
for the case of bi-valued utilities. Section 5 presents an example instance with four agents and
goods whose (unique) equilibrium is irrational. Section 6 shows membership of the problem of
computing an HZ equilibrium in the class FIXP. Section 7 defines approximate HZ equilibria and
shows that their computation is in the class PPAD. Appendix A proves a sufficient condition for
the existence of rational equilibria and uses it to show rationality for the case of three goods.

2 The Hylland-Zeckhauser mechanism

Hylland and Zeckhauser [HZ79] gave a general mechanism for a one-sided matching market
using the power of a pricing mechanism. Their formulation is as follows: Let A = {1, 2, . . . n}
be a set of n agents and G = {1, 2, . . . , n} be a set of n indivisible goods7. The mechanism will
allocate exactly one good to each agent and will have the following properties:

• The allocation produced is Pareto optimal and envy-free.

• The mechanism is incentive compatible in the large.

The Hylland-Zeckhauser mechanism is a marriage between linear Fisher market and fractional
perfect matching. The agents will reveal to the mechanism their desires for the goods by stating
their von Neumann-Mogenstern utilities. Let uij represent the utility of agent i for good j. We
will use language from the study of market equilibria to describe the rest of the formulation. For
this purpose, we next define the linear Fisher market model.

A linear Fisher market consists of a set A = {1, 2, . . . n} of n agents and a set G = {1, 2, . . . , m} of
m infinitely divisible goods. By fixing the units for each good, we may assume without loss of
generality that there is a unit of each good in the market. Each agent i has money mi and utility
uij for a unit of good j. If xij, 1 ≤ j ≤ m is the bundle of goods allocated to i, then the utility accrued
by i is ∑j uijxij. Each good j is assigned a non-negative price, pj. Allocations and prices, x and
p, are said to form an equilibrium if each agent obtains a utility maximizing bundle of goods at
prices p and the market clears, i.e., each good is fully sold and all money of agents is fully spent.

In order to mold the one-sided market into a linear Fisher market, the HZ mechanism renders
goods divisible by assuming that there is one unit of probability share of each good. An allocation

6i.e., a non-linear convex program which has a rational optimal solution as long as all parameters are rational
numbers [Vaz12].

7The model in the original paper [HZ79] is expressed in terms of assigning n individuals to m jobs, with the
requirement that exactly sj individuals must be assigned to job j, where ∑j∈m sj = n. This model is equivalent to the
above formulation, where the n goods correspond to the n job positions.
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to an agent is a collection of probability shares over the goods. Let xij be the probability share
that agent i receives of good j. Then, ∑j uijxij is the expected utility accrued by agent i. Each good j
has price pj ≥ 0 in this market and each agent has 1 dollar with which it buys probability shares.
The entire allocation must form a fractional perfect matching in the complete bipartite graph over
vertex sets A and G as follows: there is one unit of probability share of each good and the total
probability share assigned to each agent also needs to be one unit. Subject to these constraints,
each agent should buy a utility maximizing bundle of goods having the smallest possible cost. Note
that the last condition is not required in the definition of a linear Fisher market equilibrium. It is
needed here to guarantee that the allocation obtained is Pareto optimal. A second departure from
the linear Fisher market equilibrium is that in the latter, each agent i must spend her money mi
fully; in the HZ mechanism , i need not spend her entire dollar. Since the allocation is required to
form a fractional perfect matching, all goods are fully sold. We will define these to be equilibrium
allocation and prices; we state this formally below after giving some preliminary definitions.

Definition 1. Let x and p denote arbitrary (non-negative) allocations and prices of goods. By
size, cost and value of agent i’s bundle we mean

∑
j∈G

xij, ∑
j∈G

pjxij and ∑
j∈G

uijxij,

respectively. We will denote these by size(i), cost(i) and value(i), respectively.

Definition 2. (Hylland and Zeckhauser [HZ79]) Allocations and prices (x, p) form an equilibrium
for the one-sided matching market stated above if:

1. The total probability share of each good j is 1 unit, i.e., ∑i xij = 1.

2. The size of each agent i’s allocation is 1, i.e., size(i) = 1.

3. The cost of the bundle of each agent is at most 1.

4. Subject to constraints 2 and 3, each agent i maximizes her expected utility at minimum
possible cost, i.e., maximize value(i), subject to size(i) = 1, cost(i) ≤ 1, and lastly, cost(i) is
smallest among all utility-maximizing bundles of i.

An allocation (fractional perfect matching) x is Pareto optimal if it is not dominated by any other
allocation, i.e., there is no allocation y such that ∑j uijyij ≥ ∑j uijxij for all agents i, with the
inequality strict for at least one agent i. An allocation x is envy-free if ∑i uijxij ≥ ∑j uijxkj for all
agents i, k, i.e. no agent i envies the allocation of another agent k.

Using Kakutani’s fixed point theorem, Hylland and Zeckhauser showed the following:

Theorem 3. [Hylland and Zeckhauser [HZ79]] Every instance of the one-sided market defined above
admits an equilibrium; moreover, the corresponding allocation is Pareto optimal and envy-free.

Finally, if this “market” is large enough, no individual agent will be able to improve her allocation
by misreporting utilities nor will she be able to manipulate prices. For this reason, the HZ
mechanism is incentive compatible in the large.
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As stated above, Hylland and Zeckhauser view each agent’s allocation as a lottery over goods.
In this viewpoint, agents accrue utility in an expected sense from their allocations. Once these
lotteries are resolved in a manner faithful to the probabilities, an assignment of indivisible goods
will result. The latter can be done using the well-known Theorem of Birkhoff [Bir46] and von
Neumann [VN53] which states that any doubly stochastic matrix can be written as a convex
combination of permutation matrices, i.e., perfect matchings; moreover, this decomposition can
be obtained efficiently. Next, pick one of these perfect matchings from the discrete distribution
given by coefficients in the convex combination. As is well known [HZ79], since the lottery over
goods is Pareto optimal ex ante, the integral allocation, viewed stochastically, will also be Pareto
optimal ex post.

A randomized mechanism is called ex-ante Pareto optimal (efficient) if, for every instance, its al-
location x is Pareto optimal. It is called ex-post Pareto optimal if, for every instance, every integral
matching that it generates is Pareto optimal (not dominated by any other integral matching). Ex-
ante Pareto optimality implies ex-post, but not vice-versa [HZ79]; it is possible that a randomized
mechanism is ex-post Pareto optimal but there is another mechanism that yields strictly higher
expected utility for all agents on some instances.

Another viewpoint, forwarded by Bogomolnaia and Moulin [BM04], considers the fractional
perfect matching, or equivalently the doubly-stochastic matrix, as the output of the mechanism,
i.e., without resorting to randomized rounding. This viewpoint assumes that the agents are going
to ”time-share” the goods or resources and the doubly-stochastic matrix, which is derived from
a market mechanism, provides a “fair” way of doing so.

Remark 4. In their paper studying the dichotomous case of two-sided matching markets, Bogo-
molnaia and Moulin [BM04] state that the preferred way of dealing with indivisibilities inherent
in matching markets is to resort to time sharing using randomization. Their method builds on
the Gallai-Edmonds decomposition of the underlying bipartite graph; this classifies vertices into
three categories: disposable, over-demanded and perfectly matched. This is a much more coarse
insight into the demand structure of vertices than that obtained via the HZ equilibrium. The
latter is the output of a market mechanism in which equilibrium prices reflect the relative impor-
tance of goods in an accurate and precise manner, based on the utilities declared by buyers, and
equilibrium allocations are as equitable as possible across buyers. Hence the latter yields a more
fair and desirable randomized time-sharing mechanism.

3 Properties of Optimal Allocations and Prices

Let p be given prices which are not necessarily equilibrium prices. An optimal bundle for agent
i, xi, is a solution to the following LP, which has two constraints, one for size and one for cost.
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max ∑
j

xijuij (1)

s.t. (2)

∑
j

xij = 1 (3)

∑
j

xij pj ≤ 1 (4)

∀j xij ≥ 0 (5)

Taking µi and αi to be the dual variables corresponding to the two constraints, we get the dual
LP:

min αi + µi (6)
s.t. (7)
∀j αi pj + µi ≥ uij (8)

αi ≥ 0 (9)

Clearly µi is unconstrained. µi will be called the offset on i’s utilities. By complementary slack-
ness, if xij is positive then αi pj = uij − µi. All goods j satisfying this equality will be called optimal
goods for agent i. The rest of the goods, called suboptimal, will satisfy αi pj > uij − µi. Obviously
an optimal bundle for i must contain only optimal goods.

The parameter µi plays a crucial role in ensuring that i’s optimal bundle satisfies both size and
cost constraints. If a single good is an effective way of satisfying both size and cost constraints,
then µi plays no role and can be set to zero. However, if different goods are better from the
viewpoint of size and cost, then µi attains the right value so they both become optimal and i
buys an appropriate combination. We provide an example below to illustrate this.

Example 5. Suppose i has positive utilities for only two goods, j and k, with uij = 10, uik = 2
and their prices are pj = 2, pk = 0.1. Clearly, neither good satisfies both size and cost constraints
optimally: good j is better for the size constraint and k is better for the cost constraint. If i buys
one unit of good j, she spends 2 dollars, thus exceeding her budget. On the other hand, she
can afford to buy 10 units of k, giving her utility of 20; however, she has far exceeded the size
constraint. It turns out that her optimal bundle consists of 9/19 units of j and 10/19 units of k;
the costs of these two goods being 18/19 and 1/19 dollars, respectively. Clearly, her size and cost
constraints are both met exactly. Her total utility from this bundle is 110/19. It is easy to see that
αi = 80/19 and µi = 30/19, and for these settings of the parameters, both goods are optimal.

We next show that equilibrium prices are invariant under the operation of scaling the difference
of prices from 1.
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Lemma 6. Let p be an equilibrium price vector and fix any r > 0. Let p′ be such that ∀j ∈ G,
p′j − 1 = r(pj − 1). Then p′ is also an equilibrium price vector.

Proof. Consider an agent i. Clearly, ∑j∈G pjxij ≤ 1. Now,

∑
j∈G

p′jxij = ∑
j∈G

(rpj − r + 1)xij ≤ 1,

where the last inequality follows by using ∑j∈G xij = 1.

Using Lemma 6, it is easy to see that if the allocation x provides optimal bundles to all agents
under prices p then it also does so under p′. In the rest of this paper we will enforce the condition
that the minimum price of a good is zero, thereby fixing the scale. Observe that the main goal of
the Hylland-Zeckhauser mechanism is to yield the “correct” allocations to agents; the prices are
simply a vehicle in the market mechanism to achieve this. Hence arbitrarily fixing the scale does
not change the essential nature of the problem. Moreover, setting the minimum price to zero is
standard [HZ79] and can lead to simplifying the equilibrium computation problem as shown in
Remark 7.

Remark 7. We remark that on the one hand, the offset µi is a key enabler in constructing optimal
bundles and on the other, it is also a main source of difficulty in computing equilibria for the
HZ mechanism . We identify an interesting case in which µi = 0 and this difficulty is mitigated.
In particular, this holds for all agents in the dichotomous case presented in Section 4. Suppose
good j is optimal for agent i, uij = 0 and pj = 0, then it is easy to check that µi = 0. If so, the
optimal goods for i are simply the maximum bang-per-buck goods; the latter notion is replete in
market equilibrium papers, e.g., see [DPSV08].

Finally, we extend Example 5 to illustrate that optimal allocations for the Hylland-Zeckhauser
model do not satisfy the weak gross substitutes (WGS) condition in general. This is done in
Example 8 and in Remark 9.

Example 8. In Example 5, let us raise the price of k to 0.2 dollars. Then the optimal allocation
for i changes to 4/9 units of j and 5/9 units of k. Notice that the demand for j went down from
9/19 to 4/9. One way to understand this change is as follows: Let us start with the old allocation
of 10/19 units of k. Clearly, the cost of this allocation of k went up from 1/19 to 2/19, leaving
only 17/19 dollars for j. Therefore size of j needs to be reduced to 17/38. However, now the
sum of the sizes becomes 37/38, i.e., less than a unit. We wish to increase this to a unit while
still keeping cost at a unit. The only way of doing this is to sell some of the more expensive good
and use the money to buy the cheaper good. This is the reason for the decrease in demand of j.

Remark 9. Let us extract out the main idea behind Example 8 in a simple setting where we have
taken the liberty of ignoring lower order terms in . Suppose agent i has positive utilities for
goods j and k, with uij = 100, uik = , where  > 0 is a very small number. Suppose their prices
are pj = 100, pk = . The optimal bundle involves spending 1 −  and  on j and k, respectively.

Next, assume that the price of good k is raised to 2. Now, the optimal bundle involves spending
1− 2 and 2 on j and k, respectively. Thus, on raising the price of k, the demand of j went down.
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3.1 Characterizing Optimal Bundles

In this section we give a characterization of optimal bundles for an agent at given prices p which
are not necessarily equilibrium prices. This characterization will be used critically in Section 6, 7
and to some extent in Section 5.

Notation: For each agent i, let G∗
i ⊆ G denote the set of goods from which i derives maximum

utility, i.e., G∗
i = arg maxj∈G{uij}. With respect to an allocation x, let Bi = {j ∈ G | xij > 0}, i.e.,

the set of goods in i’s bundle.

We identify the following four types of optimal bundles.

Type A bundles: αi = 0 and cost(i) < 1.

By complementary slackness, optimal goods will satisfy uij = µi and suboptimal goods will
satisfy uij < µi. Hence the set of optimal goods is G∗

i and Bi ⊆ G∗
i . Note that the prices of goods

in Bi can be arbitrary, as long as cost(i) < 1.

Type B bundles: αi = 0 and cost(i) = 1.

The only difference from the previous type is that cost(i) is exactly 1. The reason for distinguish-
ing the two types will become clear in Section 6.

Type C bundles: αi > 0 and all optimal goods for i have the same utility.

Recall that good j is optimal for i if8 αi pj = uij − µi. Suppose goods j and k are both optimal.
Then uij = uik and αi pj = uij − µi = uik − µi = αi pk, i.e., pj = pk. Since αi > 0, by complementary
slackness, cost(i) = 1. Further, since size(i) = 1, we get that each optimal good has price 1.

Type D bundles: αi > 0 and not all optimal goods for i have the same utility.

Suppose goods j and k are both optimal and uij ∕= uik. Then αi pj = uij − µi ∕= uik − µi = αi pk,
i.e., pj ∕= pk. Therefore optimal goods have at least two different prices. Since αi > 0, by
complementary slackness, cost(i) = 1. Further, since size(i) = 1, there must be an optimal
good with price more than 1 and an optimal good with price less than 1. Finally, if good z is
suboptimal for i, then αi pz < uiz − µi.

4 Strongly Polynomial Algorithm for Bi-Valued Utilities

In Section 4.1, we will first give a strongly polynomial time algorithm for the dichotomous case
of HZ, i.e., when all utilities uij are 0/1. Our algorithm uses some key ideas from the paper of
[DPSV08], which gave a polynomial time algorithm for the linear-utilities case of Fisher markets;
these ideas are summarized in Remark 15. We note that in Section 5, [DPSV08] presented a
“simple algorithm” for this problem; however, it does not run in polynomial time. In Section 8,
they enhanced this algorithm with the additional machinery of balanced flows and l2 norm, and
this led to a polynomial time—though not strongly polynomial—algorithm. By exploiting the

8Note that under this case, optimal goods are not necessarily maximum utility goods; the latter may be suboptimal
because their prices are too high.

12



much simpler structure of the dichotomous case, we managed to fine-tune the “simple algorithm”
of [DPSV08] to achieve a strongly polynomial algorithm for our problem.

Next, in Section 4.2 we will handle the more general case of bi-valued utilities, which is defined as
follows: for each agent i, we are given a set of rational numbers {ai, bi}, where 0 ≤ ai < bi, and
the utilities uij, ∀j ∈ G, are picked from this set. For this purpose, we will define the notion of
equivalence of utility functions and use it to reduce the bi-valued utilities case to the dichotomous
case.

Notation: We will denote by H = (A, B, E) the bipartite graph on vertex sets A and B, and edge
set E, with (i, j) ∈ E iff uij = 1. For A′ ⊆ A and B′ ⊆ B, we will denote by H[A′, B′] the restriction
of H to vertex set A′ ∪ B′. If ν is a matching in H, ν ⊆ E, and (i, j) ∈ ν then we will say that
ν(i) = j and ν(j) = i. For any subset S ⊆ A, N(S) will denote the set of neighbors, in B, of vertices
in S; similarly, for any subset S ⊆ B, N(S) will denote the set of neighbors, in A, of vertices in S.

4.1 The Dichotomous Case

An instance of the dichotomous case of HZ can be encoded as a bipartite graph H = (A, B, E),
where A and B are the set of n agents and n goods, respectively, and for i ∈ A, j ∈ B, (i, j) ∈ E if
and only if uij = 1. Our algorithm is stated as Algorithm 1.

If H has a perfect matching, computing equilibrium allocations and prices is straightforward,
since each agent can be allocated one unit of a unique good from which it derives utility 1 and
having price zero; see Steps 1(a) and 1(b) of Algorithm 1. Otherwise in Step 2, we compute a
minimum vertex cover for H; it is necessarily smaller than n. We will need the following lemma.

Lemma 10. The following hold:

1. For any set S ⊆ A2, |N(S)| ≥ |S|.

2. For any set S ⊆ B1, |N(S) ∩ A1| ≥ |S|.

Proof. 1). If |N(S)| < |S| then (B1 ∪ N(S)) ∪ (A2 − S) is a smaller vertex cover for H, leading to
a contradiction.

2). If |N(S) ∩ A1| < |S| then (B1 − S) ∪ (A2 ∪ N(S)) is a smaller vertex cover for H, leading to a
contradiction.

The first part of Lemma 10, together with Hall’s Theorem, implies that a maximum matching in
H[A2, B2] must match all agents. Therefore in Step 2(a), each agent i ∈ A2 is allocated one unit
of a unique good, having price zero, from which it derives utility 1; clearly, this is an optimal
bundle of minimum cost for i. The number of goods that will remain unmatched in B2 at the end
of this step is |B2|− |A2|.
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Algorithm 1. Algorithm for the Dichotomous Case

1. If H = (A, B, E) has a perfect matching, say ν, then do:
(a) ∀i ∈ A: allocate good ν(i) to i.
(b) ∀j ∈ B: pj ← 0. Go to Step 3.

2. (a) Find a minimum vertex cover in H, say (B1 ∪ A2), where B1 ⊂ B and A2 ⊂ A.
Let A1 = A − A2 and B2 = B − B1.

(b) Find a maximum matching in H[A2, B2], say ν.
(c) ∀i ∈ A2: allocate good ν(i) to i; ∀j ∈ B2: pj ← 0.

3. (a) C ← A1; D ← B1.
(b) Consider the subgraph H[C, D].
(c) Initialization: p ← 1.
(d) While D ∕= ∅, do:

i. Raise p at unit rate.
ii. When a set S ⊆ D goes tight, do:

A. ∀j ∈ S∗ : pj ← p.
B. ∀i ∈ (N(S∗) ∩ C) : allocate 1/p units of goods from S∗.
C. D ← D − S∗.
D. C ← C − N(S∗).

(e) ∀i ∈ A1: allocate unmatched goods of B2 to i, to satisfy the size constraint.
.

4. Output the allocations and prices computed and Halt.
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4.1.1 Computing Allocations and Prices in Subnetwork H[A1, B1]

Allocations for agents in A1 and prices of goods in B1 are computed in Step 3 of Algorithm 1, in
the subnetwork H[A1, B1]; this is the step which uses ideas from [DPSV08], see Remark 15. At
the end of Step 3(d), each agent in A1 receives utility 1 goods, worth 1 dollar, from B1. However,
if pj > 1, the size of her allocation will be strictly less than one. To achieve the latter, Step 3(e)
allocates the unmatched goods from B2, which are zero-priced, to agents in A1. Clearly, the total
deficit in size among all agents in A1 is |A1|− |B1|. Since this equals |B2|− |A2|, the market clears
at the end of this step. In Lemma 16 we prove that each agent in A1 gets an optimal bundle of
goods of minimum cost.

At any point during the execution of Step 3(d), C ⊆ A1 and D ⊆ B1 and the algorithm is working
on the subnetwork H[C, D]. Each good in D has the same price, namely p. We will say that a
set S ⊆ D is tight if the total worth of goods in S equals the total money possessed by agents in
C who desire these goods. The latter set is the neighborhood of S in the subgraph H[C, D], i.e.,
N(S) ∩ C. Thus S is tight if p · |S| = |N(S) ∩ C|.

At the start of Step 3(d), H[C, D] = H[A1, B1] and by the second part of Lemma 10, every set
S ⊆ D satisfies p · |S| ≤ |N(S) ∩ A1|, where p = 1. In Step 3(d)(i), as the algorithm raises p,
starting with p = 1, at some point a set S will go tight. The price at which a set goes tight and
the tight set are given by

p∗ = min
S⊆D

|N(S) ∩ A1|
|S| and S∗ = argminS⊆D

|N(S) ∩ A1|
|S| ,

respectively; if several sets go tight, we will assume that S∗ represents the maximal tight set9. In
Step 3(d)(ii), the algorithm removes S∗ and N(S∗) from D and C, respectively, and attempts to
find the next tight set in the rest of the graph. At a general step,

p∗ = min
S⊆D

|N(S) ∩ C|
|S| and S∗ = argminS⊆D

|N(S) ∩ C|
|S| .

Next we prove an important monotonicity condition, due to which it suffices to monotonically
raise p to find the next tight set. Let S1, . . . , Sk be the successive sets that go tight. Let C1 = A1
and in general let Cl+1 = A1 − (S1 ∪ . . . Sl).

Lemma 11. For k > l ≥ 1,
|N(Sl+1) ∩ Cl+1|

|S| >
|N(Sl) ∩ Cl |

|S| .

Proof. Consider a value of l, with k > l ≥ 1. Let

|N(Sl) ∩ Cl |
|S| = p.

Assume for the sake of contradiction that

|N(Sl+1) ∩ Cl+1|
|S| ≤ p.

9It is easy to see that there is a unique maximal set.
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Then
|N(Sl ∪ Sl+1) ∩ Cl | = |N(Sl) ∩ Cl |+ |N(Sl+1) ∩ Cl+1| ≤ (|Sl |+ |Sl+1|) · p,

contradicting either the minimality of the price at which a set goes tight in the lth iteration or the
maximality of the tight set. The lemma follows.

Corollary 12. Suppose the sets S1, . . . , Sk go tight at prices p1, . . . , pk, respectively. Then 1 ≤ p1 <
. . . < pk.

We next describe how to efficiently find the maximal tight set in the graph H[C, D] using flow-
based techniques. Define R(p) to be the following network, as a function of p: its vertices are
C ∪ D together with special vertices s and t, the source and sink. Direct all edges of H[C, D] from
D to C and assign them infinite capacity. Connect s to each vertex in D with an edge of capacity
p and connect each vertex in C to t with an edge of capacity 1.

A flow in R(p) should be viewed as a flow of value—goods or money—in dollars. The price of
good j ∈ D is p; recall that there is one unit of each good in the market. Thus in R(p), at most p
dollars of flow can go from s to j. Therefore by flow conservation at all vertices other than s and
t, from j, goods worth at most p dollars can go to the set of agents i who are adjacent to j; the
latter set is precisely the set of agents who like j. Furthermore, since the edge from agent i to t
has capacity 1, in any flow in R(p), the total value of goods going to i is at most 1 dollar, which
is the money of agent i.

The next lemma is easy to verify.

Lemma 13. The following hold:

1. For any p, 1 ≤ p < p∗, (s, D ∪ C ∪ t) is the unique min-cut in R(p).

2. For p = p∗, the cuts

[s, D ∪ C ∪ t] and [s ∪ S∗ ∪ (N(S∗) ∩ C), (D − S∗) ∪ (C − N(S∗)) ∪ t]

are both min-cuts in R(p), where p∗ and S∗ are defined above.

3. For any p > p∗, (s, D ∪ C ∪ t) is not a min-cut in R(p). A min-cut in R(p) is of the form

[s ∪ S ∪ (N(S) ∩ C), (D − S) ∪ (C − N(S)) ∪ t].

for an appropriate S ⊆ D, depending on p, with S ∕= ∅.

By Lemma 13, p∗ is the largest value of p for which (s, D ∪ C ∪ t) is a min-cut in R(p). Clearly,
p∗ is the ratio of two positive integers ≤ n and can be found by conducting a binary search on p
in the following interval on the real line:


1,
|A1|
|B1|


.

Each step of this binary search requires computation of an s-t min-cut in R(p) which minimizes
the s side. The number of iterations needed is O(log n). Once p∗ is found, S∗ can be obtained by
finding an s-t min-cut in R(p) which maximizes the s side.
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Lemma 14. For goods j ∈ S∗ assign prices pj = p∗. Then the local market consisting of goods in S∗ and
agents in N(S∗) ∩ C clears.

Proof. Consider the network R(p∗) corresponding to subnetwork H[(N(S∗) ∩ C), S∗]. By the
second of the claims made in Lemma 13, any max-flow in R(p∗) has value |S∗| = p · |N(S∗)∩ C|.
Clearly this flow gives a way of distributing goods in S∗ among agents in (N(S∗) ∩ C) in such a
way that the market clears.

Remark 15. Our setup is much simpler than that of [DPSV08]. As a result, we are able to use
simplified versions of ideas from that paper. The latter include the network R(p), the notion of
tight sets and the raising of p to successively find tight sets.

Lemma 16. Each agent in A1 will get an optimal bundle of goods of minimum cost.

Proof. First note that for an agent i ∈ A1 and good j ∈ B2, (i, j) /∈ E, since the vertex cover picked
has no vertices from A1 ∪ B2. Therefore, for i ∈ A1, the goods she likes are all in B1.

Assume that the algorithm finds k tight sets, S1, . . . Sk, in that order; the union of these sets is
B1. Let p1, p2, . . . pk be the prices of goods in these sets, respectively. By Lemma 11, 1 ≤ p1 <
p2 < . . . < pk, and for 1 ≤ l ≤ k, pl = |(N(Sl) ∩ Cl)|/|Sl |. If i ∈ (N(Sl) ∩ Cl), the algorithm will
allocate 1/pl amount of goods to i from Sl , costing 1 dollar, as proven in Lemma 14.

By definition of neighborhood of sets, if i ∈ (N(Sl) ∩ Cl), then i cannot have edges to S1, . . . Sl−1
but it can have edges to Sl+1, . . . , Sk. However, as shown in Lemma 11, the goods in the latter
sets will have prices exceeding pl . Therefore, the cheapest goods from which i accrues utility are
in Sl , the set from which she gets 1 dollar worth of allocation. The rest of the allocation of i, in
order to meet i’s size constraint, will be from B2, which are zero-priced and from which i gets
zero utility. Clearly, i gets an optimal bundle of minimum cost.

Lemma 17. Algorithm 1 finds equilibrium prices and allocations for the dichotomous case of HZ. It runs
in strongly polynomial time.

4.2 Reducing Bi-Valued Case to the Dichotomous Case

Definition 18. Let I be an instance of the HZ mechanism and let the utility function of agent i
be ui = {ui1, ui12, . . . , uin}. Then u′

i = {u′
i1, u′

i12, . . . , u′
in} is equivalent to ui if it is a positive affine

transform of ui, i.e., if there are two numbers s > 0 and h such that for 1 ≤ j ≤ n, u′
ij = s · uij + h.

The numbers s and h will be called the scaling factor and shift, respectively.

Lemma 19. Let I be an instance of the HZ mechanism and let the utility function of agent i be ui. Let
u′

i be equivalent to ui and let I′ be the instance obtained by replacing ui by u′
i in I. Then x and p are

equilibrium allocation and prices for I if and only if they are also for I′.

Proof. Let s and h be the scaling factor and shift that transform ui to u′
i. By the statement of the

lemma, xi = {xi1, . . . , xin} is an optimal bundle for i at prices p and hence is a solution to the
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optimal bundle LP (1). The objective function of this LP is

n

∑
j=1

uijxij.

Next observe that the objective function of the corresponding LP for i under instance I′ is

n

∑
j=1

u′
ijxij =

n

∑
j=1

(s · uij + h)xij = h + s ·
n

∑
j=1

uijxij,

where the last equality follows from the fact that ∑n
j=1 xij = 1. Therefore, the objective function of

the second LP is obtained from the first by scaling and shifting. Furthermore, since the constraints
of the two LPs are identical, the optimal solutions of the two LPs are the same. Finally, for each
i ∈ A: the bundle under allocation x is a minimum cost optimal bundle for I if and only if it is
also for I′. The lemma follows.

Next, let ui be bi-valued with the two values being 0 ≤ a < b. Obtain u′
i from ui by replacing

a by 0 and b by 1. Then, u′
i is equivalent to ui, with the shift and scaling being a and b − a,

respectively. Therefore the bi-valued instance can be reduced to an instance of the dichotomous
case, with both having the same equilibria. Now using Lemma 17 we get:

Theorem 20. The bi-valued utilities case of HZ admits a rational equilibrium, and there is a strongly
polynomial time algorithm for computing equilibrium allocations and prices for it.

5 An Example Having Only Irrational Equilibria

Our example has 4 agents A1, . . . , A4 and 4 goods g1, . . . , g4
10. The agents’ utilities for the goods

are given in Table 1, with rows corresponding to agents and columns to goods.

Table 1: Agents’ utilities.
g1 g2 g3 g4

A1 2 4 0 8
A2 2 3 0 8
A3 2 0 5 0
A4 0 4 5 0

Thus, agents A1 and A2 like, to varying degrees, three goods only, g1, g2, g4, while agents A3 and
A4 like two goods each, {g1, g3} and {g2, g3}, respectively. The precise values of the utilities are
not that important; the important aspects are: which goods each agent likes, the order between
them, and the ratios u14−u12

u12−u11
and u24−u22

u22−u21
. Notice that the latter are unequal.

10It can be shown, by analyzing relations in the bipartite graph on agents and goods with edges corresponding to
non-zero allocations, that any instance with 3 agents and 3 goods and rational utilities has a rational equilibrium. The
proof is given in the Appendix.
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Even such a small instance is not easy to analyze. We will show that this example has a unique
equilibrium solution with minimum price 0. In this solution, good g1 has price 0, and all the
other goods have positive irrational values. Agents A1, A3 and A4 buy the goods that they like,
and A2 buys g1 and g4 only.

Consider any equilibrium with minimum price 0. We will analyze its properties, and show
eventually that they force specific prices and allocations.

Lemma 21. Equilibrium prices satisfy:

0 = p1 < p2 < 1 and p3, p4 > 1.

The equilibrium bundle of each agent is of Type D and contains goods having positive utilities only.

Proof. Suppose p3 ≤ 1. Then agents A3 and A4 will demand 1 unit each of good g3, leading to
a contradiction. Similarly, if p4 ≤ 1 then A1 and A2 will demand 1 unit each of g4. Therefore,
p3, p4 > 1. Since the maximum utility goods of every agent have price > 1, all agents spend
exactly 1. Therefore, the sum of the prices of the goods is 4.

Suppose p2 = 0 ≤ p1. Then A1, A2, A4 do not buy g1, since they prefer g2 and it is weakly
cheaper than g1. Therefore A3 must buy the entire unit of g1. Clearly A1, A2 do not buy g3, since
they prefer g2. Therefore, the only agent who buys g3 is A4; however, she cannot afford the entire
unit of g3 since p3 > 1, contradicting market clearing. Therefore p2 > 0 and hence the 0-priced
good is g1 and p1 = 0 < p2. Furthermore, p2 + p3 + p4 = 4.

Next suppose p2 ≥ 3/4. Then p4 = 4 − (p2 + p3) < 9/4. For both agents A1 and A2, a
combination of g1 and g4 in proportion 2:1 has a price less than 3/4 for one unit and utility
4, and is therefore preferable to g2. Hence, A1, A2 will not buy any g2, and since A3 does not
buy any g2 either, since she prefers g1, it follows that A4 must buy the entire unit of g2. This
is possible only if p2 = 1 and A4 buys nothing else; in particular, she does not buy any g3.
Clearly, A1, A2 do not buy any g3 since they prefer g1. Therefore the entire unit of g3 must be
bought by A3, which is impossible because p3 > 1. Hence p2 < 3/4. These facts together with
p1 = 0 < p2 < 1 < p3, p4 imply that the agents’ bundles are not Type B or C. Therefore they are
all of Type D.

Finally we prove that none of the agents will buy an undesirable good (a good with utility 0).
For A1, A2, A3, such a good is dominated by another lower-priced good. Since p4 > 1, A4 does
not buy g4. Suppose agent A4 buys good g1. Since she spends 1 dollar, she must also buy g3.
Therefore we have: α4 p1 + µ4 = u41 = 0. Therefore µ4 = 0. Also α4 p3 + µ4 = u43 = 5; therefore
α4 p3 = 5, which implies α4 < 5 since p3 > 1. Furthermore, α4 p2 + µ4 ≥ u42 = 4, hence p2 > 4/5,
which contradicts p2 < 3/4. Therefore, no agent buys any undesirable good.

Lemma 22. One of the agents A1, A2 buys all three desirable goods. If A1 buys g1, g2, g4, then A2 buys
g1, g4 only. If A2 buys g1, g2, g4, then A1 buys g2, g4 only.

Proof. Since all the bundles are of Type D, every bundle has at least two goods; clearly, every
good is bought by at least two agents.
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Suppose that every agent buys two goods and every good is bought by two agents. If so, one
of A1, A2 must buy g1, g4 and the other must buy g2, g4. Consider the graph with the goods as
nodes and an edge joining two nodes if they are bought by the same agent. This graph must be
the 4-cycle g1, g4, g2, g3, g1. Therefore for some a, 0 < a < 1, each agent buys a units of one good
and b = 1 − a units of the second good and each good is sold to two agents in the amounts of a
and b.

Let ri = |1 − pi|. Observe that for every edge (gi, gj) of the cycle, one price is < 1 and the other
price is > 1, and we have api + bpj = 1. Therefore ari − brj = 0, and ri

rj
= b

a . Hence

r1

r4
=

r4

r2
=

r2

r3
=

r3

r1
,

which implies that all the ri are equal. Therefore p1 = p2, contradicting the previous claim that
p1 < p2. Hence at least one of A1, A2 will buy all three of her desirable goods.

Suppose that A1 buys all three desirable goods g1, g2, g4. Then we have α1 pj + µ1 = u1j for
j = 1, 2, 4. Therefore, (p4 − p1)/(p4 − p2) = (u14 − u11)/(u14 − u12) = 3/2. Agent A2 buys
g4 and at least one of g1, g2. Suppose she buys g2. Then α2 pj + µ2 = u2j for j = 2, 4, hence
α2(p4 − p2) = u24 − u22 = 5. This implies that α2(p4 − p1) > 6 = u24 − u21, hence α2 p1 + µ2 < u21,
a contradiction. Therefore A2 does not buy g2 and she buys g1 and g4 only.

Next suppose A2 buys all three desirable goods g1, g2, g4. By a similar argument we will prove
that A1 buys only two goods. We have α2 pj + µ2 = u2j for j = 1, 2, 4. Therefore, (p4 − p1)/(p4 −
p2) = (u24 − u21)/(u24 − u22) = 6/5. Agent A1 buys g4 and at least one of g1, g2. Suppose that
she buys g1. Then α2 pj + µ2 = u2j for j = 1, 4, hence α2(p4 − p1) = u24 − u21 = 6. This implies
that α2(p4 − p2) > 4 = u14 − u12, hence α2 p2 + µ2 < u12, a contradiction. Therefore, A1 does not
buy g1, hence she buys g2 and g4 only.

Theorem 23. The instance of Table 1 has a unique equilibrium; the allocations to agents and prices of
goods, other than the zero-priced good, are all irrational. The prices are as follows:
p1 = 0, p2 = (23 −

√
17)/32, p3 = (9 +

√
17)/8, p4 = (69 − 3

√
17)/32.

Proof. Let ri = |1− pi|. By Lemma 21, r1 = 1. We consider the two cases established in Lemma 22.
We will show that in Case 1 there is a unique equilibrium, while in Case 2 there is no equilibrium.

Case 1. A1 buys g1, g2, g4, and A2 buys g1, g4.

Agent A3 spends her dollar on goods g1, g3 in the proportion r3 : r1, i.e., r3 : 1. Therefore,
x31 = r3

1+r3
, x33 = 1

1+r3
. Agent A4 buys goods g2, g3 in the proportion r3 : r2. Therefore, x42 =

r3
r2+r3

, x43 = r2
r2+r3

. Since only agents A3 and A4 buy good g3, we have x31 = 1 − x33 = x43, and
x42 = 1 − x43 = x33. This implies r2

3 = r2 ... (1).

Since agent A1 buys g1, g2, g4, we have, u14−u12
u12−u11

= p4−p2
p2−p1

. Therefore r2 + r4 = 2(1 − r2) ... (2).

The sum of the prices is equal to 4, therefore 1 + r2 − r3 − r4 = 0 ... (3)

Now we have three equations, (1), (2) and (3), in three unknowns r2, r3, r4. Using (1) and (2) we
can express r2 and r4 in terms of r3. Letting r3 = y, we have from (1), r2 = y2, and from (2),
r4 = 2 − 3r2 = 2 − 3y2. Substituting into (3), we get 4y2 − y − 1 = 0.
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The only positive solution is y = 1+
√

17
8 . Therefore,

p1 = 0, p2 = 1 − r2 = 1 − y2 =
23 −

√
17

32
, p3 = 1 + r3 = 1 + y =

9 +
√

17
8

,

p4 = 1 + r4 = 3 − 3y2 =
69 − 3

√
17

32
.

Once we have the value of y, we get:

r1 = 1, r2 = y2 =
9 +

√
17

32
, r3 = y =

1 +
√

17
8

and r4 = 2 − 3y2 =
37 − 3

√
17

32
.

We can compute then the allocations from the ri. We already expressed the allocations for agents
A3, A4 in terms of the ri. Agent A2 buys goods g1, g4 in the proportion r4 : r1, i.e., r4 : 1. Therefore,
x21 = r4

1+r4
, x24 = 1

1+r4
. Agent A1 buys the remaining amount of each good g1, g2, g4. Thus, the

allocations of the agents in terms of the ri are:

A1 : x11 = 1 − r3

1 + r3
− r4

1 + r4
, x12 =

r2

r2 + r3
, x14 =

r4

1 + r4

A2 : x21 =
r4

1 + r4
, x24 =

1
1 + r4

A3 : x31 =
r3

1 + r3
, x33 =

1
1 + r3

A4 : x42 =
r3

r2 + r3
, x43 =

r2

r2 + r3

We conclude that, if there is an equilibrium in Case 1, then there can be only one and it must
have the above prices and allocations.

Conversely, we can verify that the above pair (p, x) is an equilibrium. First we note that all
allocations are nonnegative. This is obvious for all the allocations, except for x11, which, after
plugging in the values for the ri’s evaluates to approximately 0.084. Second, note that every good
has exactly one unit allocated: for good g3 this follows from equation (1), and for the other goods
it holds because A1 buys the remaining amounts. Third, every agent buys a total of one unit
of goods: this is obvious for agents A2, A3, A4 from the allocations, and for agent A1 it follows
because exactly one unit is sold of each good. Fourth, every agent spends exactly one dollar: this
holds for agents A2, A3, A4 because they pay an average price of 1 for their goods, and for agent
A1 it follows from the fact that the total expenditure of the agents, which is equal to the sum of
the prices of the goods, is 4 (equation (3)).

Finally, it can be shown that the bundle of every agent is optimal for these prices, using the
dual LP and complementary slackness. The dual variables αi can be calculated as αi =

uij−uik
pj−pk

,
where gk, gj are (any) two goods bought by agent Ai; the shift µi = uij − αi pj (which is equal
to uik − αi pk). Thus, for example α1 = u12−u11

p2−p1
= 2

p2
, and µ1 = u11 − α1 p1 = 2. Note that

u12−u11
p2−p1

= u14−u12
p4−p2

= u14−u11
p4−p1

by equation (2), so it does not matter which goods gj, gk in Agent A1’s
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bundle are used to calculate α1. Also, for each agent Ai, it does not matter which good gj in her
bundle is used to calculate µi.

Clearly αi ≥ 0 for all i. For all agents Ai and goods gj in the bundle of Ai, we have αi pj + µi = uij,
by construction. Furthermore, if good gj is not in the bundle of Ai then αi pj + µi > uij: For
agent A1 and good g3, note that g3 has higher price and lower utility than good g1 which is in
the bundle of A1, hence α1 p3 + µ1 > α1 p1 + µ1 = u11 > u13. The same argument applies to
agent A2 and good g3, agent A3 and goods g2, g4 (they are both dominated by good g1 in A3’s
bundle), and to agent A4 and good g4 (it is dominated by good g2). For agent A2 and good
g2, note that α2 = u24−u21

p4−p1
= u14−u11

p4−p1
= α1, and µ2 = u24 − α2 p4 = u14 − α1 p4 = µ1. Therefore

α2 p2 + µ2 = α1 p2 + µ1 = u12 = 4 > 3 = u22. The only remaining case that needs to be checked
numerically is agent A4 and good g1. Since p1 = 0 and u41 = 0, the inequality α4 p1 + µ4 > u41 is
equivalent to µ4 > 0. By construction, µ4 = u44 − α4 p3 = u44 − u43−u42

p3−p2
p3 = 5 − p3

p3−p2
= 4p3−5p2

p3−p2
.

Thus, µ4 > 0 is equivalent to 4p3 > 5p2, which holds for the above values of p2, p3. Therefore, the
values αi, µi satisfy the constraints of the dual LP, and since they and the xij satisfy clearly also
the complementary slackness conditions, it follows that the allocations xij give optimal bundles
to the agents for the prices pj. Therefore, (x, p) is an equilibrium.

Case 2. A2 buys g1, g2, g4, and A1 buys g2, g4.

We will show that there is no equilibrium in this case. Specifically, we will show that if there is
an equilibrium, it must have specific prices and allocations, and we will derive a contradiction.

Consider any equilibrium for Case 2. The allocations for agents A3, A4 are the same as in Case 1,
i.e., x31 = r3

1+r3
, x33 = 1

1+r3
, and x42 = r3

r2+r3
, x43 = r2

r2+r3
. Again we have x31 = x43 and x42 = x33,

which implies r2
3 = r2 ... (1).

Since agent A2 buys g1, g2, g4, we have, u24−u22
u22−u21

= p4−p2
p2−p1

, therefore r2 + r4 = 5(1 − r2) ... (2’).

The sum of the prices is 4, thus again 1 + r2 − r3 − r4 = 0 ... (3)

We can solve now for r2, r3, r4. Using (1) and (2’) we can express r2 and r4 in terms of r3. Letting
r3 = y, we have from (1), r2 = y2, and from (2’), r4 = 5 − 6r2 = 5 − 6y2. Substituting into (3), we
get 7y2 − y − 4 = 0.

The only positive solution is y = 1+
√

113
14 . Therefore,

p1 = 0, p2 = 1 − r2 = 1 − y2 =
41 −

√
113

98
, p3 = 1 + r3 = 1 + y =

15 +
√

113
14

,

p4 = 1 + r4 = 6 − 6y2 =
246 − 6

√
113

98
.

As in the previous case, the value of y gives:

r1 = 1, r2 = y2 =
57 +

√
113

98
, r3 = y =

1 +
√

113
14

and r4 = 5 − 6y2 =
148 − 6

√
113

98
.

If there is any equilibrium in Case 2, then it must have the above prices. We can compute again
the allocations from the ri. The allocations of A3 and A4 are as before. Agent A1 buys goods

22



g2, g4 in the proportion r4 : r2. Therefore, x12 = r4
r2+r4

, x14 = r2
r2+r4

. Substituting the values of the
ri’s in the expressions for x12 and x42, we get x12 = r4

r2+r4
≈ 0.554 and x42 = r3

r2+r3
≈ 0.546. Thus,

x12 + x42 ≈ 1.1 > 1, i.e., good g2 is oversold. Therefore, there is no equilibrium in Case 2.

Remark 24. Observe that in the equilibrium, the allocations of all four agents are irrational even
though each one of them spends their dollar completely and the allocations form a fractional
perfect matching, i.e., add up to 1 for each good and each agent.

6 Membership of Exact Equilibrium in FIXP

In this section, we will prove that the problem of computing an HZ equilibrium lies in the
class FIXP, which was introduced in [EY10]. This is the class of problems that can be cast, in
polynomial time, as the problem of computing a fixed point of an algebraic Brouwer function.
Recall that basic complexity classes, such as P, NP, NC and #P, are defined via machine models.
For the class FIXP, the role of “machine model” is played by one of the following: a straight line
program, an algebraic formula, or a circuit; further it must use the standard arithmetic operations
of +, - * /, min and max. We will establish membership in FIXP using straight line programs.
Such a program should satisfy the following:

1. The program does not have any conditional statements, such as if ... then ... else.

2. It uses the standard arithmetic operations of +, - * /, min and max.

3. It never attempts to divide by zero.

A total problem is one which always has a solution, e.g., Nash equilibrium and Hylland-Zeckhauser
equilibrium. A total problem is in FIXP if there is a polynomial time algorithm which given an
instance I of length |I| = n, outputs a polynomial sized straight line program which computes a
function FI on a closed, convex, real-valued domain D(n) satisfying: each fixed point of FI is a
solution to instance I.

Let p and x denote the price and allocation variables. We will give a function F over these
variables and a closed, compact, real-valued domain D for F. The function will be specified
by a polynomial length straight line program using the algebraic operations of +,−, ∗, /, min
and max, hence guaranteeing that it is continuous. We will prove that all fixed points of F are
equilibrium prices and allocations, hence proving that Hylland-Zeckhauser is in FIXP.

Notation: We will denote the set {1, . . . .n} by [n]. xi will denote agent i’s bundle. For each
agent i, choose one good from G∗

i and denote it by i∗. If e is an expression, we will use (e)+ as a
shorthand for max{0, e}.

Domain D = Dp × Dx, where Dp and Dx are the domains for p and x, respectively, with Dp =
{p | ∀j ∈ [n], pj ∈ [0, n]} and Dx = {x | ∀i ∈ [n], ∑j∈G xij = 1, and ∀i, j ∈ [n], xij ≥ 0}.

Let (p′, x′) = F(p, x). (p, x) can be viewed as being composed of n + 1 vectors of variables,
namely p and for each i ∈ [n], xi. Similarly, we will view F as being composed of n+ 1 functions,
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Algorithm 2. Straight line program for function Fp

1. For all j ∈ [n] do: pj ← min{n, max{0, pj + ∑i∈A xij − 1}}
2. r ← minj∈[n]{pj}
3. For all j ∈ [n] do: pj ← pj − r

Fp and for each i ∈ [n], Fi, where p′ = Fp(p, x) and for each i ∈ [n], x′i = Fi(p, x). The straight
line programs for Fp and Fi are given in Algorithm 2 and Algorithm 3, respectively. It is easy
to see that if Fi alters a bundle, the new bundle still remains in the domain; in particular, ∀i ∈
[n], size(i) = 1. Similarly, it is easy to see that the output of Fp is in the domain Dp.

Requirements on F: Observe that (p, x) will be an equilibrium for the market if, in addition to
the conditions imposed by the domain, it satisfies the following:

1. ∀j ∈ [n], ∑i∈A xij = 1.

2. ∀i ∈ [n], cost(i) ≤ 1.

3. ∀i ∈ [n], xi is an optimal bundle for i. Furthermore, cost(i) is minimum over all optimal
bundles.

Function F has been constructed in such a way that if any of these conditions is not satisfied by
(p, x), then F(p, x) ∕= (p, x), i.e., (p, x) is not a fixed point of F. Equivalently, every fixed point of
F must satisfy all these conditions and is therefore an equilibrium. Conversely, every equilibrium
(p, x) is a fixed point of F.

Intuitively, the function Fp adjusts the prices of goods if they are under- or over-allocated under
x, i.e., if condition 1 is violated (step 1 of Algorithm 2) and ensures that the minimum price of a
good is 0 (steps 2 ,3 of Algorithm 2). The function Fi for an agent i adjusts the agent’s allocation
xi if it costs too much under prices p, i.e., if condition 2 is violated (steps 1, 2 of Algorithm 3),
or if it is not optimal, i.e. condition 3 is violated (steps 3-7 of Algorithm 3). In the case of a
suboptimal allocation xi, the allocation can be improved by a local transfer of a small enough
amount of allocation mass among two or three goods: either from one good to another (from
good k ∕∈ G∗

i to good i∗ in step 4; from good j to good k in step 5), or from one good to two others
(from good k to goods j, l in step 6), or from two goods to a third one (from goods j, l to good k
in step 7).

We will prove that if (p, x) is a fixed point, then no step of F will change (p, x), i.e., it couldn’t be
that some step(s) of F change (p, x) and some other step(s) change it back, restoring it to (p, x).
This is easy to check for Fp, and is left to the reader. The proof for Fi is more delicate and uses
a potential function argument based on the changes in value(i) = ∑j uijxij and cost(i) = ∑j pjxij
caused by any change in the allocation xi in every step of the algorithm for Fi, as stated in the
following lemma.
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Algorithm 3. Straight line program for function Fi

1. r ← (∑j pjxij − 1)+.

2. For all j ∈ [n] do: xij ←
xij+r·(1−pj)+

1+r·∑k(1−pk)+

3. t ← (1 − ∑j pjxij)+
4. For all k /∈ G∗

i do:
(a) d ← min{xik, t

n2 }
(b) xik ← xik − d
(c) xii∗ := xii∗ + d

5. For all pairs j, k of goods s.t. uij ≤ uik do:
(a) d ← min{xij, (pj − pk)+}
(b) xij ← xij − d/n
(c) xik ← xik + d/n

6. For all triples j, k, l of goods such that uij < uik < uil do:
(a) d ← min{xik, ((uil − uik)(pk − pj)− (uik − uij)(pl − pk))+}
(b) xik ← xik − d
(c) xij ← xij +

uil−uik
uil−uij

d

(d) xil ← xil +
uik−uij
uil−uij

d

7. For all triples j, k, l of goods such that uij < uik < uil do:
(a) d := min(xij, xil , ((uik − uij)(pl − pk)− (uil − uik)(pk − pj))+)
(b) xik := xik + d
(c) xij := xij − uil−uik

uil−uij
d

(d) xil := xil −
uik−uij
uil−uij

d
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Lemma 25. Let (p, x) be such that p ∈ Dp, x ∈ Dx. Then, cost(i) and value(i) are modified by the
steps of Fi as follows.

1. If Steps 1, 2 modify xi, then the initial cost is > 1, and steps 1,2 decrease strictly cost(i).

2. If steps 3, 4 modify xi, then they increase strictly value(i) while maintaining cost(i) ≤ 1.

3. If anyone of steps 5, 6, 7 modifies xi, then it increases weakly value(i) and decreases strictly cost(i).

Proof. For the first part, note that if steps 1,2 modify the allocation xi, then we must have r ∑k(1−
pk)+ > 0, hence r > 0 and ∑k(1 − pk)+ > 0. Therefore, the initial cost cost(i) = ∑j pjxij =

r + 1 is > 1. The new cost is ∑j pjxij+r ∑j pj(1−pj)+
1+r ∑j(1−pj)+

which is < cost(i), because r ∑j pj(1 − pj)+ ≤
r ∑j(1 − pj)+ < (r ∑j(1 − pj)+)cost(i); the last inequality is strict because r ∑j(1 − pj)+ > 0, and
cost(i) > 1.

For the second part, note that if the cost of the allocation, cost(i) = ∑j pjxij before step 3 is ≥ 1,
then t = 0 in line 3, and steps 3, 4 make no change. Suppose that the cost is < 1, i.e. t > 0. For
every good k /∈ G∗

i , if xik = 0 then no change is made for this good. Thus, if steps 3,4 change xi,
then there must be some good(s) k /∈ G∗

i with xik > 0. For every such good k, we swap d units of
k for i∗, and as a result the value is increased by d(uii∗ − uik) > 0, since d > 0 and uii∗ > uik. The
cost is increased at most by d(pi∗ − pk) ≤ t

n2 n = t
n . Hence, over all the goods k /∈ G∗

i , the cost is
increased by less than t, hence it remains < 1.

For the third part, we consider the following three cases.

• If Step 5 modifies xi for a pair j, k of goods then we must have pj > pk and xij > 0. Since
uij ≤ uik, step 5 weakly increases value(i) and strictly decreases cost(i).

• If Step 6 kicks in for a triple of goods j, k, l, then the net change in value(i) is

d
uil − uik

uil − uij
uij + d

uik − uij

uil − uij
uil − duik = 0.

The net change in cost(i) is

d
uil − uik

uil − uij
pj + d

uik − uij

uil − uij
pl − dpk =

d∆
uil − uij

,

where ∆ = (uik − uij)(pl − pk)− (uil − uik)(pl − pk) < 0.

• If Step 7 kicks in for a triple of goods j, k, l,, then the net change in value(i) is again 0, and
the net change in cost is −d∆

uil−uij
< 0.

Corollary 26. If (p, x) is a fixed point of F, then no step of Fi will change xi.

Proof. Suppose that some step(s) of Fi change the allocation xi of fixed point (x, p), and consider
the earliest such step. If it is step 2, then the initial cost(i) > 1, and step 2 decreases strictly the
cost. Step 3,4 either do not change the allocation or if they do change it, the new cost is ≤ 1,
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i.e. still smaller than the initial one. Steps 5, 6, 7 do not increase the cost, hence the final cost is
strictly smaller than the initial. Thus, the final allocation xi cannot be the same as the initial.

If the earliest step that changes xi is step 4, then it increases strictly the value and the subsequent
steps do not decrease it, hence the final value is strictly higher than the initial. If the earliest
modifying step is one of 5, 6, 7, then it decreases strictly the cost, and all other subsequent
changes do not increase it. We conclude that no step of Fi can change the allocation xi of a fixed
point.

Lemma 27. If (p, x) is a fixed point of F, as defined in Algorithms 2 and 3, then

1. ∃z ∈ G such that pz = 0.

2. ∀i ∈ [n], cost(i) ≤ 1.

3. ∀j ∈ [n], ∑i∈A xij = 1, i.e. the market clears.

Proof. 1. Steps 2 and 3 of Fp ensure that there is a good with price 0.

2. If for some i ∈ [n], cost(i) > 1, then Steps 1 and 2 of Fi will modify xi since r = cost(i)− 1 >
0, and ∑k(1 − pk)+ > 0 because some good z has pz = 0.

3. Suppose that there is a good j such that ∑i xij ∕= 1. Since ∑j xij = 1 for all agents i ∈ [n],
there must be a good k such that ∑i xik < 1, and another good l such that ∑i xil > 1.

We claim that then pk = 0. Since ∑i xik < 1, if pk > 0, then line 1 of Fp will strictly decrease
pk, and line 3 certainly does not increase it, contradicting Fp(p, x) = p. Thus, pk = 0, the
price pk will stay 0 after line 1, hence r = 0 in line 2, and line 3 will not change any prices.

On the other hand, we claim that pl = n. Since ∑i xil > 1, if pl < n, then line 1 of Fp will
increase strictly pl , and since line 3 has no effect, this contradicts Fp(p, x) = p.

But cost(i) = ∑j pjxij ≤ 1 for all i ∈ [n] implies that ∑i ∑j pjxij ≤ n, which contradicts the
fact that pl = n and ∑i xil > 1, hence ∑i plxil > n.

Lemma 28. If (p, x) is a fixed point of F, as defined in Algorithms 2 and 3, then xi is an optimal bundle
for i at prices p. Furthermore, cost(i) is minimum among optimal bundles.

Proof. We will consider the following exhaustive list of cases. Each contradiction is based on
applying Corollary 26. We will assume that αi and µi are optimal variables of the dual to i’s
optimal bundle LP and that u = maxj{uij}.

Case 1: Assume that cost(i) < 1. If Bi ∕⊆ G∗
i , then Steps 3 and 4 will kick in, contradicting the

fact that (p, x) is a fixed point. Therefore Bi ⊆ G∗
i . Clearly, u is the maximum utility that i can

derive from a bundle satisfying size(i) = 1 and cost(i) ≤ 1. Therefore, xi is an optimal bundle
for i. Since step 5 does not modify xi, all goods in Bi must have minimum price among the goods
of G∗

i . Therefore, cost(i) is minimum among the optimal bundles.

Henceforth, we will assume that cost(i) = 1.
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Case 2: Assume that i derives the same utility from all goods j ∈ Bi and Bi ⊆ G∗
i . As in the

previous case, xi is an optimal bundle for i and hence each good in Bi is optimal. Furthermore,
again since step 5 does not modify the allocation, as in Case 1, cost(i) is minimum among the
optimal bundles.

Case 3: Assume that i derives the same utility from all goods j ∈ Bi and Bi ∕⊆ G∗
i . Let k be a good

in Bi and let z be a good having price 0. Each good in Bi must be a minimum price good having
utility uik, since otherwise Step 5 of Fi will alter the bundle. Since cost(i) = 1, size(i) = 1 and all
goods in Bi have the same price, each good in Bi has price 1.

Let l be a good such that uil > uik; observe that any good in G∗
i is such a good. We will prove

that pl > 1 = pk. Clearly uiz < uik, since otherwise Step 5 will kick in and change the bundle.
Hence we have uiz < uik < uil . However, since Step 6 did not kick in, (uil − uik)(pk − pz) ≤ (uik −
uiz)(pl − pk). Since (uil − uik)(pk − pz) > 0, we get that (pl − pk) > 0. Therefore pl > pk = 1.
Hence we can conclude that the optimal bundle for i at prices p is not a Type A or Type B bundle.

Next, assume for the sake of contradiction that xi is not an optimal bundle for i at prices p; in
particular, this entails that the optimal bundle for i is not Type C. Therefore, i’s optimal bundle
must be Type D and k is a suboptimal good. As argued in Section 3, an optimal Type D bundle
must contain a good of price < 1 and a good of price > 1; let j and l be such goods, respectively.
Clearly uiz < uik < uil . Then we have,

αi pj = uij − µi, αi pk > uik − µi and αi pl = uil − µi

Subtracting the first from the second and the second from the third we get

αi(pk − pj) > (uik − uij) and αi(pl − pk) < (uil − uik)

This gives
(uil − uik)(pk − pj)− (uik − uij)(pl − pk) > 0.

Therefore, Step 6 should kick in, leading to a contradiction. Hence xi is a Type C optimal bundle.
Since all goods in G∗

i have price > 1, every bundle with cost < 1 is suboptimal, thus xi has
minimum cost among optimal bundles.

Henceforth, we will assume that cost(i) = 1 and ∃ s, t ∈ Bi with uis < uit.

Case 4: Assume that the set {uij | j ∈ G} has exactly two elements. Clearly, these utilities must
be uis and uit. Now, s must be the zero-priced good, since otherwise Step 5 will kick in. Since
cost(i) = 1 and size(i) = 1, pt > 1. Again since Step 5 didn’t kick in, s and t must be the cheapest
goods having utilities uis and uit. Therefore, xi is a Type D optimal bundle. It has minimum cost
(=1) among optimal bundles for the same reason as in case 3.

Case 5: Assume that the set {uij | j ∈ G} has three or more elements. Since size(i) = 1 and
cost(i) = 1, ∃ t ∈ Bi, s.t. pt > 1. Now, any good having utility u must have price > 1, since
otherwise Step 5 will alter the bundle. Therefore, xi cannot be a Type A or Type B bundle.
Therefore, αi > 0.

Suppose that xi is not an optimal bundle. Then there are two cases: that the optimal bundle is
Type C or Type D. In the first case, let k ∈ G be an optimal good; pk = 1. Let j, l ∈ Bi with
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pj < 1 < pl and at least one of j or l is suboptimal. Clearly, uij < uik < uil , otherwise Step 5 will
kick in. Therefore we have

αi pj ≥ uij − µi, αi pk = uik − µi and αi pl ≥ uil − µi,

with at least one of the inequalities being strict. Therefore,

(uik − uij)(pl − pk) > (uil − uik)(pk − pj),

and Step 7 should kick in, leading to a contradiction. Hence xi is a Type C optimal bundle.

Next suppose the optimal bundle is Type D. There are two cases. First, suppose ∃ k ∈ Bi such
that k is a suboptimal good for i and there are optimal goods j and l with uij < uik < uil . Then
we have

αi pj = uij − µi, αi pk > uik − µi and αi pl = uil − µi

As before we get
(uil − uik)(pk − pj)− (uik − uij)(pl − pk) > 0.

Therefore, Step 6 should kick in, leading to a contradiction.

Second, suppose that there is no such good j ∈ Bi. Let v and w be optimal goods with the
smallest and largest utilities for i. Then all suboptimal goods in Bi have either less utility than uiv
or more utility than uiw. Suppose there are both types of goods, say j and l, respectively. Then
Step 7 should kick in with the triple j, v, l. Else there is only one type, say j with uj < uv. Then
∃ l ∈ Bi with pl > 1. Now, Step 7 should kick in with the triple j, v, l. In the remaining case,
∃ j, l ∈ Bi with pj < 1 and uil > uiw. Now, Step 7 should kick in with the triple j, w, l.

The contradictions give us that xi does not contain a suboptimal good and is hence a Type D
optimal bundle. The minimality of the cost holds for the same reason as in Cases 3, 4.

Lemmas 27 and 28 give:

Theorem 29. The problem of computing an exact equilibrium for the Hylland-Zeckhauser mechanism is
in FIXP.

7 Membership of Approximate Equilibrium in PPAD

In this section we define approximate equilibria, and show that the problem of computing an
approximate equilibrium is in PPAD.

7.1 Definition and Properties

First let us scale the utilities of all the agents so that they lie in [0, 1]. This can be done clearly
without loss of generality without changing the equilibria. We say that a price vector p ≥ 0 is
normalized if mini pi = 0.
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Definition 30. A pair (p, x) of (non-negative) normalized prices p (i.e. mini pi = 0) and alloca-
tions x is an -approximate equilibrium for a given one-sided market if:

1. The total probability share of each good j is 1 unit, i.e., ∑i xij = 1.

2. The size of each agent i’s allocation is 1, i.e., size(i) = 1.

3. The cost of the allocation of each agent is at most 1 + .

4. (a) The value of the allocation of each agent i is at least v∗(i)−  where v∗(i) is the value
of the optimal bundle for agent i under prices p, i.e. the optimal value of the program:
maximize value(i), subject to size(i) = 1 and cost(i) ≤ 1. (b) Furthermore, we require that
the cost of the allocation xi is at most c∗(i) + , where c∗(i) is the minimum cost of a bundle
for agent i that has the maximum value v∗(i).11.

The corresponding computational problem is: Given a one-sided matching market M and a
rational  > 0 (in binary as usual), compute an -approximate equilibrium for M. Polynomial
time in this context means time that is polynomial in the encoding size of the market M and
log(1/).

The requirement in the definition that prices be normalized is important, because if the prices
are not restricted then conditions 3 and 4(b) in the definition have no effect: If (p, x) is any pair
that satisfies conditions 1, 2 and 4(a) then we can scale the differences of all prices from 1 (as in
Lemma 6) yielding a vector p′ all of whose components are within /2 of 1, and the resulting
pair (p′, x) will satisfy also conditions 3 and 4(b): If all prices p′i are within /2 of 1, then any unit
bundle xi has cost cost′(xi) = ∑j xij p′j also within /2 of 1, and any two unit bundles have costs
within  of each other; therefore conditions 3 and 4(b) will be trivially satisfied. Note also that
scaling the differences pj − 1 does not affect conditions 1, 2, and 4(a), since it does not change the
optimal bundles and the optimal value v∗(i) of an agent.

We define also a more relaxed version, called a relaxed -approximate equilibrium where the nor-
malization condition is relaxed to minj pj ≤  and condition 1 is relaxed to |∑i xij − 1| ≤  for
all goods j. It is easy to see that the two versions are polynomially equivalent, i.e., if one can be
solved in polynomial time then so can the other.

Proposition 31. The problems of computing an -approximate equilibrium and a relaxed approximate
equilibrium are polynomially equivalent.

Proof. Clearly, the relaxed version is no harder than the nonrelaxed version. On the other hand, if
we have an algorithm for the relaxed version, then we can compute an -approximate equilibrium
as follows. Given a one-sided market M and a rational  > 0, assume without loss of generality
that  ≤ 1 and n ≥ 2. Compute a relaxed δ-approximate equilibrium (p, x) where δ = /4n. In
this equilibrium the minimum price pmin = minj pj may be positive, but is at most δ, and some
goods may be oversold or undersold by an amount at most δ.

11Condition 4b is included here to be consistenct with the definition of HZ equilibrium. In the case of HZ equilib-
rium, the corresponding condition is needed to ensure Pareto optimality. For approximate equilibria with  > 0, this
condition is not necessary (see the proof of Proposition 33). Also, the proof of PPAD-hardness in [CCPY22] does not
need this condition; that is, if we define approximate HZ equilibria without condition 4b, their computation is still
PPAD-complete.
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We compute a new pair (p′, x′) as follows. For the prices, we normalize them by scaling their
difference from 1: Set p′j = 1 + (pj − 1)/(1 − pmin) for all j ∈ G; then minj p′j = 0. For the
allocations, we set up a bipartite transportation network N with the nodes corresponding to
the agents and the goods that are undersold or oversold. If a good j is oversold then it has an
outgoing directed edge (j, i) to every agent i with capacity xij; if a good j is undersold then it
has an incoming directed edge (i, j) from every agent i with unlimited capacity (we could also
set the capacity to 1 or to δ). For each good j that is oversold, the corresponding node is a source
with supply ∑i xij − 1; for each good j that is undersold, the corresponding node is a sink with
demand 1 − ∑i xij. Since ∑j xij = 1 for all agents i, the sum of the supplies over all sources is
equal to the sum of the demands over all sinks. We construct a flow f in the network N that
ships the excess allocation from the oversold to the undersold goods, and combine f with x to
obtain the new allocation x′.

Claim 32. We can construct in polynomial time a feasible flow f in N that ships all the supply from the
sources to the sinks, where the flow on each edge is at most δ.

Proof. Perform repeatedly the following action until there is no more any supply and demand
left: Pick any source node (good) j with positive supply supply(j), any outgoing edge (j, i) with
positive capacity cap(j, i), and any sink node (good) j′ with positive demand demand(j′), and
ship min{supply(j), cap(j, i), demand(j′)} amount of flow from j to j′ along the edges (j, i), (i, j′).
Decrease supply(j), cap(j, i) and demand(j′) by this amount.

Clearly an invariant of this algorithm is that at all times the total supply is equal to the total
demand. Furthermore, for every source node j, the sum of the capacities of the outgoing edges
(j, i) is equal to 1 + supply(j). These properties hold initially, and are obviously maintained in
every iteration. The properties imply in particular that, if supply(j) > 0 then there is an outgoing
edge (j, i) with positive capacity and there is a sink j′ with positive demand(j′). Every iteration
eliminates either a source, a sink, or an edge (i.e. reduces to 0 respectively its supply, demand or
capacity), hence the algorithm terminates in polynomial time.

Since the maximum supply and demand of any node in the initial network is at most δ, the flow
on every edge (j, i) and (i, j′) is at most δ.

Combining this flow f with the allocation x, we obtain a new allocation x′: If a good j was
oversold then set x′ij = xij − f (j, i) for all i ∈ A; if j was undersold then set x′ij = xij + f (i, j) for
all i ∈ A. For the other goods j, x′ij = xij for all i ∈ A. The new allocation x′ satisfies ∑j x′ij = 1
for all agents i (because of the flow conservation at the agent nodes), and ∑i x′ij = 1 for all goods
j (because f ships all excess supply from the sources to the sinks). Thus, conditions 1 and 2 in
the definition are satisfied.

For condition 4(a), note first that the change in prices by scaling their difference from 1, does not
affect the optimal bundles and the optimal value v∗(i) of each agent. The value value(i) of the
allocation xi is at least v∗(i) − δ. The flow on each edge is at most δ, so every allocation xij is
changed at most by δ. Since all the utilities uij are in [0, 1], the value of each agent’s allocation is
changed at most by nδ < /2. Therefore, the new value value′(i) of the allocation x′i of agent i is
at least v∗(i)− δ − /2 > v∗(i)− .
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For conditions 3 and 4b, note first that since cost(i) = ∑j xij pj ≤ 1+ δ for all agents i, ∑i ∑j xij pj =

∑j pj ∑i xij ≤ n(1 + δ). Since ∑i xij ≥ 1 − δ for all goods j, it follows that the sum of the prices
∑j pj ≤ n(1+ δ)/(1− δ) ≤ 2n. The cost cost′(i) = ∑j x′ij p

′
j of the new allocation x′i of agent i with

respect to the new prices p′ is at most ∑j(xij + δ)pj/(1 − δ) (since pmin ≤ δ)). Thus cost′(i) ≤
(cost(i) + δ ∑j pj)/(1 − δ) ≤ cost(i) + δ(1 + 2n)/(1 − δ) ≤ cost(i) + 3δn. Hence, cost′(i) ≤ 1 +
δ + 3δn ≤ 1 + , proving condition 3.

For condition 4b, note that the cost c∗(i) of the optimal bundle for agent i, if it is smaller than 1,
will decrease somewhat with respect to the new prices, to c′∗(i) = 1 + (c∗(i)− 1)/(1 − pmin) ≥
c∗(i)− δ. Since cost(i) ≤ c∗(i) + δ, it follows that cost′(i) ≤ cost(i) + 3δn ≤ c′∗(i) + 2δ + 3δn ≤
c′∗(i) + , proving condition 4b.

Note however, that in general an -approximate equilibrium may not be close to an actual equi-
librium of the matching market. This phenomenon is similar to the case of market equilibria for
the standard exchange markets and to the case of Nash equilibria for games.

Approximate equilibria satisfy approximate versions of the envy-freeness and Pareto optimality
properties. We say that an allocation x is −envy-free if ∑j uijxij ≥ ∑j uijxkj − , for all i, k ∈ A;
that is, no agent envies any other agent’s bundle more than . We say that an allocation x is
−Pareto optimal (efficient) if there is no other allocation y such that ∑j uijyij ≥ ∑j uijxij +  for all
i ∈ A, with the inequality strict for at least one agent i. Clearly, for  = 0 these reduce to the
standard notions of envy-freeness and Pareto optimality.

Proposition 33. If (p, x) is an -approximate equilibrium for a given one-sided matching market, then
the allocation x satisfies the following properties:
1. It is 2-envy-free.
2. It is 2-Pareto optimal.

Proof. For  = 0, these are the well-known properties that every HZ equilibrium is envy-free and
Pareto optimal. So, assume  > 0.

1. The bundle xk of agent k costs at most 1 + . Let x′k be the unit bundle obtained by taking
xk/(1 + ) and adding zero-priced goods to get size 1. The cost of x′k is at most 1 and the value
is at least ∑j uijxkj/(1 + ). Therefore, ∑j uijxkj/(1 + ) is at most the value v∗(i) of the optimal
bundle for agent i. Hence, ∑j uijxij ≥ ∑j uijxkj/(1 + )−  ≥ ∑j uijxkj − 2, since uij ∈ [0, 1] and
∑j xij = 1.

2. Suppose that y is an allocation such that value(yi) = ∑j uijyij ≥ value(xi) + 2 = ∑j uijxij + 2
for all i ∈ A, with the inequality strict for some i∗ ∈ A. Since x is an -approximate equilibrium,
condition 4a implies that value(yi) > v∗(i), hence cost(yi) = ∑j yij pj > 1 for all i ∈ A. Further-
more, we claim that cost(yi) ≥ 1 +  for all i ∈ A. If cost(yi) < 1 + , then the unit bundle y′i
obtained by taking yi/cost(i) and adding zero-priced goods, has cost 1 and value greater than
value(yi)/(1 + ) ≥ value(yi)−  ≥ value(xi) + , contradicting condition 4a for x. Therefore,
cost(yi) ≥ 1 +  for all i ∈ A, with the inequality strict for i∗.

Since in allocation y, every agent gets a unit bundle and all goods are sold, ∑i cost(yi) = ∑j pj.
Hence, ∑j pj > n(1 + ). This contradicts however the fact that allocation x satisfies by condition
3, ∑j pj = ∑i cost(xi) ≤ n(1 + ).
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7.2 Membership in PPAD

We will show membership of the approximate equilibrium problem in PPAD by showing that a
relaxed approximate equilibrium can be obtained from an approximate fixed point of a variant
of the function F defined in Section 6.

Definition 34. A weak -approximate fixed point of a function F (or weak -fixed point for short) is a
point x such that ||F(x)− x||∞ ≤ .

Let F be a family of functions, where each function FI in F corresponds to an instance I of a
problem (in our case a one-sided matching market) that is encoded as usual by a string. The
function FI maps a domain DI , to itself. We assume that DI is a polytope defined by a set of
linear inequalities with rational coefficients which can be computed from I in polynomial time;
this clearly holds for our problem. We use |I| to denote the length of the encoding of an instance
I (i.e., the length of the string). If x is a rational vector, we use size(x) to denote the number of
bits in a binary representation of x.

Definition 35. A family F of functions is polynomially computable if there is a polynomial q and
an algorithm that, given the string encoding I of a function FI ∈ F and a rational point x ∈ DI ,
computes FI(x) in time q(|I|+ size(x)).
A family F of functions is polynomially continuous if there is a polynomial q such that for every
FI ∈ F and every rational  > 0 there is a rational δ such that log(1/δ) ≤ q(|I|+ log(1/)) and
such that ||x − y||∞ ≤ δ implies ||FI(x)− FI(y)||∞ ≤  for all x, y ∈ DI .

It was shown in [EY10] that, if a family of functions is polynomially computable and polyno-
mially continuous, then the corresponding weak approximate fixed point problem (given I and
rational δ > 0, compute a weak δ-approximate fixed point of FI) is in PPAD. The family F of
functions for the online matching market problem defined in Section 6 is obviously polynomially
computable. It is easy to check also that it is polynomially continuous.

We will use a variant F′ of the function F of Section 6, where the functions Fi for the allocations
are modified as follows. Step 5 for all pairs j, k of goods, and steps 6, and 7 for all triples
j, k, l are applied all independently in parallel to the allocation that results after step 4. In order
for the allocation to remain feasible (i.e. have xij ≥ 0 for all i, j), we change line 5a in F′

i to d ←
min{ xij

3 , (pj − pk)+}, change line 6a to d ← min{ xik
3n2 , ((uil − uik)(pk − pj)− (uik − uij)(pl − pk))+},

and we change line 7a to d ← min{ xij

3n2 , xil
3n2 , ((uik − uij)(pl − pk)− (uil − uik)(pk − pj))+}. In this

way, a coordinate xij can be decreased by the operations of step 5 for all pairs j, k at most by xij/3
in total, and the same is true for the total decrease from the operations of steps 6 and 7 for all
triples involving good j; therefore, the coordinates xij remain nonnegative. The function for the
prices remains the same as before. All the properties shown in Section 6 for F hold also for F′.

The family F ′ of these functions F′
I is clearly also polynomially computable and polynomially

continuous. We shall show that, given an instance I of the matching market problem and a
rational  > 0, we can pick a δ > 0 such that log(1/δ) is bounded by a polynomial in |I| and
log(1/), and every weak δ-approximate fixed point of F′

I is a relaxed -approximate equilibrium
of the market I.
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Every utility uij is a rational number, without loss of generality in [0, 1], which is given as the ratio
of two integers represented in binary. Let m be the maximum number of bits needed to represent
a utility. Note that every nonzero uij is at least 1/2m and the difference between any two unequal
utilities is at least 1/22m. Given a positive rational  (wlog in [0, 1]), let δ = /(n1026m). We shall
show that every weak δ-fixed point of F′

I is a relaxed -approximate equilibrium of the matching
market I. The proof follows and adapts the proof in Section 6 of the analogous statement for the
exact fixed points.

Lemma 36. If (p, x) is a weak δ-fixed point of F′, then

1. ∃z ∈ G such that pz ≤ δ.

2. ∀i ∈ [n], cost(i) ≤ 1 + 2n2δ.

3. ∀j ∈ [n], 1 − 3n3δ ≤ ∑i∈A xij ≤ 1 + 3n2δ.

4. ∑j pj < 2n.

Proof. 1. From Steps 2 and 3 of Fp, there is a good z such that the price of z in the output is 0.
Therefore, pz ≤ δ.

2. Suppose for some i ∈ [n], cost(i) > 1. Then Steps 1 and 2 of F′
i will modify xi since

r = cost(i)− 1 > 0, and ∑k(1 − pk)+ > 0 because some good z has pz ≤ δ. The new cost

is ∑j pjxij+r ∑j pj(1−pj)+
1+r ∑j(1−pj)+

. This is at most 1+r+rpz(1−pz)
1+r(1−pz)

= 1 + rpz(2−pz)
1+r(1−pz)

< 1 + 2δ. Steps 3, 4 of F′
i

will either not change the allocation or if they do change it, the new cost will be less than
1. Steps 5, 6, 7 will not increase the cost. Thus, the final cost will be less than 1 + 2δ. Since
F′

i changes each coordinate xij at most by δ and every price pj is at most n, the total change
in the cost is at most n2δ. Therefore, the initial cost(i) is at most 1 + 2δ + n2δ < 1 + 2n2δ.

3. Suppose that there is a good l such that ∑i xil > 1 + 3n2δ. Since ∑j xij = 1 for all agents
i ∈ [n], there must be a good k such that ∑i xik < 1 − 3nδ.

We claim that then pk ≤ δ, and that line 3 of Fp does not change the prices. Since ∑i xik <
1− 3nδ, if pk > δ, then line 1 of Fp will decrease pk by more than δ, and line 3 certainly does
not increase it, contradicting ||Fp(p, x)− p||∞ ≤ δ. Thus, pk ≤ δ, the price pk will become 0
after line 1, hence r = 0 in line 2, and line 3 will not change the prices.

On the other hand, we claim that pl ≥ n − δ. Since ∑i xil > 1 + 3n2δ, if pl < n − δ, then
line 1 of Fp will increase pl by more than δ, and since line 3 does not change the prices, the
final value of pl exceeds the initial value by more than δ, contradicting the assumption that
(p, x) is a δ-fixed point.

But cost(i) = ∑j pjxij ≤ 1 + 2n2δ for all i ∈ [n] implies that ∑i ∑j pjxij ≤ n(1 + 2n2δ), which
contradicts the fact that pl ≥ n − δ and ∑i xil > 1 + 3n2δ, hence ∑i plxil > (n − δ)(1 +
3n2δ) > n(1 + 2n2δ).

We conclude that ∑i xil ≤ 1 + 3n2δ for all goods l. Since ∑i ∑j xij = n, it follows that
∑i xij ≥ 1 − 3n3δ for all goods j.
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4. From part (2), ∑j pjxij ≤ 1 + 2n2δ for all agents i, hence ∑i ∑j pjxij = ∑j pj ∑i xij ≤ n(1 +

2n2δ). From part (3), ∑i xij ≥ 1 − 3n3δ for all j. Therefore, ∑j pj ≤ n(1+2n2δ)
1−3n3δ

< 2n.

In the case of approximate fixed points, it is possible that multiple steps of F′
i modify the allo-

cation. However, as we will see, because of Lemma 25, none of the steps can change the value
or the cost by a large amount, because then the other steps cannot reverse the change. Note that
if two bundles of an agent differ by at most δ in every coordinate, then their values differ by at
most nδ (because all utilities are in [0, 1]), and their costs differ by at most 2nδ (because the sum
of the prices is less than 2n). This holds in particular for the values and the costs of the input
and the output allocation of each function F′

i when the input is a weak δ-fixed point.

All the steps of F′
i weakly increase the value of the allocation, except possibly for step 2. Since

r in step 1 is (cost(i) − 1)+ ≤ 2n2δ, the changes in each coordinate xij in step 2 are “small”:
From the update formula in step 2, xij can increase at most by r ≤ 2n2δ. Thus, the value can
increase in step 1 at most by 2n3δ. On the other hand, coordinate xij may decrease at most by
xij(1 − 1

1+r ∑k(1−pk)+
) ≤ xijrn ≤ xij2n3δ. Therefore the value can decrease in step 1 also at most by

2n3δ. As we observed above, the value of the output allocation of F′
i cannot differ from that of

the input allocation by more than nδ. Thus, we conclude:

Corollary 37. If (p, x) is a weak δ-fixed point, then no step of F′
i changes the value of the allocation by

more than 2n3δ + nδ.

All steps of F′
i weakly decrease the cost, except possibly for step 4. We show that step 4 does not

change the allocation significantly, and thus does not increase the cost very much.

Lemma 38. Suppose that (p, x) is a weak δ-fixed point of F′. If t in Step 3 of F′
i satisfies t > 3n5δ22m

then the value of xi is within  of the value v∗(i) of the optimal bundle for agent i under prices p, and the
cost of xi is within  of the minimum cost of an optimal bundle.

Proof. Steps 1, 2 can decrease the cost at most by 1+ r − 1+r+r ∑j pj(1−pj)+
1+r ∑j(1−pj)+

≤ r(1+ r)∑j(1− pj)+ ≤
r(1 + r)n ≤ 3n3δ. Since t in step 3 exceeds 3n3δ, it follows that the cost of the input allocation xi
is not greater than 1. Therefore, steps 1, 2 do not modify xi.

Let B′
i = {j|xij > 3n3δ22m}. Suppose that there is a good k ∈ B′

i − G∗
i . Then d in step 4 for good

k satisfies d ≥ 3n3δ22m. The change of the allocation in step 4 increases the value by at least
d(uii∗ − uik) ≥ d/22m ≥ 3n3δ, contradicting Corollary 37.

Therefore, B′
i ⊆ G∗

i . Let u be the utility for agent i of the goods in G∗
i (the maximum utility).

The goods j /∈ G∗
i have xij ≤ 3n3δ22m. Therefore the value of xi is at least u − 3n4δ22m > u −  ≥

v∗(i)− .

We show now the claim about the cost. If the min-cost optimal bundle has cost 1, then the claim
follows from Lemma 36. So assume it has cost < 1, i.e. it is of type A and consists of goods in
G∗

i . Let k be a good in G∗
i with minimum price. The minimum cost of an optimal bundle is pk.
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Step 4 may move some probability mass from goods that are not in G∗
i , hence not in B′

i , to i∗.
Since xij ≤ 3n3δ22m for all j /∈ B′

i , the total mass moved is at most 3n4δ22m, and the cost is
increased at most by 3n5δ22m. Since the cost of the output allocation of F′

i is within 2nδ of the
cost of the input allocation, and all other steps of F′

i weakly decrease the cost, it follows that no
step of F′

i can decrease the cost by more than 3n5δ22m + 2nδ.

Let s = 4n3
√

δ2m, and let B̂i = {j|xij > s}. Clearly, s > 3n3δ22m, and thus B̂i ⊆ B′
i ⊆ G∗

i . We
claim that every good j ∈ B̂i has price pj ≤ pk + s. If not, then step 5 for the pair j, k will have
d ≥ s/3, and it will decrease the cost by d

n (pj − pk) > s2

3n > 3n5δ22m + 2nδ, a contradiction.
Therefore, pj ≤ pk + s for all j ∈ B̂i. The allocation xi has probability mass at most ns in the
goods that are not in B̂i, and thus their cost is at most n2s. Therefore the cost of xi is at most
pk + s + n2s < pk + .

We assume henceforth that t in step 3 is at most t0 = 3n5δ22m. Step 4 increases the cost at most
by t and the other steps of F′

i weakly decrease the cost. Since the difference between the final and
the initial cost is at most 2nδ, we have:

Corollary 39. No step of F′
i decreases the cost of the allocation by more than t0 + 2nδ < 4n5δ22m.

We show now the approximate optimality of the agents’ bundles in an approximate fixed point.

Lemma 40. If (p, x) is a weak δ-fixed point of F′, then the value of xi is within  of the optimal value of a
bundle for agent i at prices p, and the cost of xi is within  of the minimum cost among optimal bundles.

Proof. Lemma 38 showed the result in the case that t in step 3 satisfies t > t0 = 3n5δ22m. So
assume henceforth that t ≤ t0. Thus, the cost of the allocation after step 2 is ≥ 1 − t0. The cost
of the input allocation xi is at least as great, and is at most 1 + 2n2δ by Lemma 36. It follows that
the cost of the input allocation xi, as well as the allocations after step 2 and after step 4 are all in
the interval [1 − t0, 1 + 2n2δ] (i.e., they are close to 1).

Let x′i be the allocation after step 4. Let value′(i) be the value of x′i and value(i) the value of xi.
As we observed earlier, steps 1, 2 change the value of the allocation at most by 2n3δ, and step
3, 4 change each xij at most by t0/n2, hence they increase the value at most by t0/n. Therefore,
value(i) ≥ value′(i)− 2n3δ − (t0/n) ≥ value′(i)− /2.

Let B′
i = {j|x′ij > s}, where s = 4n3

√
δ2m. We start with some useful properties of the goods in

B′
i .

Claim 41. For every good j ∈ B′
i and every good k with uik ≥ uij, it holds that pj ≤ pk + s.

Proof. Suppose the claim is not true and consider step 5 for the pair j, k. We have d ≥ s/3, and
step 5 decreases the cost by d

n (pj − pk) >
s2

3n > 4n5δ22m, in contradiction to Corollary 39.

Thus, every good in B′
i has price that is close to the minimum price among goods with the same

or higher utility. On the other hand, goods with strictly higher utility must have distinctly higher
price:
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Claim 42. If j ∈ B′
i and pj ≥ 1/2, then every good l with higher utility uil > uij has price pl >

pj + 2−2m−2. The same holds also for all goods j in an optimal bundle.

Proof. Let j be a good in B′
i and let l be another good such that uil > uij. Let z be a good with

minimum price. By Lemma 36, pz ≤ δ, hence uiz < uij. Consider step 6 for the triple z, j, l.
We have d = min{ xij

3n2 , ∆}, where ∆ = (uil − uij)(pj − pz) − (uij − uiz)(pl − pj). We know that
uil − uij ≥ 2−2m, pj − pz ≥ (1/2)− δ. If pl − pj ≤ 2−2m−2 then ∆ ≥ 2−2m−3 > 3n2s. Thus, d ≥ s

3n2 ,
step 6 will modify the allocation and decrease the cost by d∆

ul−uz
> s2 > 4n6δ22m, contradicting

Corollary 39. Therefore, pl > pj + 2−2m−2.

The argument for the case that j is a good in an optimal bundle is similar. If pl ≤ pj + 2−2m−2,
then applying step 6 for the triple z, j, l to the optimal bundle will reduce its cost while keeping
the same value, and then its value can be increased by further transferring some probability mass
from good j to l, contradicting the optimality of the bundle.

We will prove now the approximate optimality of the allocations x′i and xi. We distinguish cases
depending on the type of an optimal bundle for the prices p.

Case 1. The optimal bundle is of type A or B, i.e., there is a good k ∈ G∗
i with price pk ≤ 1.

Let pk be the smallest price of a good in G∗
i ; this is also the minimum cost of an optimal bundle.

The value v∗(i) of the optimal bundle is u, the maximum utility of a good. We argue that most
of the probability mass of x′i is allocated to goods in G∗

i . The goods not in B′
i have total size at

most ns and cost at most n2s. The goods in B′
i have price at most pk + s by Claim 41. Since the

cost of x′i is close to 1, B′
i must contain goods with price close to 1, therefore pk must be close to

1. Specifically, the cost of x′i is at least 1− t0 and at most pk + s + n2s, hence pk ≥ 1− t0 − n2s − s.
The goods in B′

i \ G∗
i have price at most pk − 2−2m−2 by Claim 42. If the total size of the goods in

B′
i \ G∗

i is y, then the cost of x′i is at most n2s + y(pk − 2−2m−2) + (1 − y − ns)(pk + s). Since the
cost is at least 1 − t0, it follows that y ≤ 22m+2(n2s + t0) ≤ 22m+3n2s. Therefore, the value of x′i is
at least (1 − ns − y)u ≥ u − /2. Hence the value of xi is at least v∗(i)− . The cost of x′i is at
most pk + s + n2s < pk + /2, hence the cost of xi is less than pk + .

We assume henceforth that the minimum price of a good in G∗
i is > 1, thus the optimal bundle is of type

C or D and has cost=1. The claim of the lemma about the cost thus holds by Lemma 36, and we
only need to prove the claim about the value.

Case 2. The optimal bundle is of type C.

Thus the optimal bundle has cost 1, and contains goods with the same utility, v∗(i), and price
1. Let k be an optimal good. All the goods of B′

i with utility strictly smaller than uik have price
≤ 1− 2−2m−2 (by Claim 42). Let y be the total size of these goods. The goods of B′

i with utility uik
have price at most 1+ s (by Claim 41). Suppose that B′

i does not have any goods with utility > uik.
Then the cost of x′i is at most n2s + y(1 − 2−2m−2) + (1 − y − ns)(1 + s). Since the cost is at least
1− t0, it follows that y ≤ 22m+3n2s. Therefore, the value of x′i is at least (1− ns− y)uik ≥ uik − /2,
from which it follows that value(i) ≥ v∗(i)− .

We assume thus that y > 22m+3n2s, which means that there are goods in B′
i with utility > uik,

and there are also goods in B′
i with utility < uik (since y > 0). Let L = {j ∈ B′

i |uij < uik},
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R = {l ∈ B′
i |uil > uik}. By Claim 42, every good j ∈ L has price pj < pk − 2−2m−2 = 1 − 2−2m−2,

and every good l ∈ R has price pl > 1 − 2−2m−2.

For any good j ∈ L and any good l ∈ R, consider Step 7 of F′
i for the triple of goods j, k, l. Let αi,

µi be the optimal dual values. We have:

ai pj = gj + uij − µi, ai pk = αi = uik − µi, ai pl = gl + uil − µi

where gj, gl ≥ 0. We have αi(1 − pj) = uik − uij − gj ≤ 1 and 1 − pj ≥ 2−2m−2 (by Claim
42), hence αi ≤ 22m+2. The quantity ∆ = (uik − uij)(pl − pk) − (uil − uik)(pk − pj) is equal to
gl(pk − pj) + gj(pl − pk). If there is a l ∈ R such that gl ≥ n2s22m+2, and we let j be any element
of L, then the quantity ∆ for the triple j, k, l is at least n2s, thus d ≥ s

3n2 , and step 7 will decrease
the cost by d∆

uil−uij
≥ s2

3 > 4n6δ22m, contradicting Corollary 39. Similarly, if there is a j ∈ L such

that gj ≥ n2s22m+2, and we take l to be any element of R, the quantity ∆ for the triple j, k, l
will be at least n2s, leading to the same contradiction. We conclude that gj < n2s22m+2 for all
j ∈ L ∪ R. Note that for all j ∈ S = {j ∈ B′

i |uij = uik}, we have pj ≤ pk + s = 1 + s, hence
αi pj ≤ uij − µi + αis ≤ uij − µi + s22m+2, i.e. gj ≤ s22m+2.

Thus, for all j ∈ B′
i , we have αi pj ≤ uij − µi + n2s22m+2. Multiplying each equation by xij and

summing over all j ∈ B′
i we get that αi ∑j∈B′

i
xij pj ≤ ∑j∈B′

i
xijuij − µi ∑j∈B′

i
xij + n2s22m+2 ∑j∈B′

i
xij.

The left hand side is αi times the cost of x′i , except for the goods that are not in B′
i , hence it is at

least αi(1 − t0 − n2s). We have also ∑j∈B′
i
xij ≥ 1 − ns. The value of x′i is at least ∑j∈B′

i
xijuij and

the optimal value v∗(i) is equal to αi + µi. Thus the difference between v∗(i) and the value of x′i
is v∗(i)− value′(i) ≤ αi(t0 + n2s) + n2s22m+2 + µins ≤ 22m+2(t0 + n2s) + n2s22m+2 + ns < /2. It
follows then as before that the initial value(i) > v∗(i)− .

Case 3. The optimal bundle is of type D.

The optimal bundle has cost 1 and contains some good l with price > 1 and some good j with
price < 1. Clearly uij < uil . Let αi, µi be again the optimal dual values. We have

αi pj = uij − µi, αi pl = uil − µi, αi = v∗(i)− µi

Note that αi =
uil−uij
pl−pj

< 22m+2, since pl − pj > 2−2m−2 by Claim 42. For every other good k, we

have αi pk = uik − µi + gk, where gk ≥ 0. We say that k is a near-optimal good if gk ≤ n2s22m+2,
and k is very suboptimal if gk > n2s22m+2. Note that if a good k ∈ B′

i has equal utility to uij or uil
then its price is within s of pj or pl respectively (by Claim 41), hence gk ≤ αis ≤ s22m+2, i.e. k is
near-optimal.

Claim 43. Let y be the total size of the very suboptimal goods in B′
i . If y ≤ 22m+3n2s, then value′(i) ≥

v∗(i)− /2 and value(i) ≥ v∗(i)− .

Proof. Let Ni be the set of near-optimal goods of B′
i . For every k ∈ Ni we have αi pk ≤ uik − µi + g,

where g = n2s22m+2. Multiplying each equation by xik and summing up over all k ∈ Ni, we get

αi ∑
k∈Ni

pkxik ≤ ∑
k∈Ni

uikxik − µi ∑
k∈Ni

xik + g ∑
k∈Ni

xik
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The total size of the goods in Ni is ∑k∈Ni
xik ≥ 1 − ns − y. Their cost, ∑k∈Ni

pkxik is at least
1 − t0 − n2s − ny. Since value′(i) ≥ ∑k∈Ni

uikxik and v∗(i) = αi + µi, we have:

v∗(i)− value′(i) ≤ αi(t0 + n2s + ny) + µi(ns + y) + g

Since αi ≤ 22m+2, µi ≤ 1, and from the assumed upper bounds on y and g, we conclude that
v∗(i)− value′(i) ≤ /2. This implies as before that value(i) ≥ v∗(i)− .

Thus, assume that y > 22m+3n2s. This means in particular that B′
i contains some very suboptimal

goods. We distinguish cases depending on how their utility compares to the utilities uij, uil of the
goods j, l in the optimal bundle. We will derive in each case a contradiction.

Subcase 1. There is a very suboptimal good k ∈ B′
i such that uij < uik < uil . Consider step 6 for the

triple j, k, l. The quantity ∆ = (uil − uik)(pk − pj)− (uik − uij)(pl − pk) is equal to gk(pl − pj). We
have gk ≥ n2s22m+2 and pl − pj ≥ 2−2m−2 (by Claim 42), thus ∆ ≥ n2s. Therefore the parameter
d in step 6 is d ≥ s/3n2, and step 6 decreases the cost by d∆

uil−uij
≥ s2/3 > 4n6δ22m, contradicting

Corollary 39.

Subcase 2. There is a very suboptimal good h ∈ B′
i such that uih > uil . If all the goods in B′

i have
utility ≥ uil , then the value of x′i is value′(i) ≥ (1−ns)uil ≥ uil − /2 ≥ v∗(i)− /2, and the result
follows. Thus, assume that B′

i has a good k with uik < uil . Consider step 7 for the triple k, l, h. The
quantity ∆ = (uil − uik)(ph − pl)− (uih − uil)(pl − pk) is equal to gh(pl − pk) + gk(ph − pl). Since
gh ≥ n2s22m+2 and pl − pk ≥ 2−2m−2 (by Claim 42), it follows that ∆ ≥ n2s. Thus, d ≥ s/3n2, and
step 7 will decrease the cost again by d∆

uil−uij
≥ s2/3, contradicting Corollary 39.

Subcase 3. All very suboptimal goods k of B′
i have uik < uij. Note that then all very suboptimal

goods k have price pk ≤ uij − 2−2m−2 < 1 − 2−2m−2 by Claim 42. We claim that B′
i must contain

a good h with utility > uij. For, if all goods in B′
i have utility ≤ uij, then they all have price

≤ pj + s < 1 + s, and then we can argue as in Case 2 that the total size of the goods of B′
i with

price ≤ 1 − 2−2m−2 must be at most 22m+3n2s, contradicting the fact that the size y of the very
suboptimal goods of B′

i is more than 22m+3n2s.

Thus, let h be a good of Bi with utility uih > uij, and consider Step 7 for the triple k, j, h. The
quantity ∆ = (uij − uik)(ph − pj)− (uih − uij)(pj − pk) is equal to gh(pj − pk) + gk(ph − pj). Since
gk ≥ n2s22m+2 and ph − pj ≥ 2−2m−2, it follows that ∆ ≥ n2s. Thus, d ≥ s/3n2, and step 7 will
decrease the cost again by d∆

uil−uij
≥ s2/3, contradicting Corollary 39.

8 Discussion

A major open question is proving a stronger hardness result for the computation, to desired pre-
cision, of an exact HZ equilibrium. We conjecture that this problem is FIXP-complete; resolving
this remains a challenging open problem.

We have given a strongly polynomial algorithm for computing an HZ equilibrium for the case
of bi-valued utilities and [CCPY22] have shown that the approximate HZ equilibrium problem
is PPAD-hard even when all agents have 4-valued utilities. That leaves the case of tri-valued
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utilities. We believe that this case also has instances with only irrational equilibria; perhaps even
for utilities {0, 1

2 , 1}. Finding such an example or proving rationality is non-trivial and we leave it
as an open problem. Furthermore, it is possible that even this case is intractable to solve exactly
or approximately.

We also leave the open question of finding other special cases, besides the bi-valued case, for
which an exact or approximate HZ equilibrium is easy to compute.
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A Rationality and structure of HZ equilibria

In this section we give a simple sufficient condition for the existence of a rational HZ equilibrium,
and use it to show that instances with three goods have a rational equilibrium.

Let I be a general instance with a set A of agents and a set G of goods. We will allow here the
goods to have a positive, integer supply sj that is possibly greater than 1 (as in the model in
the original HZ paper [HZ79]), where the sum ∑j∈G sj of the supplies is equal to the number of
agents. As is well known, this model can be reduced to the model where each good has a supply
of one unit, by creating sj copies of each good j. Since this replication increases however the
number of goods, and we want to show rationality more generally for the case of three goods
and any number of agents, we will allow here general integer supplies sj > 0 for the goods.

Consider an HZ equilibrium q∗ = (p∗, x∗) for I. For each agent i, let Bi = {j ∈ G|x∗ij > 0} be
the bundle of items that i buys in q∗. We call the family of bundles {Bi|i ∈ A} the structure
of the equilibrium q∗. We will give a set of constraints that characterize equilibria with a given
structure.

Given the structure of an equilibrium q∗ we can infer some properties of the equilibrium. If
Bi ⊆ G∗

i (i.e. all goods in the bundle of agent i have maximum utility for i) then they must all
have the same price, the price must be at most 1, and all other goods in G∗

i must have equal
or higher price. On the other hand, if Bi is not a subset of G∗

i then cost∗(i) = ∑j p∗j x∗ij = 1
in the solution q∗ and the corresponding dual variable α∗

i > 0 (agent i is of type C or D). Let
A0 = {i ∈ A|Bi ⊆ G∗

i }.

Let A1 be the set of agents i /∈ A0 such that all goods j in Bi have the same utility uij for i (but
not the maximum utility since i /∈ A0). For an agent i ∈ A1, all the goods in Bi must have the
same price in the equilibrium q∗, and the price must be exactly 1 since cost∗(i) = 1. For agents
i ∈ A0 ∪ A1, we know their average utility v∗i = ∑j uijx∗ij in q∗: it is the common utility of the
goods in Bi.
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Let A2 = A \ (A0 ∪ A1). Given the structure {Bi|i ∈ A} of an HZ equilibrium q∗, we construct
a system (C) of constraints in the variables {pj|j ∈ G}, {xij|i ∈ A, j ∈ G}, {vi|i ∈ A2}, {βi|i ∈
A1 ∪ A2}. The variables vi, i ∈ A2 represent the average utilities of the agents, and the variables
βi, i ∈ A1 ∪ A2 represent the reciprocals 1/αi of the dual variables. Note that α∗

i > 0 for i /∈ A0,
hence the reciprocals exist.

Instead of using the dual variables αi, µi and the dual constraints αi pj + µi ≥ uij, with equality
for all j ∈ Bi (see eq. (8) in Section 3 and the complementary slackness condition), it is more
helpful here to use the equivalent constraint pj − 1 ≥ βi(uij − vi), with equality for all j ∈ Bi. To
see the equivalence, note that if we multiply by xij the equation αi pj + µi = uij for j ∈ Bi and
sum over all j ∈ Bi, we obtain αi ∑j pjxij + µi = ∑j uijxij using the fact that xij = 0 for j /∈ Bi and
∑j xij = 1. Since cost(i) = ∑j pjxij = 1, it follows that αi + µi = vi. Hence αi pj + µi ≥ uij implies
pj − 1 ≥ βi(uij − vi). The other direction is similar.

Below is the system (C) of constraints for the given structure. In the constraints (4), (4’) below we
use vi also for agents i ∈ A1, but in this case they are not variables but fixed rational constants
(the common utility of the goods in Bi for i ∈ A1).

(1) ∑
i

xij = sj for all j ∈ G;

(2) ∑
j

xij = 1 for all i ∈ A;

(3) ∑
j

uijxij = vi for all i ∈ A2;

(4) pj − 1 = βi(uij − vi) for all i ∈ A1 ∪ A2, j ∈ Bi;

(4′) pj − 1 ≥ βi(uij − vi) for all i ∈ A1 ∪ A2, j /∈ Bi;

(5) pj ≤ 1 for all j ∈ ∪{Bi|i ∈ A0};

(6) pj ≤ pk for all i ∈ A0, j ∈ Bi, k ∈ G∗
i ;

(7) xij = 0 for all i ∈ A, j /∈ Bi;

(7′) xij > 0 for all i ∈ A, j ∈ Bi;

(8) βi > 0 for all i ∈ A1 ∪ A2;

Proposition 44. There is an HZ equilibrium with the given structure if and only if there is a solution to
the constraint system (C).

Proof. By our previous discussion, the parameters p, x, v, β of any HZ equilibrium q∗ with the
given structure satisfy the constraints (C).

Conversely, consider any solution (p, x, v, β) to the set (C) of constraints. Note that if we multiply
by the same positive constant the differences pj − 1 of all prices from 1, and the values βi for all
i ∈ A1 ∪ A2 we obtain another solution to (C). Thus, we can assume without loss of generality
that all prices in the solution are non-negative by scaling if necessary their difference from 1
and the βi. From constraints (1) and (2) of (C), every agent consumes exactly one unit and
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there are exactly sj units of each good j consumed. Multiplying (4) by xij and summing over
all j ∈ Bi, using (2), (7) and (3), we have that every agent i ∈ A1 ∪ A2 satisfies ∑j pjxij − 1 =
βi(∑j uijxij − vi) = 0, hence cost(i) = ∑j pjxij = 1. For agents i ∈ A0, (2), (5) and (7) imply that
cost(i) = ∑j pjxij ≤ 1. Thus, the allocations x under prices p are feasible for all agents.

For agents i ∈ A1 ∪ A2, (4) and (4’) imply that allocation x is optimal, because any other feasible
allocation y satisfies 0 ≥ ∑j pjyij − 1 ≥ βi(∑j uijyij − vi), hence vi ≥ ∑j uijyij. For agents i ∈
A0, optimality is implied from Bi ⊆ G∗

i ; furthermore, the minimality of cost(i) among optimal
allocations follows from (6). Therefore, every solution to the above set (C) of constraints yields a
HZ equilibrium; the equilibrium has the given structure by (7), (7’).

The set (C) of constraints is not linear because of the constraints (4) and (4’) for agents i ∈ A2.
Note that (4), (4’) for agents i ∈ A1 are linear because vi is a constant for these agents, not a
variable. Thus, if A2 = ∅, then (C) is a system of linear inequalities with rational coefficients;
hence it has a rational solution, since we assumed the existence of a HZ equilibrium with the
given structure.

So, assume A2 ∕= ∅. We will give below a sufficient condition for (C) to have a rational solution.
Form the bipartite graph with node set A2 in one part and ∪{Bi|i ∈ A2} in the other part, and
with edge set {(i, j)|i ∈ A2, j ∈ Bi}. Merge any two good-nodes j, j′ if there exists an agent i ∈ A
such that Bi contains both j, j′ and uij = uij′ . Note that any solution of (C) (and any equilibrium)
must have pj = pj′ by constraints (4), (6).

Let H be the resulting bipartite graph after performing the above merging process. The graph
H has node set A2 ∪ G′ where every node v of G′ represents a set of goods that must have the
same price. For each agent i ∈ A2, let N(i) denote the neighborhood (set of adjacent nodes) of
node i in H. Observe that |N(i)| ≥ 2 for all i ∈ A2. To see this, recall that since i ∈ A2, there are
at least two goods j, j′ ∈ Bi such that uij ∕= uij′ . By constraint (4), any solution to (C) must have
pj ∕= pj′ . If j and j′ were merged in H, then there would be no solution to (C), contradicting our
assumption that there is an HZ equilibrium with the given structure.

Lemma 45. Suppose that there is an HZ equilibrium with the given structure. If some agent i ∈ A2 has
N(i) = G′, then (C) has rational solution, and hence there is a rational HZ equilibrium with the given
structure.

Proof. Suppose that there is an HZ equilibrium with the given structure, and that N(i) = G′. We
can assume without loss of generality that the value of βi in the corresponding solution q∗ of (C)
is any arbitrary positive constant, by scaling if necessary all the quantities βk, k ∈ A1 ∪ A2 and
pj − 1, j ∈ G. So assume that βi = 1 in the solution q∗. Constraints (4) imply that for every pair
of goods j, j′ ∈ Bi, their prices in q∗ satisfy pj − pj′ = uij − uij′ , a rational number.

Consider any other agent k ∈ A2 and two goods l, l′ ∈ Bk with ukl ∕= ukl′ . Since N(i) = G′,
there are goods j, j′ ∈ Bi that are represented in H by the same nodes respectively as l, l′, hence
pl = pj and pl′ = pj′ . From constraints (4) for agent k, we have pl − pl′ = βk(ukl − ukl′), hence
βk = (pl − pl′)/(ukl − ukl′) = (pj − pj′)/(ukl − ukl′) = (uij − uij′)/(ukl − ukl′).

Thus, we can determine the values of the variables βk, k ∈ A2 in q∗, and they are all rational. We
can substitute these values into the system (C), making the constraint system linear, and solve
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the system to obtain a rational solution.

Remark. It can be shown that the same conclusion holds more generally if there is an agent
i ∈ A2 that can reach all nodes in H using the following search algorithm:
1. Initialize the set R of reached agents to {i} and the set S of reached good-nodes to N(i).
2. While there is an agent k ∈ A2 \ R such that |N(k) ∩ S| ≥ 2, add k to R and add N(k) to S.
Using similar arguments as in Lemma 45, we can show that if the search reaches all the nodes
of H then we can determine the values of all βk, k ∈ A2 and they are all rational. We can then
substitute these values in the system (C), and solve the resulting linear system to obtain a rational
equilibrium. We omit the proof of this fact, as Lemma 45 suffices for the next corollary.

Corollary 46. Every instance with three goods (and any number of agents) has a rational equilibrium.

Proof. Let I be an instance with three goods and q∗ a HZ equilibrium. Given the structure of
q∗, let A0, A1, A2 be the partition of the agents defined above. If A2 = ∅ then there is a rational
equilibrium. So assume A2 ∕= ∅, and let H be the bipartite graph defined above with node set
A2 ∪ G′. Recall that |N(i)| ≥ 2 for every i ∈ A2, hence |G′| ≥ 2. If N(i) = G′ for some i ∈ A2
then the result follows from Lemma 45.

Thus assume N(i) ∕= G′ for all i ∈ A2. This implies that |G′| = 3 and |N(i)| = 2 for all i ∈ A2.
This means in particular that G′ = G, there is no merging of nodes, hence every agent i in A0 ∪ A1
has |Bi| = 1, and consumes one unit of one good. Let s′j be the remaining supplies of the three
goods that are consumed by agents in A2. Every agent in A2 has unequal utilities for the two
goods in his bundle, hence the two goods in his bundle have unequal prices. If every pair of
goods is the bundle of some agent, then the three goods must have distinct prices, which implies
that an agent whose bundle is the pair of goods with the two lowest prices spends less than an
agent whose bundle is the pair with the two highest prices, contradicting the fact that cost(i) = 1
for all agents i ∈ A2. Therefore, one pair of goods, say {1, 2}, is not the bundle of any agent. Let
n1 be the number of agents with bundle {1, 3} and n2 the number of agents with bundle {2, 3}.
Let di = |pj − 1| for j = 1, 2, 3.

Consider an agent i with bundle Bi = {1, 3}. Since cost(i) = p1xi1 + p3xi3 = 1 and xi1 + xi3 = 1,
we have xi1 = d3

d1+d3
and xi3 = d1

d1+d3
. Hence all the n1 agents i with bundle Bi = {1, 3} consume

the same amount xi1 = d3
d1+d3

of good 1, and since no other agent in A2 consumes good 1, we have
xi1 = s′1/n1, and xi3 = 1 − xi1 = 1 − s′1/n1; both are rational numbers. Similarly, all n2 agents
with bundle Bi = {2, 3} consume the same amount s′2/n2 of good 2 and 1− s′2/n2 of good 3, also
rational amounts. If we set the minimum price to 0, and solve for the other two prices, they will
be also rational numbers.
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