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Abstract. Continuity of the mapping from initial endowments and util-
ities to equilibria is an essential property for a desirable model of an econ-
omy – without continuity, small errors in the observation of parameters
of the economy may lead to entirely different predicted equilibria.
We show that for the linear case of Fisher’s market model, the (unique)
vector of equilibrium prices, p = p(m,U) is a continuous function of
the initial amounts of money held by the agents, m, and their utility
functions, U. Furthermore, the correspondence X(m,U), giving the set
of equilibrium allocations for any specified m and U, is upper hemi-
continuous, but not lower hemicontinuous. However, for a fixed U, this
correspondence is lower hemicontinuous in m.

1 Introduction

Mathematical economists have studied extensively three basic properties that a
desirable model of an economy should possess: existence, uniqueness, and con-
tinuity of equilibria.3 An equilibrium operating point ensures parity between
demand and supply, uniqueness of the equilibrium ensures stability, and conti-
nuity is essential for this theory to have predictive value – without continuity,
small errors in the observation of parameters of an economy may lead to entirely
different predicted equilibria.

The questions of existence and uniqueness (or its relaxation to local unique-
ness) were studied for several concrete and realistic models. However, to the best
of our knowledge, the question of continuity was studied only in an abstract set-
ting; for example, demand functions of agents were assumed to be continuously
differentiable and, using differential topology, the set of “bad” economies was
shown to be “negligible” (of Lebesgue measure zero if the set of economies is
finite-dimensional).4

In this paper, we study continuity of equilibrium prices and allocations for
perhaps the simplest market model – the linear case of Fisher’s model. It is

3 See [3], Chapter 15, “Smooth preferences”.
4 See [3], Chapter 19, “The application to economies of differential topology and global

analysis: regular differentiable economies”.



well known that equilibrium prices are unique for this case [5]. An instance of
this market is specified by m and U, the initial amounts of money held by the
agents and their utility functions, respectively. We denote by p = p(m,U) be
the corresponding (unique) vector of equilibrium prices. In Section 3 we prove
that the equilibrium utility values are continuous functions of the unit utility
values and the initial amounts of money. In Section 4 we prove that p(m,U) is
a continuous mapping.

Such linear markets can, however, have more than one equilibrium allocation
of goods; let X(m,U) denote the correspondence giving the set of equilibrium
allocations. In Section 5 we prove that this correspondence is upper hemicontin-
uous, but not lower hemicontinuous. For a fixed U, however, this correspondence
turns out to be lower hemicontinuous in m as well.

2 Fisher’s linear case and some basic polyhedra

Fisher’s linear market model (see [2]) consists of N buyers and n divisible goods;
without loss of generality, the amount of each good may be assumed to be unity.
Let uij denote the utility derived by i on obtaining a unit amount of good j.
Thus, the utility of buyer i from receiving xij units of good j, j = 1, . . . , n, is
equal to

∑n
j=1 uijxij . Let mi, i = 1, . . . , N , denote the initial amount of money

of buyer i. Unit prices, p1, . . . , pn, of the goods are said to be equilibrium prices
if there exists an allocation x = (xij) of all the goods to the buyers so that
each buyer receives a bundle of maximum utility value among all bundles that
the buyer can afford, given these prices; in this case x is called an equilibrium
allocation.

Denote by PX the polytope of feasible allocations, i.e.,

PX ≡ {x = (xij) ∈ RNn :
N∑

i=1

xij ≤ 1 (j = 1, . . . , n), x ≥ 0} .

Obviously, x is a vertex of PX if and only if for all i and j, xij ∈ {0, 1}, and for
each j, there is at most one i such that xij = 1. In other words, an allocation x is
a vertex of PX if and only if in x each good is given in its entirety to one agent.
Denote by U the (N × (Nn))-matrix that maps a vector x to the associated
vector y = (y1, . . . , yN ) of utilities, where yi =

∑n
j=1 uij xij , i.e., y = Ux.

Uniqueness of equilibrium prices implies uniqueness of y at equilibrium.
Denote by PY = PY (U) the polytope of feasible N -tuples of utility values,

i.e., PY = UPX . Obviously, y ≥ 0 for every y ∈ PY . It follows that for every
vertex y of PY , there exists a vertex x of PX such that y = Ux. Denote by Si

the set of goods that i receives under vertex allocation x. Then, yi =
∑

j∈Si
uij ,

i = 1, . . . , N .5

5 The converse is not true in general. In fact, in the case of N = n = 2, if uij = 1 for
all i and j, then the allocation (1, 0, 0, 1), where good 1 is allocated to agent 1 and
good 2 is allocated to agent 2, is a vertex of PX but the associated vector of utilities
(1, 1) is not a vertex because it is a convex combination of the feasible vectors of
utilities (2, 0) and (0, 2).



3 Continuity of equilibrium utility values

Denote G(y,U,x) ≡ ‖y −Ux‖2. Obviously,

(i) G is continuous,
(ii) G(y,U,x) ≥ 0 for all y, U, and x,
(iii) G(y,U,x) = 0 if and only if y = Ux, and
(iv) for every y and U, the function g(x) ≡ G(y,U,x) has a minimum over PX .

Denote by F (y,U) the minimum of G(y,U,x) over x ∈ PX . It is easy to verify
the following:

(i) F is continuous, because G is continuous and PX is compact,
(ii) F (y,U) ≥ 0 for all y and U, and
(iii) F (y,U) = 0 if and only if y ∈ PY (U).

For y ≥ 0, m > 0 and U ≥ 0, denote

f(y;m,U) ≡
n∑

i=1

mi · log yi −M · F (y,U) , (1)

where M is a sufficiently large scalar. By definition, PY (U) 6= ∅ for every U ≥ 0.
For m > 0, f is strictly concave in y over PY (U), and hence has a unique
maximizer over PY (U). For M sufficiently large, this is also a maximizer over
all y ≥ 0. Thus, for m > 0 and U ≥ 0, denote by y∗ = y∗(m,U) that unique
maximizer.

Theorem 1. The mapping y∗(m,U) is continuous.

Proof. Suppose {(mk,Uk)}∞k=1 is a sequence that converges to (m0,U0), where
for every k ≥ 0, mk > 0 and Uk ≥ 0. Denote yk = y∗(mk,Uk), k = 0, 1, . . .
By continuity of f as a function of (y;m,U), {f(y0;mk,Uk)} converges to
f(y0;m0,U0). Since yk ∈ PY (Uk) and {Uk} converges, there exists a bound
u such that ‖yk‖ ≤ u for every k. Thus, we may assume without loss of gen-
erality that y is restricted to a compact set. Let {ykj}∞j=1 be any convergent
subsequence, and denote its limit by y. By continuity of f , {f(ykj ;mkj ,Ukj )}
converges to f(y;m0,U0). Since f(ykj ;mkj ,Ukj ) ≥ f(y0;mkj ,Ukj ), it follows
that f(y;m0,U0) ≥ f(y0;m0,U0). Since y0 maximizes f(y;m0,U0) and the
maximum is unique, it follows that y = y0. This implies that {yk} converges to
y0.

4 Continuity of equilibrium prices

Denote by p = p(m,U) = (p1(m,U), . . . , pn(m,U)) the prices that are gen-
erated as dual variables in the Eisenberg-Gale convex program, whose optimal



solutions give equilibrium allocations and dual variables give equilibrium prices
[4]:6

Maximize
n∑

i=1

mi · log
(∑n

j=1 uij xij

)

subject to x = (xij) ∈ PX ,

(2)

i.e., given an optimal solution x = (xij) of (2),

pj(m,U) = max
{

mi · uij∑n
k=1 uik xik

: i = 1, . . . , n

}
. (3)

The vector y = Ux of utilities is the same for all optimal solutions x, and hence
p is unique. The problem can alternately be formulated in terms of the vector
of utilities:

Maximize
n∑

i=1

mi · log yi

subject to y = (y1, . . . , yn) ∈ PY

(4)

and the prices can be represented as

pj(m,U) = max
{

mi · uij

yi
: i = 1, . . . , n

}
. (5)

The latter, together with Theorem 1 gives:

Theorem 2. The mapping p(m,U) is continuous.

5 Hemicontinuity of equilibrium allocations

5.1 Upper hemicontinuity

For every m > 0 and U ≥ 0, denote

g(x) = g(x;m,U) ≡
n∑

i=1

mi · log
(∑n

j=1 uij xij

)
.

Denote by X(m,U) the set of optimal solutions of (2). Obviously, X(m,U) is
compact and nonempty for every m and U. Denote by v(m,U) the maximum
of g(x) over PX .

Theorem 3. The correspondence X(m,U) is upper hemicontinuous.

Proof. To prove that X is upper hemicontinuous at (m0,U0), one has to show
the following: for every sequence {mk,Uk}∞k=1 that converges to (m0,U0), and
every sequence {xk}∞k=1 such that xk ∈ X(mk,Uk), there exists a convergent
subsequence {xkj}∞j=1, whose limit x0 belongs to X(m0,U0).

6 We use the convention that log 0 = −∞.



Suppose {mk,Uk}∞k=1 converges to (m0,U0), and {xk}∞k=1 is a sequence
such that xk ∈ X(mk,Uk). Since xk ∈ PX for every k, there exists a subse-
quence {xkj}∞j=1 that converges to a point x0. Since g is a continuous func-
tion of (x;m,U), it follows that the sequence {g(xkj ;mkj ,Ukj )} converges to
g(x0;m0,U0). On the other hand, g(xk;mk,Uk) = v(mk,Uk). By Theorem
1, {yk ≡ Ukxk} converges to an optimal y with respect to (m0,U0), so that
{v(mk,Uk)} converges to v(m0,U0). Thus, g(x0;m0,U0) = v(m0,U0), which
means x0 ∈ X(m0,U0).

5.2 Lower hemicontinuity

Proposition 1. There exist m and U0 such that the correspondence Ξ(U) ≡
X(m,U) is not lower hemicontinuous at U0.

Proof. To prove that Ξ(U) is lower hemicontinuous at U0, one has to show the
following: for every sequence {Uk}∞k=1 that converges to U0, and every x0 ∈
X(U0), there exists a sequence {xk ∈ X(Uk)} that converges to x0.

Consider a linear Fisher market with two goods and two buyers, each hav-
ing one unit of money (m = (1, 1)), and the utilities per unit U are: u11 =
u12 = u21 = 1 and u22 = u, where 0 < u ≤ 1. Under these circumstances, the
equilibrium prices are (1, 1) for every u. If u < 1, there is only one equilibrium
allocation: Buyer 1 gets Good 2 and Buyer 2 gets Good 1. However, if u = 1,
there are infinitely many equilibrium allocations: Buyer 1 gets x units of Good 1
and 1−x units of Good 2, and Buyer 2 gets 1−x units of Good 1 and x units of
Good 2, for 0 ≤ x ≤ 1. This implies that the correspondence Ξ(U) is not lower
hemicontinuous at the point U0 where u = 1.

To prove that X is lower hemicontinuous in m we need the following lemmas:

Lemma 1. Let A ∈ Rm×n and let x0 ∈ Rn. For every y in the column space
of A, denote by x∗(y) the closest7 point to x0 among all points x such that
Ax = y. Under these conditions, the mapping x∗(y) is affine.

Proof. Since we consider only vectors y in the column space of A, we may
assume, without loss of generality, that the rows of A are linearly independent;
otherwise, we may drop dependent rows. Thus, AAT is nonsingular. Let y0 =
Ax0. Obviously, x0 = x∗(y0). Let y in the column space of A be fixed, and
consider the problem of minimizing 1

2‖x−x0‖2 subject to Ax = y. It follows that
there exists a vector of Lagrange multipliers z ∈ Rm such that x∗(y)−x0 = AT z.
Thus, Ax∗(y)−Ax0 = AAT z, and hence z = (AAT )−1(y−y0). It follows that
x∗(y) = x0 + AT z = x0 + AT (AAT )−1(y − y0).

Lemma 2. Let A ∈ Rm×n be a matrix whose columns are linearly independent.
Let x0 ∈ Rn and y0 ∈ Rm be such that Ax0 ≤ y0. For every y ∈ Rm such that
{x |Ax ≤ y} 6= ∅, denote by x∗(y) the closest point to x0 among all points x
such that Ax ≤ y. Under these conditions, the mapping x∗(y) is continuous at
y0.
7 We use the Euclidean norm throughout; thus the, closest point is unique.



Proof. For every S ⊆ M ≡ {1, . . . , m}, denote S ≡ M \ S. Denote by AS the
matrix consisting of the rows of A whose indices i belong to S. Similarly, let yS

denote the projection of y on the coordinates in S. Denote FS(y) = FS(yS) ≡
{x : AS x = yS}. Let x∗S(y) be the point in FS(y) that is closest to x0. By
Lemma 1, x∗S(y) is an affine transformation of yS . It follows that there exists an
α > 0 such that for every y, ‖x∗S(y)− x∗S(y0)‖ ≤ α · ‖y− y0‖. Let ε > 0 be any
number. Fix S ≡ {i : (Ax0)i = y0

i }. Obviously, x0 = x∗S(y0) and AS x0 < y0
S

.
Let 0 < δ < ε/α be sufficiently small so that ‖y − y0‖ < δ implies AS x∗S(y) <
yS . It follows that ‖y−y0‖ < δ implies ‖x∗(y)−x0‖ ≤ ‖x∗S(y)−x0‖ < αδ < ε.

Theorem 4. For every fixed U, the correspondence Ξ(m) = X(m,U) is lower
hemicontinuous at every m0 > 0.

Proof. To prove that Ξ(m) is lower hemicontinuous at m0 > 0, one has to
show the following: for every sequence {mk}∞k=1 that converges to m0, and every
x0 ∈ Ξ(m0), there exists a sequence {xk ∈ Ξ(mk)} that converges to x0.

Suppose {mk}∞k=1 converges to m0, and let x0 ∈ Ξ(m0) be any point. Let
yk = y∗(mk), k = 0, 1, . . ., i.e., yk is the unique maximizer of f(y;mk,U) (see
(1)) or, equivalently, the optimal solution of (4). By Theorem 1, {yk} converges
to y0. Thus, Ξ(mk) is the set of all vectors x ∈ PX such that Ux = yk. In
particular, x0 ∈ PX and Ux0 = y0. Let xk denote the minimizer of ‖x − x0‖
subject to x ∈ PX and Ux = yk. Denote by x∗ = x∗(y) the optimal solution of
the following optimization problem:

Minimizex ‖x− x0‖
subject to Ux = y

∑

i

xij ≤ 1 (∀j)

xij ≥ 0 (∀i)(∀j) .

Thus, xk = x∗(yk). By Lemma 2, the mapping x∗(y) is continuous. Since {yk}
converges to y0, {xk} converges to x0.
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