
Design is as Easy as Optimization

Deeparnab Chakrabarty∗ Aranyak Mehta† Vijay V. Vazirani‡

Abstract

We consider the class of max-min and min-max optimization problems subject to a global
budget (or weight) constraint and we undertake a systematic algorithmic and complexity-
theoretic study of such problems, which we call problems design problems. Every optimiza-
tion problem leads to a natural design problem.

Our main result uses techniques of Freund-Schapire [FS99] from learning theory, and
its generalizations, to show that for a large class of optimization problems, the design
version is as easy as the optimization version. We also observe a close relationship between
design problems and packing problems; this yields relationships between fractional packing
of spanning and Steiner trees in a graph, the strength of the graph, and the integrality gap
of the bidirected cut relaxation for the graph.

1 Introduction

In this paper, we undertake a systematic study of max-min and min-max optimization problems
subject to a global budget (or weight) constraint. We call such problems design problems.
Every optimization problem leads to a natural design problem; if the optimization problem is
a minimization (maximization) problem, its design version is a max-min (min-max) problem.

The process of obtaining a design problem from an optimization problem is formally defined
in Section 2. As an illustration, the design problem obtained from the sparsest cut problem is:
We are given an undirected graph G(V,E) and a bound B on the total weight. The problem is
to find a way to distribute weight B on the edges of G so that the sparsity of the sparsest cut
is maximized. Observe that this is a max-min problem.

The history of such problems goes back all the way to Fulkerson [Ful59], who considered
the problem of maximizing the minimum cut in a network whose edge capacities could be
augmented, given a bound on the total augmentation allowed. Observe that since the minimum
cut in a network equals the maximum flow, this max-min problem can be transformed into a
pure maximization problem: that of finding the augmented network that supports maximum
possible flow.

Juttner [Jüt06] studied a general class of problems in which such a transformation always
works; he called it budgeted optimization problems. Start with any optimization problem for
which the set of feasible solutions forms a polytope. Then, the max-min or min-max problem
obtained from it (depending on whether the original problem is a minimization or maximization
problem) is in this class.
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Juttner showed the general result that if the original optimization problem has a strongly
polynomial algorithm, then so does the budgeted optimization problem. A key step in obtaining
this result is captured in the solution to Fulkerson’s problem. W.l.o.g. assume that the budgeted
optimization problem is a max-min problem, which has been obtained from a minimization
problem. Now, using fact that the set of feasible solutions of the latter form a polytope, it
can be written as a minimization LP. Its dual, a maximization LP, also achieves the same
optimal solution, thereby transforming the max-min problem into a max-max problem, which
is simply a maximization problem. The latter is solved using Megiddo’s parametric search
method [Meg79]. Besides Juttner’s work, we are not aware of any systematic study of the
complexity of design problems.

In retrospect, Juttner has carved out a subclass of design problems that, via a polynomial
amount of work, can be restated as optimization problems. Here we study a more general
class of problems in which the underlying optimization problem can have an arbitrary set of
feasible solutions, may not even be polynomial time solvable and moreover may not even be
a linear (but needs to be a concave minimization problem or a convex maximization problem;
see Section 2). On the negative side, we only give polynomial, and not strongly polynomial
algorithms (exact or approximation) for design problems, whenever the optimization problem
has a polynomial time (exact or approximation) algorithm.

This brings us to the justification of the name “design problem”: Assume that the under-
lying optimization problem is a minimization problem, i.e., among the set of feasible solutions,
which is typically exponentially large, it is seeking a minimum cost solution. Then the cor-
responding design problem, with a given budget, is seeking an instance (among all instances
satisfying the budget constraint) in which the minimum cost solution is as large as possible.
Thus the task at hand is to design the best instance satisfying certain constraints and properties.
With this explanation, it should be clear that design problems arise in numerous applications.
Observe also that the design problem arising from the sparsest cut problem is not a budgeted
optimization problem, since the latter is NP-hard and does not have a linear programming
formulation, assuming P 6= NP.

Two prominent design problems studied recently are: Boyd, Diaconis and Xiao [BDX04]
study the design of the fastest mixing Markov chain on a graph with a budget constraint on the
weights of the edges of a fixed graph. Elson, Karp, Papadimitriou and Shenker [EKPS04] study
the synchronization design problem in sensornets, which is essentially the problem of finding a
Markov chain on a graph that minimizes the maximum commute time.

Neither of these design problems is a budgeted optimization problem. In both these prob-
lems, the underlying optimization problem has only n choose 2 different possible solutions,
corresponding to the number of pairs of vertices in the graph (the problem being either finding
the pair with the largest mixing time or largest commute time).

1.1 Overview of results

Our main result is that for a large class of optimization problems, the design version of the
problem is as easy to solve as the optimization problem itself. The class of problems we show this
for are minimization problems with concave objective functions, and maximizations problems
with convex objective functions. An important special class is the class of problems with linear
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objective functions. These classes will be defined formally in Section 2. We state our results
here for minimization problems - the maximization versions have analogous results.

• In Section 3.1, we observe that for a minimization problem Π with a concave objective
function, the corresponding maxmin design problem D(Π) can be set up as a convex
optimization problem. Moreover, if we use the ellipsoid method to solve the problem,
then the separation oracle required is Π itself. Thus, if we can solve Π in polynomial
time, then we can also solve D(Π) in polynomial time. Furthermore, if Π has an α-factor
approximation algorithm, then using the ellipsoid method along with a binary search we
can get an α approximation for D(Π) as well.

• In Section 3.2 we include, for completeness, the observation from [Jüt06] that if the
optimization problem Π can be set up as a linear program, then the design problem D(Π)
can be set up as another similar linear program. If Π itself cannot be set up as a linear
program, but there is a linear program whose solution is within a factor of α of the optimal
solution of Π (e.g., an LP relaxation of an integer program for Π), then we can find a
linear program for D(Π) which has an optimal solution within a factor α of the optimal
solution to the design problem.

• In Section 4, we give the main algorithmic result of this paper – a second general method
for solving the design problem. This method is much more efficient than the ellipsoid
method of Section 3.1. We set up the design problem D(Π) of an optimization problem
Π as a two player zero-sum game and show that the D(Π) seeks the minmax value of
this game. We apply the adaptive learning techniques of Freund-Schapire [FS99] in the
linear case and that of Flaxman et.al [FKM05] in the concave case to solve the game.
This results in an iterative scheme to solve D(Π) within an additive error ε by using the
approximation algorithm for Π only O(lnn/ε2) times. If the algorithm for Π has a worst
case factor of α, then we solve D(Π) up to a factor of α with an additional ε additive
error.

• In Section 5 we investigate the relationship between the complexity of an optimization
problem and its corresponding design problem. We already establish in Section 3.1 that if
a linear optimization problem is in P then so is its design version. We provide an example
in which a linear optimization problem is NP-complete but its design version is in P,
and another example in which a linear optimization problem and its design version are
NP-hard.

• In Section 6, we observe the close relationship between maxmin design problems and the
corresponding fractional packing problem. We use this to derive relations between the
fractional packing number of Steiner trees and the strength of a graph. In particular,
for spanning trees we prove that the fractional packing number equals the strength. The
result for spanning trees can be derived using Nash-Williams and Tutte theorems [NW61,
Tut61] about packing spanning trees, and ours is an alternate proof of the fact. We
also derive a relationship between the fractional packing of steiner trees in a graph, the
strength of the graph, and the integrality gap of the bidirected cut relaxation
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2 Problem Definition

We present a general framework to define the design versions of optimization problems:

Definition 1 An optimization problem Π consists of a set of valid instances IΠ, and an
objective function obj. Each instance I is a tuple (EI ,SI ,wI). Henceforth we will drop the
subscript when the instance is clear from context. E is a universe of elements, and each element
e ∈ E has an associated weight w(e) ≥ 0, a rational number, giving the vector w. Throughout
we will let n = |E|. Each instance also has a set of feasible solutions 1 S. For an instance
I = (E,S,w), and a feasible solution S ∈ S, the value of the objective function is obj(I, S).
We restrict this to be a function of S and w only, so we may write this as fS(w), for some
function fS . For a maximization problem, the goal is to find an optimal solution:

S∗ = argmin
S∈S

fS(w)

We also define:
OPTΠ((E,S,w)) = min

S∈S
fS(w)

For α ≥ 1, a feasible solution S′ is called an α-approximate solution to I if:

fS′(w) ≤ α ·OPTΠ(I)

An algorithm is called an α-approximation algorithm for the problem Π if for every instance
I of Π, the algorithm returns an α-approximate solution to I. The goal of a maximization
problem is defined similarly.

Definition 2 The maxmin design version D(Π) of a minimization problem Π is defined as
follows: For every collection of valid instances of Π of the form I = (EI ,SI , ·), there is one valid
instance of D(Π): J = (EJ ,SJ , BJ), where EJ = EI , SJ = SI , and BJ is a rational number,
called the weight budget. A feasible solution to J is a weight vector w = (w(e)){e∈EJ}, which
satisfies the budget constraint

∑
e∈EJ

w(e) ≤ BJ . Every feasible solution w to J leads to an
instance I = (EI ,SI ,w) of the optimization problem Π.

The goal of the maxmin design problem is to find a feasible solution w so that the minimum
objective function value of the resulting instance of the minimization problem is as large as
possible. That is, the goal is to find an optimal solution:

w∗ = argmax
w:

P
e w(e)≤B

OPTΠ((E,S,w))

We also define:
OPTD(Π) ((E,S, B)) = max

w:
P

e w(e)≤B
OPTΠ((E,S,w))

For α ≥ 1, a weight vector w′ is called an α-approximate solution to I if:

OPTΠ((E,S,w)) ≥ 1
α
·OPTD(Π)

An algorithm is called an α-approximation algorithm for a design problem D(Π) if for every
instance I of D(Π), the algorithm returns an α-approximate solution to I.

The minmax design version of a maximization problem is defined similarly.
1The number of feasible solutions may be exponential in n = |E|
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Definition 3 An optimization problem Π (and its design version D(Π)) is called linear if
all its instances I = (E,S,w), are of the following form: S ⊆ 2E , and ∀ S ∈ S : fS(w) =∑

e∈S ae,Swe, for some ae,S ≥ 0. A more general class of problems has the functions fS being
convex or concave functions of w. We shall call these concave minimization and convex
maximization problems.

Examples: Most optimization problems on graphs are linear, as defined above. For
example, in the Min-Steiner-Tree problem (Traveling-Salesman, Sparsest Cut), an instance
I = (E,S,w) has E being the set of edges of the given graph, S being the collection of all sets
of edges which form Steiner trees (Hamiltonian cycles, cuts), and w being the given weights on
the edges. An instance (E,S, B) of the design version of these problems would be to allocate
a budget of B to the edges of the graph so as to maximize the weight of the minimum weight
Steiner tree (maximize the weight of the best TSP tour, make the sparsest cut as dense as
possible). Clearly, some design problems make more intuitive sense than others.

An example of a convex maximization problem is that of finding the maximum commute
time of a random walk on a graph over different pairs of vertices. Here an instance is I =
(E,S,w), where E is the set of edges of the graph, S is the collection of pairs of vertices,
and the wes are the relative conductances of the edges, giving the transition probabilities. The
functions fS are the commute time functions, known to be convex (see Section 4.2.1 for details).
The design version of this problem is that of assigning transition probabilities to minimize the
maximum commute time.

3 Solving design problems

3.1 A general technique based on the ellipsoid method

Consider a concave minimization problem and its corresponding max-min design problem. The
analysis for convex min-max design problems is similar. The following theorem states that
if the optimization version can be solved in polynomial time, then the design version can be
solved up to additive error ε using the ellipsoid method.

Theorem 3.1
If we have an algorithm which solves the minimization problem Π = (E,S,w) with a concave
objective function fS(w) in polynomial time, then for any ε > 0, we can solve the corresponding
max-min design problem D(Π) up to an additive error of ε in time polynomial in n and log 1

ε .

Proof: Note that the value of the optimal max-min design is given by the following program:

OPTD(Π) := max{λ : λ− fS(w) ≤ 0, ∀S ∈ S;
∑
e∈E

w(e) ≤ B; w(e) ≥ 0, ∀e ∈ E} (1)

If fS() is concave, then the above program is also convex, since for any two feasible solutions
(λ,w) and (λ′,w′) and 0 ≤ µ ≤ 1, we have

fS(µw + (1− µ)w′) ≥ µfS(w) + (1− µ)fS(w′) ≥ µλ + (1− µ)λ′

Hence, one can solve the above program using the ellipsoid method. Assuming an upper
bound F on the optimum, the algorithm proceeds with a guess λ of the optimum to the program
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and tests for emptiness of the convex feasible set. For any ε > 0, in time polynomial in the
input size and log 1

ε , the ellipsoid method (see [GLS88]) using the minimization problem as a
separating oracle2 to construct the ellipsoids, returns a feasible w, or asserts that optimum is
smaller than λ + ε. Via a binary search to find λ∗ which takes time log F , the theorem follows
by noting that an upper bound on λ∗ is polynomial in the size of the value returned by the
minimization problem. 2

In the next theorem we show if the minimization problem has an α-approximation, then so
does the max-min design version.

Theorem 3.2
If we have a polynomial time algorithm returning an α-approximation to the optimization prob-
lem Π, then we can find, for any ε > 0, an approximation algorithm for the design problem
D(Π), with a multiplicative factor of α and an additive error of ε.

Proof: We have a polytime algorithm which, given (E,S,w), returns a set S with objective
function value guaranteed to be at most α-factor away from the actual optimum: fS(w) ≤
α minT∈S fT (w). As in the proof of Theorem 3.1, given a guess λ, we run ellipsoid to check if
there exists a feasible w. The difference now is that the separation oracle is the approximate
minimization algorithm. Thus, for any ε > 0, the ellipsoid algorithm returns, in time polynomial
in input and log 1

ε , a solution (λ,w), so that the optimum is less than λ + ε. However, since
the separation oracle is approximate, (λ,w) might not be feasible itself. Nevertheless, by the
guarantee of the approximation, we know (λ/α,w) is feasible, which implies the theorem. 2

Remark 1 We note that for linear optimization problems where the function fS() is linear,
the program 1 is a linear program, and (see [GLS88]) the above two theorems hold without any
additive error.

The ellipsoid method may need to take a number of steps equal to a large polynomial. In
each step we need to solve an instance of the optimization problem Π. The ellipsoid method
also takes a huge time in practice. This motivates us to look for faster algorithms for the design
problem. In Section 4, we will provide a different general method which works much faster.

3.2 A technique based on LP-relaxation

In this section we describe a general technique for solving design problems, in the case that
we have a linear programming relaxation for the minimization problem Π. This technique has
been described in [Jüt06], and we include it here only for the sake of completeness.

Suppose we have:

OPTΠ ≥ min { w · x s.t Ax ≥ b; x ≥ 0 } (2)

Moreover, suppose there is an α-approximate polynomial time algorithm which returns a solu-
tion S with fS(w) ≤ α ·L ≤ α ·OPTΠ, where L is the solution to LP(2) (That is, the integrality
gap of the LP is at most α). Then we have an α-approximation for the design version as well.

2Here, and throughout, we will say that an (approximation) algorithm solves a optimization problem if it
gives the (approximately) optimum value as well as a set S which achieves this (approximately) optimum value.
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Theorem 3.3
If we have an LP relaxation for the optimization problem Π, and a polynomial time algorithm
producing a solution within α ≥ 1 times the LP optimum, then we can produce an α approx-
imation algorithm for the corresponding design problem D(Π) which requires solving a single
LP having one constraint more than that of the LP relaxation.

Proof: Look at the dual of LP(2).

max { b · y s.t yT A ≤ w; y ≥ 0 } (3)

In the design problem, note that the weight vector w is no longer in the objective function but
appears in the constraints. Parameterizing the program on w, let the optimal solution to LP
3 be D(w). From the previous supposition, we know there is an algorithm giving a set S with
the guarantee, D(w) ≤ fS(w) ≤ αD(w) for all weight vectors w.

To solve the design problem, we consider w as a variable in LP 3, and add the constraint
that the total weight is bounded by B. Thus we solve the following LP

max { b · y s.t yT A−w ≤ 0; w · 1 ≤ B; y,w ≥ 0 } (4)

Let the optimal solution to LP 4 be D∗. Let w′ be the optimum vector returned in the
solution of LP 4. Note that for any weight vector w satisfying w · 1 ≤ B, we have D(w) ≤ D∗

with equality at w′. Solve LP 2 with w′ and obtain a set T with the guarantee D∗ ≤ fT (w′) ≤
αD∗.

We now claim that T,w′ gives an α approximation to the design problem. To see this,
suppose w∗ was the weight vector achieving the maxmin design. Moreover, suppose S was the
set that minimized its objective value given w∗. We need to show αfT (w′) ≥ fS(w∗). To see
this note fS(w∗) ≤ αD(w∗) ≤ αD∗ ≤ αfT (w′). 2

As a corollary we get a log n approximation to maximum min-multicut, a 2-approximation
to the maximum min weighted vertex cover, a 2-approximation for max-min Steiner trees and
many such problems which have approximation algorithms via LP-relaxations.

4 Faster algorithms for Design Problems

In this section we provide a general method to solve design problems. In the case of linear
optimization and design problems this method works much faster than the method in Section 3.1
(calling the optimization algorithm only O(log n) times rather than poly(n) times) but provides
a weaker approximation (runs in time poly(1/ε), rather than poly(log 1/ε)). In Section 4.1 we
consider the conceptually simpler case of design versions of linear optimization problems, before
moving on to the more general concave minimization and convex maximization problems in
Section 4.2.

4.1 Linear Design Problems, Zero-sum Games and Multiplicative Updates

Recall the definition of linear optimization problems and their design versions: the instances
I = (E,S,w), are of the form S ⊆ 2E , and ∀ S ∈ S : fS(w) =

∑
e∈S ae,Swe. In this section

we shall take all the ae,S = 1 for the sake of succinct notation – all the proofs extend naturally
to the general case – so that fS(w) =

∑
e∈S we.
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Definition 4 Given an instance I = (E,S, B=1) of a maxmin design problem D(Π), the
equivalent zero-sum game G(I) is defined by an |E| × |S| matrix as follows: the rows are
indexed by E and the columns by S, and the entry (e, S) = 1 if e ∈ S, 0 otherwise. The entries
of the matrix represent the payment of the column player to the row player.

The game G(I) is equivalent to the instance I of the design problem in the following way: A
mixed strategy x of the row player in G(I) corresponds to a weight distribution w in I. Given a
mixed strategy x of the row player, the payment to the row player for the pure strategy S of the
column player is precisely the value of the objective function fS(w) in I. Thus, given the row’s
mixed strategy x, if the column player plays its best response to x, then the payment to the
row player is precisely OPTΠ(E,S,x). Finally, this means that the set of maxmin strategies of
the row player in G(I) is precisely the set of solutions to the instance I of the design problem
D(Π). The value of the game G(I) is precisely OPTD(Π)(I).

The technique of multiplicative updates can be used to find approximate maxmin strategies
of a zero-sum game much faster than by solving a linear program [FS99]. In this section we
describe this technique in terms of solving instances of design problems. The algorithms and
proofs here follow the proofs of [FS99] as applied to our setting. The multiplicative updates
technique has proved to be extremely useful in a wide array of applications in computer science
- see e.g., the recent survey paper by Arora et al. [AHK06]. We show here how this technique
can be used to transform an α-approximation algorithm for an optimization problem to an
α-approximation algorithm for its design version (for every α).

Algorithm Design-Linear: Given an instance I = (E,S, B) of a linear design prob-
lem D(Π), the goal is to find an α-approximate solution to I. The algorithm assumes oracle
access to an α-approximation algorithm A for the optimization problem Π.

• Input: Instance I = (E,S, B).

• Parameters: Real β > 1, integer T > 1, to be fixed later.

• Output: Weight vector w, an α-approximate solution to I.

• Initialize ∀ e : z1(e) = 1. Let w1(e) = z1(e)/
∑

e z1(e).

• Multiplicative update: For t = 1, . . . , T , do:

– Suppose A on input wt returns solution St.

– zt+1(e) = zt(e)β1(e,St) , where 1(e,St) = 1 if St contains e, 0 otherwise;

– wt+1(e) = zt+1(e)/
∑

e zt+1(e)

• Return w := B
T

∑T
t=1 wt

Intuitively, at each step t, the algorithm finds the minimum solution with respect to weights
wt, and then in the next step increases the weights on the elements in the solution returned.
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To analyze the algorithm, following [FS99] we define the quantity regret as

RT := max
w:

P
e w(e)=1

T∑
t=1

fSt(w)−
T∑

t=1

fSt(wt)

The following theorem was proved in [FS99].

Theorem [FS99]: Fixing the choice of β = 1 +
√

2 ln n
T , gives us

RT ≤
√

TO(
√

lnn)

Now we are ready to prove the bound on the quality of our solution.

Theorem 4.1
For every ε > 0, given an α-approximation algorithm A to a linear minimization problem Π,
algorithm Design-Linear, when run for T = O( log n

ε2α2 ) rounds, returns an α-approximate solution
to every instance I of the maxmin problem D(Π), up to an additive error ε > 0.

Proof: We need to argue about the quantity minS fS(w). In the following, when we use
subscript w we assume that sum of weights is equal to 1, and that the weights will be scaled
to sum to B at the end.. We follow the proof as in [FS99]. We have

min
S

fS(w) = min
S

1
T

T∑
t=1

fS(wt) (by linearity of fS)

≥ 1
T

T∑
t=1

min
S

fS(wt)

≥ 1
T

T∑
t=1

1
αfSt(wt) (A is an α-approximation algorithm)

≥ 1
α max

w

1
T

T∑
t=1

fSt(w)−O( 1
α

√
ln n
T ) (by Theorem of Freund-Schapire)

≥ 1
α max

w
min

S
fS(w)−O( 1

α

√
ln n
T ) (minimum is smaller than the average)

Since we finally scale the weights to sum up to B, we see that it is sufficient to run for T =
O(B2 ln n

ε2α2 ) rounds to get an ε additive error.
2

Corollary 4.2
If the α-approximation algorithm A for Π runs in time TA, then Algorithm Design-Linear is
α-approximate with additive error ε > 0 and runs in time O(TAB2 ln n

ε2α2 ).
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4.2 Extending the framework to concave utility functions and convex cost
functions

In this section, we extend the technique described in Section 4.1 to solve the design versions
of convex maximization and concave minimization problems. Suppose we have oracle access to
an α-approximation algorithm A for the optimization problem Π. We adapt the technique of
gradient descent for online regret minimization introduced by Zinkevich [Zin03] and extended
to the bandit setting by Flaxman et.al. [FKM05], to obtain an α-approximation algorithm for
the design problem D(Π) (with an additional arbitrarily small additive error).

Suppose the instance of the design problem is (E,S, B). We assume that the budget and
the weights are scaled down to get B = 1 for notational convenience (the running time of
the algorithm will depend polynomially on B). Let n = |E| and let ∆ denote the n − 1
dimensional simplex, the set of all feasible weight vectors

∑
e∈E we = 1. We assume that for

all S ∈ S,w ∈ ∆, the value of the functions fS(w) is bounded by a polynomial φ(n).

Algorithm Design-General:

• Input: Instance I = (E,S, B=1), n = |E|.

• Parameters: η, δ, ν, T to be fixed later.

• Output: Weight vector w, an approximate solution to I.

• Set y1 = 1
n1

• For time t = 1, . . . , T , do

– Pick a random unit vector ut ∈ Rn.
Let vt be the unit vector in the direction ut − (ut · 1)1.

– wt := yt + δvt.

– Run algorithm A with weight vector wt and let it return solution St.

– zt+1 := yt − νfSt(wt)vt;
Let yt+1 be the vector in (1− η)∆ which is closest to zt+1.

• Output w := 1
T

∑T
t=1 wt

Following [FKM05], [Zin03] we define the regret in this setting as

RT := max
w∈∆

T∑
t=1

fSt(w)−E[
T∑

t=1

fSt(wt)]

where the expectation is over the random choices of the unit vectors. Flaxman et.al. proved
the following theorem
Theorem[FKM05]: For sufficiently large n and a setting of parameters of η, δ, ν,

RT ≤ O
(
nφ(n)T 5/6

)
(5)
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Now we are ready to prove our bounds on the solution obtained by Algorithm Design-
General. The proof is similar to the proof of Theorem 4.1 in Section 4.

Theorem 4.3
Given an α-approximation algorithm for the concave minimization problem Π, Algorithm Design-
General is a randomized α-approximation algorithm, in expectation, for the design version
D(Π), with an additional arbitrarily small additive error.

Proof: Note that the weight vector w returned by the algorithm is a random variable. We
show that the expected cost of the minimum solution for w is within α of the maxmin solution
(up to additive error). Thus we need to argue about the quantity E[minS∈S fS(w)].

E[min
S

fS(w)] ≥ E[min
S

1
T

T∑
t=1

fS(wt)] (by concavity of fS)

≥ 1
T E[

T∑
t=1

min
S

fS(wt)]

≥ 1
T E[

T∑
t=1

1
αfSt(wt)] (Definition of St)

≥ 1
α

1
T max

w

T∑
t=1

fSt(w)−O( 1
α

nφ(n)

T 1/6 ) (by Equation 5)

≥ 1
α max

w
min

S
fS(w)−O( 1

α
nφ(n)

T 1/6 ) (minimum is less than the average)

Hence we see that w is an α approximate (in expectation) maxmin weight distribution, with
an additive error which goes to 0 as the number of rounds T becomes large compared to nφ(n)
(say T = (nφ(n))7). 2

4.2.1 Example: Designing graphs to minimize commute time and cover time

As an application of the framework for convex functions, we show how to design the transition
probabilities on a graph to minimize the maximum commute time on a graph.

Here an instance I = (E,S,w) of the maximization problem Π is a graph G, with E being
the edges of the graph, w being weights on the edges, and S being the collection of vertex pairs.
The weights determine the transition probabilities of a random walk: the probability of moving
from a vertex u to a vertex v is puv = w(uv)P

e∼u we
. The design version D(Π) is that of assigning

weights to the edges so as to minimize the maximum pairwise commute time3.
We note that the commute time can be found in polynomial time (see for example Section 6.3

[MR95]). It is also known that the commute time is a convex function of the edge weights (see
[EKPS04], or Ghosh et.al [GBS05]). Thus we can solve the design problem using Algorithm
Design-General. Moreover, the Matthews bound[Mat88] states that the cover time of the
random walk is within a log n-factor of the maximum commute time. Thus we have:

3In a recent result, Boyd et.al [BDX04] investigate a similar problem of assigning transition probabilities to
the edges of a path such that the mixing time is minimized.
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Theorem 4.4
For every graph we can find in polynomial time a weight distribution on the edges of the graph
to minimize the maximum pairwise commute time of the resulting random walk. Moreover, the
same distribution also gives a random walk which has log n-approximately minimum cover time.

5 The complexity of design problems

In this section we study the relationship of the complexity of design problems and the complexity
of the corresponding optimization problems.

The main result of this paper as described in Sections 3 and 4 is that solving a design
problem D(Π) is as easy as solving the corresponding optimization problem Π, for the class of
concave (convex) minimization (maximization) problems, up to arbitrarily small additive errors.
This is proved via two different general techniques to give Theorem 3.2 and Theorem 4.3. For
linear optimization problems, if Π is in P then D(Π) is also in P (see Remark 1 in Section
3.1). This may not be true for convex or concave optimization problems, since it may be that
Π is in P, but all optimal solutions for D(Π) have irrational values. However, we can still solve
D(Π) upto an arbitrarily small additive approximation in polynomial time.

A natural question to ask is if the converse also holds, i.e. whether solving the optimization
problem is as easy as the design version of the same. The following shows that this is not the
case:

Theorem 5.1
There exists an linear minimization problem Π such that finding the value of the minimum is
NP-complete, but its design version D(Π) can be solved in polynomial time.

Proof: Call a graph a bridged clique if it consists of two cliques K1 and K2, and two edges
(u, u′), (v, v′) with u, v ∈ K1 and u′, v′ ∈ K2. Consider the problem of finding (the value of)
the cheapest tour on a weighted bridged clique. This problem is NP-hard as it involves finding
the cheapest hamiltonian paths between u, v and u′, v′ respectively. Now consider the design
version of the problem. We have to find a distribution of the weight budget on a bridged
clique so that the cost of the minimum weight tour is maximized. Since any tour will have to
pick both edges of the bridge, the optimal strategy is to divide the weights only on the bridge
edges. Thus the design version of this problem can be solved trivially in polynomial time. This
construction extends to any NP-complete problem. 2

We have seen that all design problems are as easy as their optimization versions (up to
additive errors), and that some are polynomial time solvable even though the optimization
versions are NP-hard. To complete the picture we show below that not all design problems are
easy:

Theorem 5.2
There exists an NP-complete linear minimization problem such that the corresponding design
problem is also NP-complete.

Proof: Consider the problem of finding the minimum weight Steiner tree in a weighted graph.
We prove in Section 6 (Theorem 6.1) that the value of the maxmin Steiner tree is exactly
the reciprocal of the maximum number of Steiner trees that can be fractionally packed in
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the weighted graph. However, the fractional packing number of Steiner trees is known to be
NP-hard, as proved by Jain et al. [JMS03]. 2

6 Maxmin Design problems and Packing problems

In this section, we show the relation between fractional packing and max-min design problems
for general combinatorial problems. We use this to derive relations between the fractional
packing number of Steiner trees, the strength of the graph, and the integrality gap of the
bidirected cut relaxation for the graph. In particular, for spanning trees we prove that the
fractional packing number equals the strength. The result for spanning trees can be derived
using Nash-Williams and Tutte theorems [NW61, Tut61] on packing spanning trees, and ours
is an alternate proof of the fact.

6.1 Fractional Packing and Maxmin Design

Consider the tuple F = (E,S) as a general set system. The fractional packing number kf (F)
is defined as the maximum number of fractionally disjoints sets in S, that is,

kf (F) := max{
∑
S∈S

λS :
∑

S:e∈S

λS ≤ 1, ∀e ∈ E; λS ≥ 0, ∀S ∈ S}

Theorem 6.1
For any set system F = (E,S), we have kf (F) = 1/OPTD(Π)(E,S, 1), that is, the fractional
packing number equals the reciprocal of the maxmin design of the linear instance (E,S) given
budget of 1.

Proof: By duality, we can write kf (F) as

kf (F) = min{
∑
e∈E

xe :
∑
e∈S

xe ≥ 1, ∀S ∈ S; xe ≥ 0, ∀e ∈ E} (6)

By definition (LP(1)),

OPTD(Π)(E,S, 1) = max{λ :
∑
e∈S

xe ≥ λ, ∀S ∈ S;
∑
e∈E

xe = 1; xe ≥ 0, ∀e ∈ E} (7)

We complete the proof by showing that the optimal solution of LP 6 is the reciprocal of optimal
solution of LP 7. Take an optimal solution {xe}e∈E to LP 6 of value kf . Note that (1/kf , {we =
xe/kf}e∈E) is a feasible solution for LP 7. This is because

∑
e∈E we =

∑
e∈E xe/kf = 1 and

for all sets S,
∑

e∈S we =
∑

e∈S xe/kf ≥ 1/kf . Similarly, if (λ, {we}e∈E) is a solution to LP 7,
then {xe = we

λ }e∈E is a solution to LP 6 of value 1
λ . 2

6.2 Packing Steiner trees fractionally

In this subsection we look at the special case of Steiner trees. Given a graph G = (V,E) with a
set of required nodes R and Steiner nodes S = V \R, a Steiner tree is a subtree of G containing
all the nodes of R. Let τ denote the set of all Steiner trees. Let kf denote the fractional
packing number of Steiner trees. Denote the cost of the maxmin Steiner tree as MMST. From
Theorem 6.1 we get
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Theorem 6.2
The value of the maxmin Steiner tree is the reciprocal of the fractional packing number. That
is, kf = 1

MMST
.

In this section, we use the LP framework developed in Section 3.2 to relate the fractional
packing number of Steiner trees to a quantity called the strength of a graph defined below.

Definition 5 A partition P = V1 ∪ V2 · · · ∪ Vk of the vertices of G is called good if each Vi has
at least one required vertex. Define the strength of this partition P as |E(P)|

k−1 , where E(P) is
the subset of edges having its endpoints in different Vi’s. The strength of the graph, denoted
by γ(G), is the minimum strength over all good partitions. Thus

γ(G) := min
P=V1,V2,··· , P good

E(P)
|P| − 1

The following LP(8) is called the bidirected relaxation of the minimum Steiner tree problem.
Bidirect each undirected edge e = (u, v) of E into

−−−→
(u, v) and

−−−→
(v, u) and associate variables x(u,v)

and x(v,u) respectively. Denote the set of directed edges as
−→
E . Moreover, let an arbitrary vertex

of R be the root denoted as r. A subset U of vertices is called valid if it contains a required
vertex and doesn’t contain the root. Let U denote the set of valid subsets. For U ⊂ V , let
δ+(U) denote all the directed edges (u, v) with u ∈ U, v /∈ U .

min{
∑
e∈
−→
E

w(e)xe :
∑

e∈δ+(U)

xe ≥ 1, ∀U ∈ U ; xe ≥ 0, ∀e ∈
−→
E } (8)

Let L(w) denote the optimum of the liner program. Let α be the integrality gap of the above
LP, that is, for all w, we have L(w) ≤ MST (w) ≤ αL(w). Evaluating α is a major open prob-
lem in approximation algorithms (see for example [Vaz01]). Currently it is known 8/7 ≤ α ≤ 2
and when there are no Steiner vertices, α = 1.

Following the discussion in Section 3.2, we get the following relaxation for the max-min Steiner
tree problem with budget 1 and Lemma(6.3).

D := max{
∑
U∈U

yU :
∑

U :e∈δ+(U)

yU ≤ w(e), ∀e ∈
−→
E ; (9)

∑
e∈E

w(e) ≤ 1; yU ≥ 0, ∀U ∈ U}

Lemma 6.3
If α is the integrality gap of the bidirected cut relaxation, then D ≤ MMST ≤ αD

In the rest of the section we prove the relation between D and γ(G), the strength of the graph.
In particular, we show (Lemma 6.4) that for general graphs, D is between 1/γ(G) and 2/γ(G).
We believe this can be strengthened, although we are unable to do so. For the particular case
when there are no Steiner vertices, we can show D = 1/γ(G) (Lemma 6.6). These, along with
Theorem6.2 will imply relations between fractional packing of trees and strength.

Lemma 6.4
1

γ(G) ≤ D ≤ 2
γ(G) .
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Proof: D ≥ 1
γ(G) : We show a feasible solution to LP(9) of cost 1

γ(G) . Let P = V1, V2, · · · , Vk

be the partition of minimum strength. Without loss of generality assume r ∈ V1. Thus the set
V1 is not valid while the rest are valid. Let yVi = 1

E(P) for all i > 1. Let w(e) = 1
E(P) for all

e ∈ E(P) and zero for all the rest. Thus
∑

e∈E w(e) = 1. Note that the cost of this solution is
1

γ(G) . To see that this solution is feasible, note that all zero cost edges cut none of the Vi’s since
they are in the partition, and each directed edge u → v cuts only the partition Vi containing u.

D ≤ 2/γ(G): Consider the dual of LP 9.

D = min{ λ :
∑

e∈δ+(U)

xe ≥ 1, ∀U ∈ U ; (10)

x(u,v) + x(v,u) ≤ λ, ∀(u, v) ∈ E; xe ≥ 0, ∀e ∈
−→
E }

We now show a feasible solution to this LP of value 2/γ(G) which would prove the lemma.
Consider the following solution: xe = 1/γ(G) for all e ∈

−→
E . The value of this solution is

2
γ(G) since for an edge (u, v) ∈ E, x(u,v) + x(v,u) = 2/γ(G). For any valid set U , we have∑

e∈δ+(U)(1/γ(G)) = |δ(U)|/γ(G), where δ(U) is the cut size of the set U in the undirected
graph. By definition of strength, |δ(U)| ≥ γ(G), for any valid set U , proving the lemma. 2

Along with Lemma(6.3) and Theorem(6.2), this proves the following theorem:

Theorem 6.5
Fractional Packing number of Steiner trees is within 2α of the strength, where α is the integrality
gap of the bi-directed cut relaxation for Steiner trees.

Lemma 6.6
In the case when there are no Steiner vertices, the value of LP(9) is exactly the reciprocal of
the strength, that is, D = 1/γ(G).

Proof: We have to show D ≤ 1/γ(G) since the other inequality is already proved in Lemma(6.4).
Let the maxmin spanning tree be denoted as MMSpT. Firstly, from Lemma(6.3) and the fact
that α = 1 for spanning trees, we see that D = MMSpT. Let w′ be the cost vector such that
MMSpT = MST (w′). In claim 6.7, we show that w′ has a particular structure and use it to show
that D = MMSpT ≤ 1/γ(G).

Claim 6.7
We may assume for every edge e, w′(e) = 0 or the same value c. Moreover, the edges with
w′(e) = 0 form induced subgraphs of G.

Let E0 be the set of edges with w′(e) = 0. From the claim above, G[E0] defines a partition P
of the vertices. Note that every edge in E(P) has w′(e) = c. Since the minimum spanning tree
must uses |P| − 1 such edges, we get MMSpT = |P|−1

E(P) ≤
1

γ(G) by definition of strength. We now
prove the claim.

We use the fact that the minimum spanning tree can be found via the greedy Kruskal’s al-
gorithm. Suppose the claim is false. Let w′ be the optimal cost vector with maximum number
of edges at cost 0. Let the set of these edges be denoted as E0. If the claim is false, then there
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is a set of edges E1 at some cost c and a set of edges E2 whose costs are strictly greater than c,
with both sets nonempty. The idea now is to transform the cost vector such that we get more
edges of cost 0 and still get the same minimum spanning tree.

Let |E1| = m1, |E2| = m2. Let T be the minimum spanning tree obtained by running
Kruskal’s algorithm. Thus, we pick some edges Ti ⊆ Ei from each set. Let |Ti| = ti for
i = 0, 1, 2. Consider the cost vector with costs of E1 dropped to zero, and the extra weight
distributed uniformly over edges of E2. Thus the new cost vector is as follows: w′

1(e) = 0 for
e ∈ E0, E1 and w′

1(e) = w′(e) + m1c
m2

for e ∈ E2. Note that the order of edges with respect to
the costs is not changed and thus Kruskal’s algorithm on these costs will still return the same
tree. The new cost of this tree is MMSpT − t1c + t2

m1c
m2

. Since w′
1 has more zero edges, cost of

this tree must have decreased. Thus we get t2
m1c
m2

< t1c implying m1
m2

< t1
t2

.
Now consider what happens if we increase the cost of each edge in E1 by ε and decrease cost

of each edge in E2 equally so that the total cost remains same. That is, we have w′
2 such that

w′
2(e) = 0 for e ∈ E0, c′2(e) = c + ε for e ∈ E1 and w′

2(e) = w′(e)− m1ε
m2

for e ∈ E2. Moreover,
ε is so chosen so that c + ε ≤ w′(e)− m1ε

m2
for all e ∈ E2. In particular

0 < ε <
m2

m1 + m2
min
e∈E2

(w′(e)− c)

This can be done since w(e) was strictly greater than c for all e ∈ E2. Thus, once again, the
minimum spanning tree returned by Kruskal’s algorithm on these new costs remains the same,
and the cost of this tree is MMSpT + t1ε − t2

m1ε
m2

> MMSpT since t1
t2

> m1
m2

. This contradicts the
optimality of w′, and thus the first part of the claim is proved.

Recall E0 is the set of edges with w(e) = 0. Suppose there was a component G[E0] which
was not an induced subgraph of G. Thus there was an edge e = (u, v) with w(e) = c in a
component of G[E0]. Note that no minimum spanning tree would contain this edge, since it
can be replaced by a zero cost path. Thus its better to shift the edge’s cost elsewhere and make
its cost zero. This proves the claim and completes the proof of the lemma. 2

Using the fact that α = 1 when there are no Steiner vertices, and Lemma (6.3) and Theo-
rem(6.2), we see that kf (G) = γ(G). Thus,

Theorem 6.8
The fractional packing number of spanning trees equals the strength of the graph.

7 Discussion: Design versions of Counting Problems

In this paper we gave a systematic way of going from an optimization problem to a design
problem, and we studied their relative complexity. We leave open the issue of carrying out an
analogous plan of study for counting problems, in particular, #P-complete problems.

Two rather interesting design problems that arise from counting problems are the following.
Determining their complexity is by itself a challenging open problem.

1. Network reliability: Given probabilities of edge failures in an undirected graph, the
problem of determining the probability that the graph gets disconnected is #P-complete
[PB83]. An FPRAS (fully polynomial randomized approximation scheme) for this prob-
lem was given by Karger [Kar99].
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Consider the following design version of this problem. Let G = (V,E) be an undirected
graph. With each edge e we are specified a number pe such that 0 < pe < 1. We are given
a total weight of W . If weight w is placed on edge e then its failure probability becomes
pw

e . The problem is to determine the optimal way of placing weight W on the edges so
that the failure probability of the resulting graph is minimized.

2. Permanent: We will define a design version of the problem of computing the perma-
nent of a non-negative matrix. Our problem turns out to be a generalization of the
van der Waerden Conjecture, which was settled positively by Falikman [Fal81] and Ego-
rychev [Ego81]. This conjecture states that the matrix that has all entries 1/n is the
doubly stochastic n× n matrix that has minimum permanent.

Let A be an n× n 0/1 matrix whose permanent is non-zero. This is the template matrix.
The problem is to replace the entries that are 1’s in A by non-negative numbers so that
the permanent of the resulting matrix is the minimum possible subject to the condition
that it is doubly stochastic.
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[Jüt06] A. Jüttner. On budgeted optimization problems. SIAM Journal on Discrete Math-
ematics, 20, pages 880, 2006.

[JMS03] K. Jain, M. Mahdian, and M. Salavatipour. Packing steiner trees. In SODA, pages
266–274, 2003.

[Kar99] D. Karger. A randomized fully polynomial time approximation scheme for the all-
terminal network reliability problem. SIAM Journal on Computing, 29, pages 492–
514, 1999.

[Kri03] M. Kriesell. Edge-disjoint trees containing some given vertices in a graph. J. Comb.
Theory, Ser. B 88(1), pages 53–65, 2003.

[Lau04] L.C. Lau. An approximate max-steiner-tree-packing min-steiner-cut theorem. In
FOCS, pages 61–70, 2004.

[Mat88] P.C. Matthews. Covering problems for Brownian motion on spheres. Ann. Probab.,
16, pages 189–199, 1988.

[Meg79] N. Megiddo. Combinatorial optimization with rational objective functions. Mathe-
matics of Operations Research, 4(4), pages 414–424, 1979.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[NW61] C. St. J. A. Nash-Williams. Edge disjoint spanning trees of finite graphs. J. Lond.
Math. Soc., 1961.

[PB83] J.S. Provan and M.O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. Comput., 12(4), pages 777–788,
1983.

[Tut61] W. T. Tutte. On the problem of decomposing a graph into n connected factors. J.
Lond. Math. Soc., 1961.

[Vaz01] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[Zin03] M. Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In ICML, pages 928–936, 2003.

18


