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Abstract— Li and Li conjectured that in an undirected network
with multiple unicast sessions, network coding does not lead to
any coding gain. Surprisingly enough, this conjecture could not
so far be verified even for the simple network consisting ofK3,2

with four source-sink pairs. Using entropy calculus, we provide
the first verification of the Li–Li conjecture for this network. We
extend our bound to the case of an arbitrary directed bipartite
network.

I. I NTRODUCTION

Network coding is a simple though powerful idea put forth
recently by Ahlswede, Cai, Li and Yeung [ACLY00]. They
showed how this idea can be used to improve the broadcast
rate from a single senders to several receivers,t1, . . . , tn.
The traditional bound on the broadcast rate is the maximum
number of Steiner trees, rooted ats and containing all the
receivers as required nodes, that can be packed in the network.
[ACLY00] show the improved bound of the minimum cut
separatings from a ti. They gave instances of networks where
the latter bound is strictly better than the former.

Koetter and Medard [KM] showed how network coding
could be implemented with deterministic functions over a finite
field. However, the field size they require is exponential inn
and the capacity of the minimum cut. Jaggi et. al. [JSC+]
brought the field size down to linear inn.

The ratio of the information rate with and without network
coding is called thecoding advantageof the network. Charikar
and Agarwal [CA04] showed that for the broadcast problem,
the coding advantage is precisely equal to the integrality gap of
the Steiner tree LP for the given network. The latter has been
extensively studied within approximation algorithms (e.g., see
[Vaz01]).

Although the coding advantage of the broadcast problem
has been precisely understood, the same is not the case for
other information flow problems. In this paper we consider
one such problem: letG = (V,E) be an undirected network
with capacities on edges and with specified source-sink pairs
si, ti, 1 ≤ i ≤ k. We need to send information at the maximum
possible rater from eachsi to ti. The problem is to determine
the coding advantage ofG for this task.

If network coding is not used then the maximum rate
r is given by the throughput of the given network which
is determined by viewing this as a multicommodity flow
problem. An obvious upper bound on the rate if network
coding is used is the sparsity of the sparsest cut in the network,
where sparsity of a cut is defined to be the ratio of its capacity
and the demand disconnected. The seminal result of Leighton
and Rao [LR88] places a bound ofO(log n) on the ratio of

sparsest cut and throughput. This ratio is also the integrality
gap of the sparsest cut LP.

Where in this range does the true answer lie? Li and Li
[LL04] conjecture that for undirected networks, the coding
advantage is always 1, i.e., network coding does not help. The
smallest graph we know of for which the sparsest cut LP has
an integrality gap isK3,2 with all edges of unit capacity and
with every pair of vertices on the same side as a source-sink
pair (hence there are 4 source-sink pairs). For this graph, the
sparsest cut has capacity 1 and the maximum throughput is
3/4. Interestingly enough, upper bounding maximum infor-
mation rate for this graph, assuming network coding, is in
itself a non-trivial task.

In this paper, we show that the maximum information rate
for this graph is3/4 hence confirming the conjecture of
Li and Li for this graph. Our proof is purely information
theoretic. We introduce two key inequalities, the input-output
inequality and the crypto inequality, for deriving our proofs.
These two inequalities have a particularly simple form. This
was intentional – we chose not involve the notion of time in
these inequalities and thereby arrive at simpler, though weaker,
constraints that still yield the right bound for theK3,2 network.
It is also not that we ignored the notions of time and causality
relationships, instead we used these notions in proving our
simple inequalities.

We further use these inequalities to show the following gen-
eral result: LetG(U.V, E) be a bipartite graph with bipartition
(U, V ) in which k1 (k2) edges are are directed fromU to V
(from V to U ). Furthermore, assume that there aren1 (n2)
source sink pairs that have source inU (V ) and sink inV
(U ), andn source-sink pairs that are one the same side of the
bipartition (either both source-sink inU or both inV ). Then,
the maximum information rate inG is bounded by:

min(
k1

n + n1
,

k2

n + n2
).

We believe that our proof technique should extend to the
Li and Li conjecture; however, this still remains a challenging
problem. Once this conjecture is resolved, there are more gen-
eral scenario to be considered, e.g., broadcasts over multiple
sessions where network coding can be used across sessions
and network coding for correlated sources via Slepian-Wolf
theorem [SW73].

II. T HE NETWORK K3,2

We are given an undirected graphG = (V,E), whose edges
have unit capacity. We are also given a set of source-sink



pairs, {(s1, t1), (s2, t2), · · · , (sk, tk)}. Associated with each
pair we are given an independent random variable which is
observed at the source and is required to be communicated
to the sink. We are interested in knowing the maximum rate
r at which all sources can simultaneously communicate their
random variables to their corresponding sinks. We allow the
use of Network Coding. From a mathematical point of view
we would like to characterize the maximum rate,r. From a
computational point of view, we would like to compute this
maximum rate, preferably in polynomial time. It is not even
known whether the computational question is decidable.

Consider this question when Network Coding is not permit-
ted. In this case we can write a linear program to characterize
the maximum rate. This linear program can then be solved
in polynomial time. Li and Li [LL04] conjectured that the
maximum rate with or without network coding is exactly the
same. If this conjecture is true then it answers positively all
of the questions stated above.

Since Network Coding only provides extra flexibility,
clearly the rate can only be higher when Network Coding is
permitted, hence this conjecture requires us to upper bound
the rate when Network Coding is allowed. However, there is a
lack of effective upperbounding techniques on the rate when
Network Coding is allowed.

When Network Coding is not permitted a natural upper-
bounding quantity is theSparcityof the graph.Sparcity of a
cut is defined as the number of edges crossing the cut divided
by the number of source-sink pairs separated by the cut (if the
denominator is zero then we assume the value of the division
to be infinity). Sparcity of the graphis the minimum sparcity
over all the cuts. Clearly sparcity of the graph is an upperbound
on the maximum rate but this is not tight even for the case
when Network Coding is not allowed.

The simplest counterexample isK3,2, the complete bipartite
graph with three vertices on one side and two vertices on the
other. Let{a, b, c} denote the left hand side of the graph and
{d, e} denote the right hand side. Edges of the graphs are then
{ad, ae, bd, be, cd, ce}. Four source-sink pairs are given; these
are {(a, b), (b, c), (c, a), (d, e)}. We are associating random
variablesX1, X2, X3 and X4 with these source sink pairs,
respectively.

One can manually check all the cuts to see that the sparcity
of this graph is 1. On the other hand the best rate in the absence
of Network Coding is only 3/4. One way to observe this is
that the shortest path between any source to its sink is two.
Hence, every unit of rate will consume eight edges, two per
source-sink pair. But we are given only six edges hence the
maximum rate could be only 6/8.

To prove the Li-Li conjecture, we will require some way of
upperbounding the rate more effectively than sparcity. Note
that in the presence of Network Coding, each source-sink
pair can consume capacity on the edges on a non-exclusive
basis. Hence the 3/4 argument given above does not work
when Network Coding is allowed. This seems to be a major
stumbling block. We are not aware of any upperbound other
than sparcity (Harvey et. al. [HLK2005] introduce meagerness

as an upperbound, but in the case of undirected graph, there
is no difference between sparcity and meagerness).

On the graphK3,2 we can define two qualitatively different
networks by changing the role of the source and the sink in
a source-sink pair. If the source-sink pairs on{a, b, c} form a
cycle as defined above, we will call this networkK3,2 cyclic.
On the other hand, if we interchange the roles of the source
and the sink in the third source-sink pair, i.e., we remove the
source-sink pair(c, a) and add the source-sink pair(a, c) we
will get a different network. Let us call this theK3,2 acyclic
network.

If network coding is not allowed, then each source-sink pair
is utilitzing capacity on an exclusive basis. Hence, it is easy
to see that the rate does not change when we change the role
of the source and the sink in a source-sink pair (the two linear
programs give the same objective function value). However,
in the presence of network coding, it is not clear if the rate
of the network remains unchanged under this operation. Of
course, if the Li-Li conjecture is true then the rate does remain
unchanged.

In this paper we develop an information theoretic technique
for more effectively upperbounding the rate in the presence
of Network Coding. For the networkK3,2, we show that our
upperbound is tight. We first derive a 3/4 bound for theK3,2

acyclic network and then for theK3,2 cyclic network. We
believe that our upperbound is tight even in the most general
case.

III. E NTROPY CALCULUS

The technique behind our upperbounding comes from en-
tropy calculus. SupposeT = {X1, X2, · · · } is a set of random
variables. For any setS ⊆ T , let H(S) be the joint entropy
of the random variables inS. It is well known thatH satisfies
polymatroid axioms:

1) H(∅) = 0.
2) ∀S1 ⊆ S2, H(S1) ≤ H(S2).
3) ∀S1, S2, H(S1)+H(S2) ≥ H(S1∩S2)+H(S1∪S2).
The second axiom is calledmonotonicityand the third is

called submodularity. Further if the random variables inS1

are independent of the random variables inS2 then we also
have H(S1, S2) = H(S1) + H(S2). This axiom is called
independence. A very useful notation in entropy isconditional
entropy. The conditional entropy ofS1 subject toS2 is denoted
by H(S1/S2) and is equal toH(S1, S2) − H(S2). A well
known theorem in entropy calculus is the following: if the
variables inS1 are the functions of the variables inS2 then
the conditional entropy ofS1 subject to S2 is zero i.e.,
H(S1, S2) = H(S2) (or simply,H(S1, S2) ≤ H(S2), because
equality follows from the monotonicity axiom.)

We take every edge of the graph and replace it by two
directed edges, one in each direction. The two directed edges
corresponding to each undirected edge of the original graph do
not have separate capacities instead their total capacity is equal
to the original capacity of the edge, which we have assumed
w.l.o.g. to be one. We associate one random variable with each
directed edge. We also associate one random variable with



each source-sink pair. This random variable can be written as
an incoming edge into the source and an outgoing edge from
the sink. Now we considerT be the set of all these random
variables. We then extend the above entropy calculus overT .
Besides these axioms, we develop two kinds of inequalities
to extend these axioms. The first we are callingInput-Output
inequalitiesand the secondCrypto inequalities.

IV. T HE INPUT-OUTPUT INEQUALITY

Consider a cutS ⊆ V . Let δin(S) be the set of random
variables on the edges incoming intoS andδout(S) be the set
of random variables on the edges outgoing fromS. Clearly
what goes out ofS is a function of whatS has received so far.
One can define a notion of time and formally write a constraint
corresponding to this statement. One of our contributions is to
not involve time and thereby arrive at simpler, though weaker
constraints that still yield the right bound for theK3,2 network.
We consider the following a weaker statement: what goes out
of S is a function of whatS has received and whatS will be
receiving, i.e., what goes out ofS is a function of what comes
into S. Hence we have the following inequality.

Input-Output inequality :
∀S ⊆ V : H(δin(S), δout(S)) ≤ H(δin(S))

Remark: One can adapt the proof of this theorem when
randomized network coding [J2004] is allowed. For the sake
of space the proof is kept for a full version of the paper.

Theorem 1:For the K3,2 acyclic network, the maximum
rate possible with Network Coding is3/4.

Proof : We will associate random variablesX1, X2, X3

andX4 with the source-sink pairs{(a, b), (b, c), (a, c), (d, e)},
respectively.

Let us write the input-output inequality for the
cut {d}. We get H(δin(d), δout(d)) ≤ H(δin(d)),
i.e., H(X4, Xad, Xbd, Xcd, Xda, Xdb, Xdc) ≤
H(X4, Xad, Xbd, Xcd).

Similarly we write the input-output inequality for the cut
{e} (observe thatX4 is an outgoing variable one whereas it
is an incoming variable ond). We get

H(X4, Xae, Xbe, Xce, Xea, Xeb, Xec) ≤
H(Xae, Xbe, Xce).

Adding these two inequalities and applying submodularity
we get:

H(X4) + H(X4, XE) ≤ H(X4, Xad, Xbd, Xcd) +
H(Xae, Xbe, Xce),
whereXE is the set of random variables associated with all
edges of the network. Applying submodularity once more to
cancel outX4 from both the sides we get:

H(X4, XE) ≤ H(Xad, Xbd, Xcd) + H(Xae, Xbe, Xce).
Now applying the input-output inequality at nodec to note

that bothX2 andX3 are the functions ofXdc andXec. Since
bothXdc andXec are present in the left hand side of the above
inequality, using submodularity we can derive,

H(X2, X3, X4, XE) ≤ H(Xad, Xbd, Xcd) +
H(Xae, Xbe, Xce).

Now applying the input-output inequality at nodeb to note
that X1 is a function of X2 and Xdb and Xeb, all these

three terms are present in the left hand side of the above
inequality hence by submodularity we get (here the reason
for considering theK3,2 acyclic network is clearfied; inK3,2

cyclic network,X1 is a function ofX2 at nodeb, X2 is a
function of X3 at nodec andX3 is a function ofX1 at node
a):

H(X1, X2, X3, X4, XE) ≤ H(Xad, Xbd, Xcd) +
H(Xae, Xbe, Xce).

Using monotonicity and independence on the left hand side
we get:

H(X1)+H(X2)+H(X3)+H(X4) ≤ H(Xad, Xbd, Xcd)+
H(Xae, Xbe, Xce).

Using submodularity on the right hand side we get:
H(X1)+H(X2)+H(X3)+H(X4) ≤ H(Xad)+H(Xbd)+

H(Xcd) + H(Xae) + H(Xbe) + H(Xce).
Similarly by starting on the left partition of the graph we

could get:
H(X1)+H(X2)+H(X3)+H(X4) ≤ H(Xda)+H(Xea)+

H(Xdb) + H(Xeb) + H(Xdc) + H(Xec).
Adding the last two inequalities we get
2(H(X1) + H(X2) + H(X3) + H(X4)) ≤∑
e is an edgeH(Xe) ≤ 6.
Hence,H(Xi) ≤ 3/4. �

V. THE CRYPTO INEQUALITY

Now let us go back to our original network without chang-
ing the roles of any source-sink pair. The only place where the
proof fails is when we try to apply the input-output inequality
at nodea, b or c and we can’t effectively apply at any of these
nodes first. To circumvent this situation we develop another
inequality as follows.

Crypto inequality
∀S ⊆ V : H(CUT (S), DEM(S)) ≤ H(CUT (S))

where CUT (S) is the set of random variables on edges
coming into S and going out ofS, excluding the random
variables of all the source-sink pairs andDEM(S) is the
set of random variables of those source-sink pairs which are
separated byS, that is those source-sink pair for which either
the source belongs toS and the sink does not or the sink
belongs toS and the source does not.

Let us first give an intuitive reason why this inequality must
hold. Suppose Alice and Bob have two independent messages
which they want to exchange. They follow a protocol and
exchange several packets and are able to communicate their
messages to each other. Eve is a passive listener. She sees
all the packets exchanged between them. We are interested
in information-theoretic bounds, so we assume that Eve has
unlimited compting power.

The crypto inequality is saying that by looking at the
packets exchanged by Alice and Bob, Eve can determine the
messages which Alice and Bob exchanged. The reason is
these packets must carry Bob’s message to Alice and Alice’s
message to Bob. In the real world, these messages are hidden
in computationally hard problems, such as factoring or discrete
log. But since Eve lives in an information theory world, one



can’t really hide these message behind the curtain of hard
problems.

Theorem 2:The crypto inequality holds.

Proof : Let us first prove this inequality for a very simple
network. Suppose the network consists of just two nodes,u
and v, and one undirected edge(u, v). Further suppose that
u wants to communicate a messageMu to v and v wants
to communicate a messageMv to u. Assume thatMu and
Mv are completely independent messages. Supposeu and v
exchange some finite number of packets, sayk. Let these be
p1, p2, · · · , pk. After the exchangev gets to knowMu andu
gets to knowMv. Let Pi denote the set of packets exchanged
exchanged till packeti, i.e., Pi = {p1, p2, · · · , pi} (assume
P0 = {}). We will prove the crypro inequality by induction.

Let us introduce a potential function, which we denote
for the i-th step byI(Mu, Pi;Mv, Pi/Pi) = H(Mu, Pi) +
H(Mv, Pi) − H(Mu,Mv, Pi) − H(Pi). For our proof this
syntatic definition is sufficient. For a greater understanding
let us provide a semantics of this.I(Mu, Pi;Mv, Pi/Pi)
denotes the amount of information which bothu and v have
but Pi does not have. Intially at timei = 0, we have
I(Mu, P0;Mv, P0/P0) = H(Mu) + H(Mv) − H(Mu,Mv).
SinceMu and Mv are independent we haveH(Mu,Mv) =
H(Mu)+H(Mv). Hence ati = 0 our potential function is0.

Now let us prove by induction that it remains0. Sup-
pose consider timei + 1. A packet pi+1 is communicated.
W.l.o.g. assume that this packet was sent fromu to v. From
our input-output inequality we have:H(pi+1, Pi,Mu) ≤
H(Pi,Mu). By induction we also haveH(Mu, Pi) +
H(Mv, Pi) ≤ H(Mu,Mv, Pi) + H(Pi) (Note that be-
cause of submodularity this is the same as saying that
I(Mu, Pi;Mv, Pi/Pi) = 0). Adding these two inequalities we
getH(pi+1, Pi,Mu)+H(Mv, Pi) ≤ H(Mu,Mv, Pi)+H(Pi).
Note that we can addpi+1 in the first term on the right hand
side too. Hence we get,H(pi+1, Pi,Mu) + H(Mv, Pi) ≤
H(Mu,Mv, Pi, pi+1) + H(Pi). Again using submodularity
we can also addpi+1 in the remaining two terms of this
inequality. Hence we getH(Mu, Pi+1) + H(Mv, Pi+1) ≤
H(Mu,Mv, Pi+1) + H(Pi+1). This is the same as saying
I(Mu, Pi+1;Mv, Pi+1/Pi+1) = 0.

By induction we then have,I(Mu, Pk;Mv, Pk/Pk) = 0
i.e., H(Mu, Pk) + H(Mv, Pk) ≤ H(Mu,Mv, Pk) + H(Pk).
At the end of the communication of thek-th packet,u has
Mv and v has Mu. This can be written asH(Mu, Pk) =
H(Mv,Mu, Pk) = H(Mv, Pk). This together with our poten-
tial inequality gives us:H(Mu,Mv, Pk) ≤ H(Pk). Hence the
crypto inequality is proved for this simple network.

We could generalize this proof to arbitrary networks. For
the sake of space we are keeping this generalization for a full
version of the paper.

�

Remark: Crypto inequality holds even if we allow random-
ized protocols. For the sake of space the proof is kept for a
full version of the paper.

We next use the crypto inequality to derive a tight bound
for the K3,2 cyclic network.

Theorem 3:For theK3,2 cyclic network, the maximum rate
possible with Network Coding is3/4.

Proof : We will associate random variablesX1, X2, X3

andX4 with the source-sink pairs{(a, b), (b, c), (c, a), (d, e)},
respectively. As in the proof of Theorem 1 we apply the input-
output inequality for cuts{d} and{e} first to obtain:

H(X2, X3, X4, XE) ≤ H(Xad, Xbd, Xcd)+H(Xae, Xbe, Xce).

Observe that whereas we cannot apply the input-output
inequality at any of the nodesa, b, and c, we can apply the
crypto inequality at any of these nodes. Let us apply it at node
c:

H(X2, X3, Xdc, Xcd, Xec, Xce) ≤ H(Xdc, Xcd, Xec, Xce).
Adding this to the inequality we have already derived and

using submodularity we get:
H(X2, X3, X4, XE) ≤ H(Xad, Xbd, Xcd) +

H(Xae, Xbe, Xce), whereXE is the set of random variables
associated with all edges of the graph. This is the next step
of the proof of Theorem 1. At this point, we can continue
with the rest of that proof. �

VI. A BOUND FOR DIRECTED BIPARTITE NETWORKS

We use the techniques developed above to prove the fol-
lowing theorem. Observe that Theorems 1 and 3 can also be
seen as a corollaries of Theorem 4.

Theorem 4:Let G(U.V, E) be a directed bipartite graph
with bipartition (U, V ) in which k1 (k2) edges are directed
from U to V (from V to U ). Furthermore, assume that there
are n1 (n2) source sink pairs that have source inU (V ) and
sink in V (U ), andn source-sink pairs that are one the same
side of the bipartition (either both source-sink inU or both in
V ). Then, the maximum information rate inG is bounded by:

min(
k1

n + n1
,

k2

n + n2
).

Proof : Let us apply the input-output inequality on each
nodev on theV side. We get:

∀v ∈ V : H(sourcev, sinkv, δin(v), δout(v))

≤ H(sourcev, δin(v)),

where by sourcev we mean the random processes of all
source-sink pairs which havev as its source. Similarly define
sinkv. δin(v) denotes the random variables on the incoming
edges of the bipartite graph intov. Similarly defineδout(v).

Now consider the vertices ofV in any order. Start with
the inequality of the first vertex. Add into it the inequality
of the second vertex. Apply submodularity. This generates
an intersection term and a union term. Now add into it the
inequality of the third vertex. Call the left hand side of the third
inequality the new term. Apply submodularity between the
union term (from the previous application of submodularity)



and the new term (introduced by the inequality of the next
vertex). This will again generate a union term. Continue in
this fashion. We will eventually get:

∑
Xi∈SourceV ∩SinkV

H(Xi) + H(SourceV , SinkV , XE)

≤
∑
v∈V

H(sourcev, δin(v),

whereSourceV is the set of pairs which have source inV ,
SinkV is the set of pairs which have sink inV , andXE is
the set of random variables assiciated with all edges ofG.
We simplified all the intersection terms generated because the
random variables for all the source-sink pairs are independent.
Now we apply submodularity to simplify the right hand side
summation too. We get:

∑
Xi∈SourceV ∩SinkV

H(Xi) + H(SourceV , SinkV , XE)

≤
∑

Xi∈SourceV

H(Xi) +
∑

e∈U×V

H(Xe).

This gives us:

H(SourceV , SinkV , XE)

≤
∑

Xi∈SourceV −SinkV

H(Xi) +
∑

e∈U×V

H(Xe).

Now look at the left hand side term. It has the random
variables of all the edges. Consider every vertex,u, of U
one by one. Apply the crypto inequality on the signleton cut
{u}. Random variables on all the edges in this cut implies
the random variables inSourceu, which u was trying to
communicate with the rest of the vertices. Hence we can
strengthen the above inequality as:

H(XR, XE) ≤
∑

Xi∈SourceV −SinkV

H(Xi) +
∑

e∈U×V

H(Xe),

whereXR is the set of random variables associated with all
the sources in our network. Applying monotonocity to this
inequality we get:

H(XR) ≤
∑

Xi∈SourceV −SinkV

H(Xi) +
∑

e∈U×V

H(Xe).

Using the fact that all sources are independent we get:

∑
Xi∈XR

H(Xi) ≤
∑

Xi∈SourceV −SinkV

H(Xi) +
∑

e∈U×V

H(Xe).

Cancelling the first set of terms of the right hand side gives
us:

∑
Xi∈XR−(SourceV −SinkV )

H(Xi) ≤
∑

e∈U×V

H(Xe).

Note that the number of edges on the right hand side
is k1. Let us carefully count the number of terms in the
first summation (note thatXR − (SourceV − SinkV ) =
XR−SourceV +SinkV does not make any sense). Note that
since(SourceV −SinkV ) ⊆ XR, we get|XR− (SourceV −
SinkV )| = |XR| − |(SourceV − SinkV )|. We know that
|XR| = n + n1 + n2.

Now let us count the number of variables inSourceV −
SinkV . SourceV −SinkV = SourceV −(SourceV ∩SinkV ),
i.e., those terms which have sources inV but sink inU . The
number of such terms isn2. Hence the number of terms on
the left hand side of this inequality isn + n1. This gives us
that the information rate is bounded above byk1/(n + n1).
Interchaning the roles ofU andV we get another upper bound
k2/(n + n2), hence proving the theorem.

�

Remark: In the recent Network Coding workshop at DI-
MACS we learned that Harvey et. al. [HLK2005] indepen-
dently have similar results through a different kind of inequal-
ity, which they call down-stream inequality. Based on their
talk at DIMACS, we would like to point out that down-stream
inequality is implied by our input-output inequality and crypto
inequality together. The converse is not yet clear. They also
presented examples of graphs, on which they obtain the tight
results. Those examples can also be solved by our directed
bipartite graph theorem.
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