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Abstract—Li and Li conjectured that in an undirected network  sparsest cut and throughput. This ratio is also the integrality
with multiple unicast sessions, network coding does not lead to gap of the sparsest cut LP.

any coding gain. Surprisingly enough, this conjecture could not Where in this range does the true answer lie? Li and Li

so far be verified even for the simple network consisting of<s » . . .
with four source-sink pairs. Using entropy calculus, we provide [LLO4] conjecture that for undirected networks, the coding

the first verification of the Li—Li conjecture for this network. We ~ advantage is always 1, i.e., network coding does not help. The
extend our bound to the case of an arbitrary directed bipartite smallest graph we know of for which the sparsest cut LP has

network. an integrality gap ig<s o with all edges of unit capacity and
with every pair of vertices on the same side as a source-sink
pair (hence there are 4 source-sink pairs). For this graph, the
Network coding is a simple though powerful idea put fortBparsest cut has capacity 1 and the maximum throughput is
recently by Ahlswede, Cai, Li and Yeung [ACLYOOQ]. They3/4. Interestingly enough, upper bounding maximum infor-
showed how this idea can be used to improve the broadcagition rate for this graph, assuming network coding, is in
rate from a single sender to several receivers,,...,t,. itself a non-trivial task.
The traditional bound on the broadcast rate is the maximumin this paper, we show that the maximum information rate
number of Steiner trees, rooted atand containing all the for this graph is3/4 hence confirming the conjecture of
receivers as required nodes, that can be packed in the netwptkand Li for this graph. Our proof is purely information
[ACLYO0OQ] show the improved bound of the minimum cuttheoretic. We introduce two key inequalities, the input-output
separatings from at;. They gave instances of networks wherénequality and the crypto inequality, for deriving our proofs.
the latter bound is strictly better than the former. These two inequalities have a particularly simple form. This
Koetter and Medard [KM] showed how network codingvas intentional — we chose not involve the notion of time in
could be implemented with deterministic functions over a finitghese inequalities and thereby arrive at simpler, though weaker,
field. However, the field size they require is exponentiahin constraints that still yield the right bound for th& > network.
and the capacity of the minimum cut. Jaggi et. al. [J$C It is also not that we ignored the notions of time and causality
brought the field size down to linear in relationships, instead we used these notions in proving our
The ratio of the information rate with and without networlsimple inequalities.
coding is called theoding advantagef the network. Charikar ~ We further use these inequalities to show the following gen-
and Agarwal [CA04] showed that for the broadcast problemral result: LetG/(U.V, E) be a bipartite graph with bipartition
the coding advantage is precisely equal to the integrality gap(@f, V) in which k; (k2) edges are are directed frobh to V
the Steiner tree LP for the given network. The latter has be@ffom V to U). Furthermore, assume that there are (ns)
extensively studied within approximation algorithms (e.g., s&@urce sink pairs that have sourcelin(V) and sink inV/
[Vaz01]). (U), andn source-sink pairs that are one the same side of the
Although the coding advantage of the broadcast problesipartition (either both source-sink iii or both inV). Then,
has been precisely understood, the same is not the casetlier maximum information rate if is bounded by:
other information flow problems. In this paper we consider 3
one such problem: lef = (V, E) be an undirected network min( ,—2).
with capacities on edges and with specified source-sink pairs ntn N
s;,ti, 1 < i < k. We need to send information at the maximum We believe that our proof technique should extend to the
possible rater from eachs; to ¢;. The problem is to determine Li and Li conjecture; however, this still remains a challenging
the coding advantage @F for this task. problem. Once this conjecture is resolved, there are more gen-
If network coding is not used then the maximum rateral scenario to be considered, e.g., broadcasts over multiple
r is given by the throughput of the given network whictsessions where network coding can be used across sessions
is determined by viewing this as a multicommodity flonand network coding for correlated sources via Slepian-Wolf
problem. An obvious upper bound on the rate if networtheorem [SW73].
coding is used is the sparsity of the sparsest cut in the network,
where sparsity of a cut is defined to be the ratio of its capacity
and the demand disconnected. The seminal result of LeightorWe are given an undirected graph= (V, E), whose edges
and Rao [LR88] places a bound 6f(logn) on the ratio of have unit capacity. We are also given a set of source-sink
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pairs, {(s1,t1), (s2,t2), -+, (sk,tx)}. Associated with each as an upperbound, but in the case of undirected graph, there
pair we are given an independent random variable whichigsno difference between sparcity and meagerness).
observed at the source and is required to be communicate®n the graphi’; » we can define two qualitatively different
to the sink. We are interested in knowing the maximum rateetworks by changing the role of the source and the sink in
r at which all sources can simultaneously communicate theirsource-sink pair. If the source-sink pairs onb, ¢} form a
random variables to their corresponding sinks. We allow tloycle as defined above, we will call this netwadilg » cyclic.

use of Network Coding. From a mathematical point of vie@n the other hand, if we interchange the roles of the source
we would like to characterize the maximum rate,From a and the sink in the third source-sink pair, i.e., we remove the
computational point of view, we would like to compute thisource-sink paifc,a) and add the source-sink pdit, c) we
maximum rate, preferably in polynomial time. It is not evemwill get a different network. Let us call this th&3 , acyclic
known whether the computational question is decidable. network.

Consider this question when Network Coding is not permit- If network coding is not allowed, then each source-sink pair
ted. In this case we can write a linear program to characteriseutilitzing capacity on an exclusive basis. Hence, it is easy
the maximum rate. This linear program can then be solvéa see that the rate does not change when we change the role
in polynomial time. Li and Li [LLO4] conjectured that theof the source and the sink in a source-sink pair (the two linear
maximum rate with or without network coding is exactly th@rograms give the same objective function value). However,
same. If this conjecture is true then it answers positively ail the presence of network coding, it is not clear if the rate
of the questions stated above. of the network remains unchanged under this operation. Of

Since Network Coding only provides extra flexibility,course, if the Li-Li conjecture is true then the rate does remain
clearly the rate can only be higher when Network Coding isnchanged.
permitted, hence this conjecture requires us to upper boundn this paper we develop an information theoretic technique
the rate when Network Coding is allowed. However, there isfar more effectively upperbounding the rate in the presence
lack of effective upperbounding techniques on the rate whefi Network Coding. For the network(s 5, we show that our
Network Coding is allowed. upperbound is tight. We first derive a 3/4 bound for tig,

When Network Coding is not permitted a natural uppegcyclic network and then for thé(s; » cyclic network. We
bounding quantity is th&parcity of the graph.Sparcity of a believe that our upperbound is tight even in the most general
cutis defined as the number of edges crossing the cut divideaise.
by the number of source-sink pairs separated by the cut (if the
denominator is zero then we assume the value of the division ) ; )
to be infinity). Sparcity of the graplis the minimum sparcity "€ téchnique behind our upperbounding comes from en-
over all the cuts. Clearly sparcity of the graph is an upperbouli@PY calculus. SupposE = {X;, X5, --- } is a set of random

on the maximum rate but this is not tight even for the cay@rables. For any sef C T', let H(S) be the joint entropy
when Network Coding is not allowed. of the random variables if. It is well known thatH satisfies

The simplest counterexamplei; », the complete bipartite POlymatroid axioms:
graph with three vertices on one side and two vertices on thel) H(0) = 0.
other. Let{a, b, ¢} denote the left hand side of the graph and 2) VS C Sy, H(S1) < H(Sy).
{d, e} denote the right hand side. Edges of the graphs are the®) VS1,52, H(S1)+ H(S2) > H(S1NS2)+ H(S1US2).
{ad, ae, bd, be, cd, ce}. Four source-sink pairs are given; these The second axiom is callechonotonicityand the third is
are {(a,b), (b,¢),(c,a),(d,e)}. We are associating randomcalled submodularity Further if the random variables i
variables X;, X», X5 and X, with these source sink pairs,are independent of the random variablesSinthen we also
respectively. have H(S1,52) = H(S1) + H(S2). This axiom is called
One can manually check all the cuts to see that the sparditgdependenceA very useful notation in entropy isonditional
of this graph is 1. On the other hand the best rate in the abseeo&ropy The conditional entropy af; subject taS, is denoted
of Network Coding is only 3/4. One way to observe this iBy H(S;/S2) and is equal toH (S1,S2) — H(S2). A well
that the shortest path between any source to its sink is tvikmown theorem in entropy calculus is the following: if the
Hence, every unit of rate will consume eight edges, two peariables inS; are the functions of the variables By then
source-sink pair. But we are given only six edges hence ttiee conditional entropy ofS; subject to S, is zero i.e.,
maximum rate could be only 6/8. H(S1,S2) = H(S2) (or simply, H(S1, S2) < H(S2), because
To prove the Li-Li conjecture, we will require some way ofquality follows from the monotonicity axiom.)
upperbounding the rate more effectively than sparcity. NoteWe take every edge of the graph and replace it by two
that in the presence of Network Coding, each source-sidkected edges, one in each direction. The two directed edges
pair can consume capacity on the edges on a non-exclusiegresponding to each undirected edge of the original graph do
basis. Hence the 3/4 argument given above does not waiit have separate capacities instead their total capacity is equal
when Network Coding is allowed. This seems to be a majtw the original capacity of the edge, which we have assumed
stumbling block. We are not aware of any upperbound otherl.o.g. to be one. We associate one random variable with each
than sparcity (Harvey et. al. [HLK2005] introduce meagernesiirected edge. We also associate one random variable with
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each source-sink pair. This random variable can be writtenthsee terms are present in the left hand side of the above
an incoming edge into the source and an outgoing edge framequality hence by submodularity we get (here the reason
the sink. Now we considef’ be the set of all these randomfor considering theks , acyclic network is clearfied; i o
variables. We then extend the above entropy calculus Bvercyclic network, X; is a function of X, at nodeb, X5 is a
Besides these axioms, we develop two kinds of inequalitiesction of X3 at nodec and X3 is a function of X; at node
to extend these axioms. The first we are callingut-Output a):
inequalitiesand the secon@€rypto inequalities H(X1,X5,X3,X4,XE) < H(Xada, Xpa, Xea) +
H(Xa67 Xbe7 Xce)-

) V. THE INPUT-OUTPUT INEQUALITY Using monotonicity and independence on the left hand side

Consider a cutS C V. Let §;,(5) be the set of random ;o get:

variables on the edges incoming infoandd,.:(S) be the set H(X1)+H(X2)+H(X3)+H(Xy) < H(Xad, Xpas Xea)+
of random variables on the edges outgoing frémClearly H(Xoe, Xpe, Xee ). -
what goes out of is a function of whatS has received so far. Using submodularity on the right hand side we get:

One can define a notion of time and formally write a constraint H(X))+ H(Xo)+H(X3)+ H(Xs) < H(Xoa)+H(Xpa)+
corresponding to this statement. One of our contributions isf?(X o)+ H(Xo) + H(Xpe) + H(X_) “
C ae € cejr

not involve time and thereby arrive at simpler, though weakerSimilarl by starting on the left értition of the araph we
constraints that still yield the right bound for th&; » network. could get'y y g P grap

We consider the following a weaker statement: what goes OUty (3 Vo (X)) e (X)L H (X)) < H(X H(X
of S is a function of whatS has received and what will be (X1)+H(Xo)+H(Xo)+H(Xy) < H(Xia)+H(Xea) +
. . . . H(de) +H(Xeb) +H(Xdc) +H(X€c).

receiving, i.e., what goes out éfis a function of what comes Adding the last two inequaliies we get

into S. Hence we have the following inequality. AH(X)) + H(X2) + H(Xs) + H(X4)) <
Input-Output inequality : > ! dod! (Xe) i 6. 3 4 -

VS g Ve H(ém(s)véout(s)) < H((sm(s)) E'ésn?g‘g(g() < 3/47 0
Remark: One can adapt the proof of this theorem when ’ v= '

randomized network coding [J2004] is allowed. For the sake

of space the proof is kept for a full version of the paper. V. THE CRYPTO INEQUALITY
Theorem 1:For the K3, acyclic network, the maximum  Now let us go back to our original network without chang-
rate possible with Network Coding /4. ing the roles of any source-sink pair. The only place where the

Proof :  We will associate random variables,, X,, X; Proof fails is when we try to apply the input-output inequality

and X, with the source-sink pair§(a, b), (b, ¢), (a, ¢), (d,e)}, atnodea, b or c and we can't effectively apply at any of these

respectively. nodes first. To circumvent this situation we develop another
Let us write the input-output inequality for theinequality as follows.

cut {d}. We get H(in(d),dout(d)) <  H(din(d)), Crypto inequality

i.e., H (X4, Xad, Xod, Xeds Xda» Xavs Xde) < VSCV: H(CUT(S), DEM(S)) < H(CUT(S))

H(X4, Xod, Xoda, Xed)- where CUT(S) is the set of random variables on edges
Similarly we write the input-output inequality for the cutcoming into S and going out ofS, excluding the random

{e} (observe thatX, is an outgoing variable on whereas it variables of all the source-sink pairs addZM (S) is the

is an incoming variable od). We get set of random variables of those source-sink pairs which are
H(X4, Xoe, Xve, Xee, Xeas Xebs Xec) < separated by, that is those source-sink pair for which either

H(Xae, Xpe, Xee)- the source belongs t§ and the sink does not or the sink
Adding these two inequalities and applying submodularit§elongs toS and the source does not.

we get: Let us first give an intuitive reason why this inequality must
H(X,) + H(X4,Xp) < H(X4, Xaa, Xpa; Xea) + hold. Suppose Alice and Bob have two independent messages

H(Xae, Xoey, Xee), which they want to exchange. They follow a protocol and

where X is the set of random variables associated with adixchange several packets and are able to communicate their

edges of the network. Applying submodularity once more twessages to each other. Eve is a passive listener. She sees

cancel outX, from both the sides we get: all the packets exchanged between them. We are interested
H(X4,XEg) < H(Xads Xods Xed) + H(Xae, Xpe, Xee)- in information-theoretic bounds, so we assume that Eve has
Now applying the input-output inequality at nodd¢o note unlimited compting power.

that both.X, and X3 are the functions of;. and X... Since The crypto inequality is saying that by looking at the

both X,. and X.. are present in the left hand side of the aboveackets exchanged by Alice and Bob, Eve can determine the

inequality, using submodularity we can derive, messages which Alice and Bob exchanged. The reason is
H(Xs,X3,X4,XE) < H(Xa4, Xba, Xca) + these packets must carry Bob’'s message to Alice and Alice’s
H(Xae, Xpe, Xee)- message to Bob. In the real world, these messages are hidden

Now applying the input-output inequality at noéléo note in computationally hard problems, such as factoring or discrete
that X; is a function of X, and X4 and X.,, all these log. But since Eve lives in an information theory world, one



can't really hide these message behind the curtain of hardWe next use the crypto inequality to derive a tight bound
problems. for the K3 o cyclic network.
Theorem 2:The crypto inequality holds. Theorem 3:For theK3 5 cyclic network, the maximum rate
possible with Network Coding i8/4.
Proof :  Let us first prove this inequality for a very simple ) i )
network. Suppose the network consists of just two noades,”"0f :  We will associate random variables,, X», X;
and v, and one undirected edde, v). Further suppose that@nd-X4 with the source-sink pairg(a, b), (b, ¢), (¢, ), (d, e)},
u wants to communicate a messagé, to v and v wants respecqvely. A§ in the proof of Theore_m 1we apply the input-
to communicate a messagé, to u. Assume that)/, and output inequality for cut§d} and{e} first to obtain:
M, are completely independent messages. Suppoaed v
exchange some finite number of packets, sayet these be r(x, x, X, Xp) < H(Xoa, Xoa, Xea)+H(Xae, Xoe, Xee)-
p1,DP2, -, Pk. After the exchange gets to knowM,, andu
gets to know),,. Let P; denote the set of packets exchanged Observe that whereas we cannot apply the input-output
exchanged till packet, i.e., P, = {p1,ps, - ,p;} (@ssume inequality at any of the nodes, b, andc¢, we can apply the
Py = {}). We will prove the crypro inequality by induction. crypto inequality at any of these nodes. Let us apply it at node
Let us introduce a potential function, which we denoté&
for the i-th Step by](]\/[u, Pu Mv; R/P,) = H(Mu, R) —+ H(X27 X37 Xdca Xcda Xeca Xce) S H(de Xcd7 Xez:7 Xce)-
H(M,,P;)) — H(M,,M,,P;) — H(P,). For our proof this Adding this to the inequality we have already derived and
syntatic definition is sufficient. For a greater understandirtfing submodularity we get:

let us provide a semantics of thid(M,, P;; M,, P;/P;) (X2, X3, X4, Xp) < H(Xad, Xoa, Xea) +
denotes the amount of information which bathand v have H(Xac, Xpe, Xcc), Where X is the set of random variables
but P, does not have. Intially at timé = 0, we have associated with all edges of the graph. This is the next step
I(My, Py; My, Py/Py) = H(M,) + H(M,) — H(M,, M,). of the proof of Theorem 1. At this point, we can continue
Since M,, and M, are independent we havé (M,,, M,) = With the rest of that proof. O
H(M,)+ H(M,). Hence at = 0 our potential function ig).

Now let us prove by induction that it remairs Sup- VI. A BOUND FOR DIRECTED BIPARTITE NETWORKS

pose consider timé + 1. A packetp;,; is communicated. We use the techniques developed above to prove the fol-
W.l.o.g. assume that this packet was sent frerto v. From |owing theorem. Observe that Theorems 1 and 3 can also be
our input-output inequality we haveH (p;11, P;, M,) < seen as a corollaries of Theorem 4.

H(P;, M,). By induction we also haveH(M,,P;) + Theorem 4:Let G(U.V, E) be a directed bipartite graph
H(M,,P;) < H(M,,M,,P;) + H(P;) (Note that be- with bipartition (I, V') in which k; (k;) edges are directed
cause of submodularity this is the same as saying tffeém U to V (from V to U). Furthermore, assume that there
I(M,, P;; M, P;/ P;) = 0). Adding these two inequalities weare n; (n,) source sink pairs that have sourcelin(V) and
getH (piy1, Pi, My)+H(M,, P;) < H(M,, M,, P;))+H(P;). sinkinV (U), andn source-sink pairs that are one the same
Note that we can adg; ; in the first term on the right hand side of the bipartition (either both source-sinklinor both in

side too. Hence we gett (pit1, Pi, M,) + H(M,, P;) < V). Then, the maximum information rate @ is bounded by:
H(M,, M,, P;,p;+1) + H(P;). Again using submodularity ey s

).
inequality. Hence we geH (M, P;11) + H(M,, Piy1) <

we can also addg;; in the remaining two terms of this min( ,
n—+ny n-+ne
H(M,, M,, Piy1) + H(Pi11). This is the same as sayingProof :  Let us apply the input-output inequality on each

I(My, Piy1; My, Piy1/Piy1) = 0. nodew on theV side. We get:

By induction we then have](M,, Py; M, P,,/P;) = 0 .
i.e., H(M,, Py) + H(Mmpk) < H(MvaaPk) + H(Pk). Vv € V1 H(source,, sinky, 0in(v), dout(v))
At the end of the communication of thieth packet,u has < H(sourcey, ;s (v)),

M, and v has M,,. This can be written asi(M,, P;) =

H(M,, M,, Py) = H(M,, P). This together with our poten- where by source, we mean the random processes of all

tial inequality gives usH (M,,, M,, P;) < H(P). Hence the source-sink pairs which havweas its source. Similarly define

crypto inequality is proved for this simple network. sink,. 0;n(v) denotes the random variables on the incoming
We could generalize this proof to arbitrary networks. Fdtdges of the bipartite graph into Similarly defined. (v).

the sake of space we are keeping this generalization for a fullNow consider the vertices of” in any order. Start with
version of the paper. the inequality of the first vertex. Add into it the inequality

o of the second vertex. Apply submodularity. This generates

an intersection term and a union term. Now add into it the

Remark: Crypto inequality holds even if we allow random-inequality of the third vertex. Call the left hand side of the third
ized protocols. For the sake of space the proof is kept forireequality the new term. Apply submodularity between the
full version of the paper. union term (from the previous application of submodularity)



and the new term (introduced by the inequality of the next Note that the number of edges on the right hand side
vertex). This will again generate a union term. Continue iis k;. Let us carefully count the number of terms in the

this fashion. We will eventually get: first summation (note thaXp — (Sourcey — Sinky) =
Xpg — Sourcey + Sinky does not make any sense). Note that

, ) since(Sourcey — Sinky) C Xg, we get|Xg — (Sourcey —

>, HX)+H(Sourcey, Sinky, Xg) g 0T e Gk We know that
X;E€SourceyNSinky
| Xgr|=n+mn1 +no.
<) H(source,,din(v), Now let us count the number of variables ffource, —
veV Sinky . Sourcey —Sinky = Sourcey —(Sourcey NSinky ),

where Sourcey is the set of pairs which have sourcelin -€- those terms which have sourceslirbut sink inU. The
Sinky is the set of pairs which have sink i, and X, is number of Such terms is,. Hence the number.of terms on
the set of random variables assiciated with all edgegiof the Ieft hand side of this inequality is + n,. This gives us
We simplified all the intersection terms generated because fhet the information rate is bounded above by (1 + n1).
random variables for all the source-sink pairs are independefif€rchaning the roles df and” we get another upper bound
Now we apply submodularity to simplify the right hand sidd2/(n + n2), hence proving the theorem.

summation too. We get: .
Remark: In the recent Network Coding workshop at DI-
Z H(X,) + H(Sourcey, Sinky, X&) MACS we learned that Harvey et. al. [HLK2005] indepen-

dently have similar results through a different kind of inequal-

X;e8 Sink . . . . .
Eoourcevnzmiy ity, which they call down-stream inequality. Based on their

< Y HX)+ Y H(X.). talk at DIMACS, we would like to point out that down-stream
X, €Sourcey ecUXV inequality is implied by our input-output inequality and crypto
This gives us: inequality together. The converse is not yet clear. 'They qlso
presented examples of graphs, on which they obtain the tight
H(Sourcey, Sinky, Xg) results. Those examples can also be solved by our directed
bipartite graph theorem.
< H(X; H(X.).
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