Finding k-cuts
within Twice the Optimal

Huzur Saran

Vigay V. Vazirani

Dept. of Computer Science & Engg.
Indian Institute of Technology
New Delhi-110016, India.

Abstract

Two simple approximation algorithms for the minimum k-cut problem are pre-
sented. Each algorithm finds a k-cut having weight within a factor of (2 — 2/k) of
the optimal. One of our algorithms is particularly efficient - it requires a total of only
n — 1 maximum flow computations for finding a set of near-optimal k-cuts, one for
each value of k between 2 and n.

1 Introduction

The minimum k-cut problem is as follows: given an undirected graph G' = (V, F) with
non-negative edge weights and a positive integer k, find a set S C I of minimum weight
whose removal leaves k connected components. This problem is of considerable practical
significance, especially in the area of VLSI design. Solving this problem exactly is NP-hard
[GH], but no efficient approximation algorithms were known for it.

In this paper we give two simple algorithms for finding k-cuts. We prove a performance
guarantee of (2 —2/k) for each algorithm; however, neither algorithm dominates the other
on all instances. One of our algorithms is particularly fast; it requires only n — 1 max flow
computations, using the classic result of [GoHu]. In fact, within the same running time,
this algorithm finds near-optimal k-cuts for each k, 2 < k£ < n. We also give a family of
graphs that show that the bound of (2 —2/k) is tight for each algorithm. The problem of
achieving a factor of (2 — ¢), for some fixed € > 0, independent of &, seems to be difficult,
and may possibly be intractable.

The minimum k-cut problem and its variants have been extensively studied in the
past. For fixed k, polynomial time algorithms have been discovered for solving the problem
exactly: by [DJPSY] for planar graphs, and by [GH] for arbitrary graphs. These algorithms
have running times of O(n*), for some constant ¢, and O(n*") respectively. More efficient
algorithms for the case of planar graphs and k = 3 are given in [He, HS]. Polynomial time
algorithms have also been developed for several variants [Ch, Cu, Gu] .

In [DJPSY], the complexity of multiway cuts is studied: given an edge-weighted undi-
rected graph with k specified vertices, find a minimum weight k-cut that separates these
vertices. They show that this problem is NP-hard even when k is fixed, for £ > 3. They
also give an approximation algorithm that finds a solution within a factor of (2 — 2/k) of
the optimal, using k£ max-flow computations. Using their algorithm as a subroutine one
can get a (2 — 2/k) approximation algorithm for our problem; however this will require
(7) calls and is therefore not polynomial time in case k is not fixed.

We shall first present the more efficient algorithm, which we call EFFICIENT. The
other algorithm is called SPLIT. We will actually establish the (2 — 2/k) performance
guarantee for a slight variant of EFFICIENT. The weight of the k-cut found by this
variant dominates the k-cuts found by both EFFICIENT and SPLIT. Finally, we report
on some preliminary results obtained by applying these techniques to the balanced graph

partitioning problem.

2 Algorithm EFFICIENT

Let G = (V, E) be a connected undirected graph and let wt : £ — Z% be an assignment of
weights to the edges of G. We will extend the function wt to subsets of F in the obvious
manner. A partition (V/,V — V') of V specifies a cut; the cut consists of all edges, S,
that have one end-point in each partition. We will denote a cut by the set of its edges, S,

and will define its weight to be wt(S). For any set S C F, we will denote the number of
connected components of the graph G’ = (V, F — S) by comps(S).

We will first find a k-cut for a specified k. Our algorithm is based on the following
greedy strategy: it keeps picking cuts until their union is a k-cut; in each iteration it picks
the lightest cut, in the original graph, that creates additional components.

Algorithm EFFICIENT:

1. For each edge e, pick a minimum weight cut, say s., that separates the end points
of e.

2. Sort these cuts by increasing weight, obtaining the list sy, ..., S,.

3. Greedily pick cuts from this list until their union is a k-cut; cut s; is picked only if

it is not contained in s; U...U s;_1.

(note: in case the algorithm ends with a cut B such that comps(B) > k, we can easily
remove edges from B to get a cut B’ such that comps(B’) = k.)

Notice that since edge e is in s., sy U ... Us,, = F, and so this must be an n-cut.
Therefore, the algorithm will certainly succeed in finding a k-cut.

Let by,...,b; be the successive cuts picked by the algorithm. In the next lemma we
show that with each cut picked we increase the number of components created, and hence

the total number of cuts picked is at most & — 1.
Lemma 1 For eachi, 1 < i<, comps(byU---Ubj11) > comps(by U---Ub;)

Proof: Because of the manner in which EFFICIENT picks cuts, b;41 € (byU---Ub;). Let
(u,v) be an edge in b;yy — (by U---Ub;). Clearly u and v are in the same component in
the graph obtained by removing the edges of by U---Ub; from G, and they are in different
components in the graph obtained by removing b; U---U b;41 from G. Hence, the latter

graph has more components. =

Corollary 1 The number of cuts picked, I, is at most k — 1.

Notice that at each step we are indeed picking the lightest cut that creates additional
components: among all edges that lie within connected components, we choose the edge
whose end points can be disconnected with the lightest of the cuts from the original graph.

The complexity of our algorithm is dominated by the time taken to find cuts sq, ..., s,,.
This can clearly be done with m max flow computations. A more efficient implementation
is obtained by using Gomory-Hu cuts. Gomory and Hu [GoHu] show that there is a set of
n — 1 cuts in G such that for each pair of vertices, u,v € V, the set contains a minimum
weight cut separating « and v; moreover, they show how to find such a set using only n—1

max flow computations. The cuts sq,...,s, can clearly be obtained from such a set of
n — 1 cuts.
Incorporating all this, we get a particularly simple description of our algorithm. First

notice that step 3) is equivalent to:

3." Find the minimum 7 such that
comps(syU...Us;) > k. Output the k-cut sy U...Us;.

Next, observe that when implemented with Gomory-Hu cuts, algorithm EFFICIENT

essentially boils down to the following:
1. Find a set of Gomory-Hu cuts in G.
2. Sort these cuts by increasing weight, obtaining the list g1,..., gu—1.
3. Find the minimum ¢ such that comps(¢g1 U...Ug;) > k.

The algorithm extends in a straightforward manner to obtaining near-optimal k-cuts

for each k, 2 < k < n, with the same set of Gomory-Hu cuts.

3 Performance guarantee for EFFICIENT

In this section we shall prove:

Theorem 1 Algorithm EFFICIENT finds a k-cut having weight within a factor of (2 —
2/k) of the optimal.

Let by, ..., b; be the successive cuts found by algorithm EFFICIENT; B = by U...Ub,.
Central to our proof is a special property of these cuts with respect to an enumeration
of all cuts in G. Let ¢y, ¢, ... be such an enumeration, sorted by increasing weight, such
that by, ..., b; appear in this order in the enumeration. Such an enumeration will be said
to be consistent with the cuts by,...,b;. For any cut ¢ in G, index(c) is its index in this

enumeration.

The Union Property: Let sy,..., s, be aset of cutsin (G, sorted by increasing weight.
Pick any enumeration of all cuts in G, ¢y, cg, ... that is consistent with sq,...,s,. We will
say that si,...,s, satisfy the union property if, intuitively, w.r.t. any such enumeration,
the union of the cuts in any initial segment of ¢y, cq, ... is equal to the union of all cuts
s; contained in this initial segment. More formally, pick any consistent enumeration of all
cuts in G, let ¢ be any index, 1 < ¢ < indez(s,), and let s, be the last cut in the sorted

order having index at most ¢. Then, c;U...U¢; =5 U...Us,.

Lemma 2 The cuts by,...,b; satisfy the union property.

Proof: Suppose not. Then, there is an enumeration of all cuts in G, ¢y, ¢, ..., that is
consistent with by, ...,b;, and yet there is an index ¢, ¢ < index(b;), such that

blu...qu#Clu...UCi

where b, is the last cut on our list having index at most ¢. The smallest such index will
be referred to as the point of discrepancy. Let us fix an enumeration for which the point
of discrepancy is maximum. Clearly, the point of discrepancy will have index less than
index (by).

Let b,41 be the next cut picked by our algorithm, and let index(b,41) = j. Because
of the manner in which we fixed the enumeration, wt(c;) > wt(¢;) (otherwise we could
interchange ¢; and ¢;, and obtain an enumeration in which discrepancy occurs at a larger
index).

Clearly, b, # ¢;, and cq U ... Uy = b U...Uby Lete € ¢; — (cqU...Uc¢i_q).
Then, e ¢ by U...Ub,. Clearly, wt(s.) < wt(¢;), where s, is a minimum weight cut
that disconnects the end-points of e. Now, our algorithm must pick edge e with a cut of
weight at most wt(s.), and hence at most wt(¢;). Since wt(by11) > wt(¢;), this means

that e € by U...U by, leading to a contradiction. n
Remark: Since by,...,b; are drawn from sq,...,s,,, the latter cuts also satisfy the
union property. For similar reasons, g1, ..., g,_1 satisfy the union property as well.

Let A be a minimum weight k-cut in . The second key idea in our proof is to
view A as the union of k cuts as follows: let Vi,..., Vi be the connected components of
G' = (V,E — A). Let a; be the cut that separates V; from V — V;, for 1 < i < k. Then
A =Y, a;. Notice that Y5, wt(a;) = 2wt(A) (because each edge of A is counted twice
in the sum). Assume without loss of generality that wt(a1) < wt(ag) < ... < wt(ag).

The (2 — 2/k) bound is established by showing that the sum of weights of our cuts,

bi,...,b; is at most the sum of weights of a1, ..., a5_1, i.e.
l k—1
wt(B) < Zwt(bz) < wt(a;)
’L:l 1=

since ay, is the heaviest cut of A.

Actually, it will be simpler to prove a stronger statement. We will consider a slight
variant of EFFICIENT that picks cuts with multiplicity; cut b; will be picked ¢ times if its
inclusion created ¢ additional components, i.e. if (comps(biU. . .Ub;) —comps(byU. . .Ub;_1))
={.

So, now we have exactly k — 1 cuts; let us call them by,...,br_1, to avoid introducing
excessive notation. As before, by,...,bx_1 are sorted by increasing weight, and moreover,

we shall assume that cuts with multiplicity occur consecutively. We will show that

Zwt aZ

k—1

.
Il
—

For the rest of the proof, we will study how the cuts a;’s and b;’s are distributed in
€1, €2, . .., an enumeration of all cuts in G w.r.t which by ...bgy_; satisfy the union property.
Denote by «a; the number of all cuts a; that have index < i, i.e. o = |{q;| index(a;) < i}|.
We will show that for each index ¢, 1 < ¢ < index(ag_1), the number of cuts b; having
index <7 is at least a; (of course, cuts b; are counted with multiplicity). If so, there will
be a 1-1 map from {by,...by_1} onto {ay,...,ar_1} such that if b; is mapped onto a;,
then index (b;) < index(a;). This will prove (7).

Two nice properties of the cuts a;’s and b;’s will help prove the assertion of the pre-
vious paragraph. Denote by A; the union of all cuts a; that have index < 7,7.e. A; =
Ua; indee(a,)<i @5 Similarly, let By = Uy indea(s,)<i b)-

The next lemma shows that for each index ¢, the cuts b; are making at least as much

progress as the cuts a;’s, where progress is measured by the number of components created.

Lemma 3 For each index i, comps(A;) < comps(B;).

Proof: The lemma is clearly true for i > index(by_1). For ¢ < index(br_1), B;
c1 U...Ug, since the cuts by, ..., bx_1 satisfy the union property. Therefore, A; C B
and the lemma follows. u

It is easy to construct an example showing that each cut a; may not necessarily create
additional components. Yet, at each index ¢, the number of components created by the
cuts a; is at least a; + 1. This is established in the next lemma.

Lemma 4 For each i, 1 < i < index(ap—1), comps(A4;) > a; + 1.

Proof: Corresponding to each cut a; having index < i, the partition V; will be a single
connected component all by itself in the graph G; = (V, E'— A;). Let us charge a; to this
component of GG;. Since index (a) > ¢, the component of GG; containing Vi will not get
charged. The lemma follows. n

At this point we have all the ingredients to finish the proof. Consider an index i,
1 < i < index(ag—1). By Lemma 4, comps(A;) > a; + 1. This together with Lemma 3
gives comps(B;) > «a; + 1. Since, for each additional component created by us, we have
included a cut b; (by including cuts with appropriate multiplicity), it follows that the
number of cuts b; having index <7 is at least ;. The theorem follows.

Remark: The proof given above shows that any set of cuts satisfying the union

property will give a near-optimal k-cut. This explains why Gomory-Hu cuts work.

Clearly, the proof given above holds simultaneously for each value of k between 2 and
n. Hence we get a set of near-optimal k-cuts, 2 < k < n. Notice that at the extremes, i.e.

for k =2 and k£ = n, we get optimal cuts.

Theorem 2 Algorithm EFFICIENT finds a set of k-cuts, one for each value of k, 2 <
k < m; each cut is within a factor of (2—2/k) of the optimal k-cut. The algorithm requires

a total of n — 1 maz flow computations.

Using the current best known max flow algorithm [GT, KTR], our algorithm has a
running time of O(mn? + n3*¢), for any fixed € > 0.

4 Algorithm SPLIT

Perhaps the first heuristic that comes to mind for finding a k-cut is the following;:

Algorithm SPLIT: Start with the given graph. In each iteration, pick the lightest
cut, in the current graph, that splits a component, and remove the edges of this cut. Stop
when the current graph has k& connected components.

Notice that SPLIT, like EFFICIENT, is also a greedy algorithm. Whereas EFFI-
CIENT picks a lightest cut in the original graph that creates additional components,
SPLIT picks a lightest cut in the current graph.

SPLIT needs to find a minimum weight cut in each new component formed - this can
be done using n—1 max flow computations in a graph on n vertices. Hence SPLIT requires
O(kn) max flow computations to find a k-cut.

We shall establish a (2—2/k) performance guarantee for SPLIT as well. However, first
let us point out that neither algorithm dominates the other. Consider the following graph
on 8 vertices, {a,b,c,d, e, f,g,h}. The edges and their weights are:

Now, for k = 3, the cuts found by SPLIT and EFFICIENT have weights 13 and 14
respectively, but for k = 4, the weights are 20 and 19 respectively.

Theorem 3 The k-cut found by algorithm SPLIT has weight within a factor of (2 —2/k)
of the optimal.

Proof: In Theorem 1 we showed that a slight variant of EFFICIENT, that picks cuts with
appropriate multiplicity, has a performance bound of (2 — 2/k). We will now prove that
the weight of the k-cut found by SPLIT is dominated by the weight of the k-cut found by
this variant.

Let by,...,bp_1 be the cuts picked by the variant. Notice that since SPLIT picks a
minimum weight cut in a component, it splits it into exactly two components. Therefore
SPLIT picks exactly & — 1 cuts, say dy,...,dgp_1.

By induction on ¢, we will show that wt(d;) < wt(b;), for 1 <i <k — 1. The assertion
is clearly true for ¢ = 1. To show the induction step, first notice that comps(d,U...Ud;) =
i+ 1, and comps(by U...Ub;4q1) > i+ 2. Therefore there is a cut b;, 1 < j <1441, that is
not contained in (d; U...Ud;). By the proof of Lemma 1, this cut will create additional
components, and is available to SPLIT. Hence, SPLIT will pick a cut of weight at most
wt(b;). Since wit(b;) < wt(b;41), the assertion follows. L]

5 Lower bound

We will show that the bounds established in Theorem 1 and Theorem 3 are tight in the
following sense:
Theorem 4 For any €,0 < € < 1, there is an infinite family of minimum k-cut instances
(G, wt, k) such that the weight of k-cut found by each algorithm, EFFICIENT and SPLIT,
lies in the range

[(1=e)(2=2/k)W, (2-2/k)W]
where W is the weight of an optimal k-cut for the instance. Moreover, k is unbounded in
this family.
Proof: The k" instance, in which we want to find a k-cut, consists of a graph on 2k — 1
vertices, V' = {uy, ..., up—1,01,...,0;}. The only edges are (with weights specified):

wt(ug,uipr) = f,for 1 <i<k—2

wt(ug—1,v1) =

wt(vy,vip1) = a, for1 <i<k-1
wt(vy,vp) = «

where « is a positive integer, and § = 2a(1 — ¢€).

The minimum k-cut, A, picks all edges of weight «, and so wt(A4) = ka. Each algo-
rithm, EFFICIENT and SPLIT, picks the k-cut, B, consisting of all edges of weight 3.
So, wt(B) = (k— 1) =2(k — 1)a(1 — ¢). Hence

wt(B)/wt(A) = (2 =2/k)(1 —¢)

This proves the theorem. =

6 Balanced graph partitioning

Given an edge-weighted graph, G = (V, E),wt : £ — Z™T, with an even number of vertices,
the balanced graph partitioning problem asks for a partition of V into two sets, V; and
V4, each containing half the vertices, such that the weight of the cut separating V7 and V;
is minimized. This problem is NP-hard [GJ]. It models realistic situations such as circuit
partitioning and is frequently used in practice (see [KL] for the well-known ‘swap’ heuristic
for this problem). We give below the first approximation algorithm for this problem; it
achieves a performance ratio of n/2. The algorithm extends in a straightforward manner
to the problem of partitioning the graph into k equal size pieces, for any fixed k. The
performance ratio achieved for this problem is (kk;l)n In the past, [LR, LMPSTT] have
used multicommodity flow for obtaining an O(log n) factor polynomial time approximation
12

algorithm for the minimum £, £ graph partitioning problem, in which each side of the cut

1
3

Our algorithm uses the fact that there is a pseudo-polynomial time algorithm for

is required to have between = and % fraction of the vertices.

determining whether n given numbers aq, ..., a, can be partitioned into two sets each of
which adds up to W/2, where Y i, a; = W. This algorithm is based on a straightforward
dynamic programming approach, and has a running time of O(nW) [GJ]; if the answer is
‘yes’, it finds a valid partition as well.

Balanced graph partitioning algorithm:

1) Find a set of Gomory-Hu cuts in G.

2) Sort these cuts by increasing weight, obtaining ¢1, ..., ¢n—1.

3) Find the minimum ¢ such that the connected components of G' = (V, F— (g1 U...U
g:)) can be partitioned into two sets containing § vertices each.

The complexity of our algorithm is dominated by step (1) since the total time required
by step (3) is O(n?). We will use the following property of the partitioning problem to

establish the bound of n/2.

Lemma 5 Let n be an even integer, and let ay, .. anyy be positive integers such that

Then the answer to the partitioning problem is ‘yes’.

Proof: Without loss of generality assume that the a;’s are sorted in decreasing order.
Notice that in order to maintain a sum of n, if a1 = 2 then ay = --- = an_y = 2 and
ap =any; = 1. In this case, the a;’s can clearly be partitioned. In general, let k& be the

largest index such that ax > 1, i.e. the last 3 + 1 — & numbers are 1’s. It is easy to see

that the sizes of a;’s exceeding 2 determine the number of 1’s in the following manner:

k
n
dai=2)=(54+1—k)—2 (1)
; 2
=1
Now, associate a; — 2 distinct 1’s with each a; that exceeds 2. By (1) this is feasible, and
moreover exactly two 1’s will be left over unassociated. For each a; exceeding 2, we will
include a; in one partition and its associated 1’s in the other partition. This effectively
gives the former partition a weight of 2 more than the latter. Hence, once again we are
essentially left with partitioning numbers of the form 2,2,...,2,1, 1. =

As before, let ¢q,c9,... be an enumeration of all cuts in G, ordered by increasing
weight, and let B = g1 U ---U g; be the set of edges picked by our algorithm. Let ¢ be
the first cut in the enumeration that yields an optimal balanced partitioning of G.

Lemma 6 wt(B) < Swt(cy).

Proof: As in algorithm EFFICIENT, among the cuts ¢1,...,g;, pick g; iff it is not
contained in (gq U---Ug;_1). Let by,...,b; be the cuts picked in this manner. Clearly
B = byU---Ub;. The proofis based on Lemma 2, i.e. the fact that the cuts by, ..., b; satisfy
the union property. This and the fact that the components of G' = (V, E—(C') can certainly
be partitioned into equal sized sets, for any set C' containing ¢, imply that indez (b;) < k.
Now by Lemma 1, [< n—1, thereby giving a factor of (n —1). To achieve a better factor,
notice that Lemma 5 implies that [< n/2. Therefore wt(B) < ', wt(b;) < Zwt(cy). ™

Lemma 7 The bound of 5 is tight for our algorithm.

Proof: As in Theorem 4, for any ¢, 0 < € < 1, we will give an infinite family of in-
stances on which the cut found by our algorithm lies in the range [(1 — ¢)5W, ZW],
where W is the weight of the optimal cut. The k** instance consists of a graph on 2k

vertices {u, v, uy...uk—1,01,...,0k—1}, and edges (with weights) wt(u;,u) = o, 1 < @ <
kE—1,wt(v,v) = a,1 <i< (k—1),wt(u,v) = G, where a = (1 —). It is easy to see
that our algorithm finds a cut of weight ko, and the optimal cut has weight 5. n

Theorem 5 The algorithm given above finds a balanced partitioning of an edge-weighted
graph, using n — 1 max-flow computations. The weight of the cut found is within a factor
of n/2 of the optimal. Moreover, the bound of n/2 is tight for our algorithm.

7 Discussion and open problems

It will be interesting to see how algorithms SPLIT and EFFICIENT compare in practice,
even though neither algorithm dominates the other in worst-case performance. Our guess
is that SPLIT will typically give lighter k-cuts.

Notice that the graphs given in Theorem 4 help establish the (2 — 2/k) lower bound
for the k-cut found for each k, 2 < k < (n+1)/2, where n is the number of vertices in the
graph (n is odd), but not for higher values of k. Certainly, the bound of (2 — 2/k) is not
tight for & = n, since we get the optimal cut. Is there a better analysis of our algorithms
for k> n/27?

Is there a better approximation algorithm for the minimum k-cut problem? We believe
that the problem of achieving a factor of (2 — ¢), for some £ > 0, independent of k, is
intractable. The minimum k-cut problem is MAX-SNP complete [Pa], and hence by the
recent result of [ALM], achieving a factor of 1 + £, is NP-complete for some £ > 0.

Our investigation of the balanced graph partitioning problems appears to be quite
preliminary, and it should be possible to improve the bound. Interesting special cases
are: (a) the graph is planar, (b) all edge weights are 1. Since the graphs used in Lemma
7 are planar, the lower-bound for our algorithm holds for case (a). It is easy to see
that if ties are resolved arbitrarily in our algorithm, Lemma 7 holds for case (b) as well;
however, this seems to be a small hurdle. It will also be useful to consider the version of
the balanced graph partitioning problem in which vertices have weights; in this case the
pseudo-polynomial algorithm for partition will not be useful.

Finally, some of these methods may be useful for obtaining approximation algorithms
for other NP-hard graph partitioning problems (see [GH], [GJ]).

8 Acknowledgments

We wish to thank Fan Chung, Samir Khuller, Laszlo Lovasz, Milena Mihail, Christos
Papadimitriou, Umesh Vazirani and Mihalis Yannakakis for valuable discussions and com-
ments.

References

[ALMSS] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof verification and
intractability of approximation problems” | to appear in FOCS 1992.

[Ch] V. Chvatal, “Tough graphs and Hamiltonian circuits”, Discrete Mathematics, Vol. 5,
1973, pp. 215-228.

[Cu] W. H. Cunningham, “Optimal attack and reinforcement of a network”, JACM, Vol. 32,
No. 3, 1985, pp. 549-561.

10

[DJPSY] E. Dalhaus, D. S. Johnson, C. H. Papadimitriou, P. Seymour and M. Yannakakis, “The

[GoHu]

[GH]

[KTR]

complexity of the multiway cuts”, Proc. 24th Annual ACM Symposium on the Theory
of Computing, 1992, pp. 241-251.

R. Gomory and T. C. Hu, “Multi-terminal network flows” J. SIAM, Vol. 9, 1961, pp.
551-570.

0. Goldschmidt and D. S. Hochbaum, “Polynomial algorithm for the k-cut problem”,
Proc. 29th Annual Symp. on the Foundations of Computer Science, 1988, pp. 444-451.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness, Freeman, San Francisco, 1979.

A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum flow problem”,
Proc. of the 18th Annual ACM Symp. on Theory of Computing, 1987, pp. 136-146.

D. Gusfield, “Connectivity and edge-disjoint spanning trees”, Info. Proc. Lett. | Vol. 16,
1983, pp. 87-89.

Xin He, “On the planar 3-cut problem”, J. Algorithms, 12, 1991, pp. 23-37.

D. Hochbaum and D. Shmoys, “An O(V?) algorithm for the planar 3-cut problem,”
SIAM J. on Alg. and Discrete Methods, 6:4:707 - 712, 1985.

B. W. Kernighan and S. Lin,“An efficient heuristic for partitioning graphs,” BSTJ, Vol.
40, 1970, pp. 291-308.

V. King, S. Rao, and R. Tarjan, “A faster deterministic maximum flow algorithm, Proc.

3rd ACM-SIAM Symp. on Discrete Algorithms, 1992, pp. 157-164.

[LMPSTT] T. Leighton, F. Makedon, S. Plotkin,, C. Stein, E. Tardos, S. Tragoudas, “Fast ap-

[LR]

proximation algorithms for multicommodity flow problems” Proc. 23rd Annual ACM
Symp. on the Theory of Computing, 1991, pp. 101-111.

T. Leighton and S. Rao, “An approximate max-flow min-cut theorem for uniform mul-
ticommodity flow problems with applications to approximation algorithms”, Proc. 29th

Annual Symp. on the Foundations of Computer Science, 1988, pp. 422-431.

C. Papadimitriou, Private communication, 1991.

11

