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Abstract

We present approximation algorithms for the metric uncapacitated facility location problem and the
metric k-median problem achieving guarantees of 3 and 6 respectively. The distinguishing feature of
our algorithms is their low running time: O(mlogm) and O(mlogm(L + log(n))) respectively, where n
and m are the total number of vertices and edges in the underlying complete bipartite graph on cities
and facilities. The main algorithmic ideas are a new extension of the primal-dual schema and the use
of Lagrangian relaxation to derive approximation algorithms.

1 Introduction

Given costs for opening facilities and costs for connecting cities to facilities, the uncapacitated facility
location problem seeks a minimum cost solution that connects each city to an open facility. Clearly, this
problem is applicable to a number of industrial situations. For a modern day application, consider the
problem of locating proxy servers on the web. For this reason it has occupied a central place in operations
research since the early 60’s [3, 28, 30, 37, 38], and has been studied from the perspectives of worst case
analysis, probabilistic analysis, polyhedral combinatorics and empirical heuristics (see [11, 34]). In the
last few years, there has been renewed interest in tackling this problem, this time from the perspective
of approximation algorithms [2, 13, 24, 29, 32, 36]. In this paper, we carry this further by developing an
approximation algorithm based on the primal-dual schema. We further use this algorithm as a subroutine
to solve a related problem, the k-median problem. The latter problem differs in that there are no costs
for opening facilities, instead a number k is specified, which is an upper bound on the number of facilities
that can be opened. The two algorithms achieve approximation guarantees of 3 and 6 respectively.

Both of our algorithms work only for the metric case, i.e., when the connecting costs satisfy the triangle
inequality; both problems are NP-hard for this case as well. If the connection costs are unrestricted,
approximating either problem is as hard as approximating set cover, and therefore cannot be done better
than O(logn) factor, unless NP C P. For the first problem, this is straightforward to see, and for the
second, this is established by Lin and Vitter [31].
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The distinguishing feature of our algorithms is their low running time: O(mlogm) and O(mlogm(L +
log(n))) respectively, where n and m are the total number of vertices and edges in the underlying complete
bipartite graph on cities and facilities (n = n, + ny and m = n, X ns, where n. and n; are the number of
cities and facilities) and L is the number of bits needed to represent a connecting cost. In particular, the
running time of the first algorithm is dominated by the time taken to sort the connecting costs of edges.
It is worth pointing out that our facility location algorithm is also suitable for distributed computation.

The first constant factor algorithm for the metric uncapacitated facility location problem was given by
Shmoys, Tardos and Aardal [36], improving on Hochbaum’s bound of O(logn) [25] (see [32] for another
O(logn) factor algorithm). Their approximation guarantee was 3.16. After some improvements [24, 12],
the current best factor is (1 + 2/e), due to Chudak and Shmoys [13]. The drawback of these algorithms,
based on LP-rounding, is that they need to solve large linear programs, and so have prohibitive running
times for most applications. A different approach was recently used by Korupolu, Plaxton and Rajaraman
[29]. They showed that a well known local search heuristic achieves an approximation guarantee of (5+¢€),
for any € > 0. However, even this algorithm has a high running time of O(n®logn/e¢). Regarding hardness
results, the work of [24, 39] establishes that a better factor than 1.463 is not possible, unless NP C P.

Researchers have felt that the primal-dual schema should be adaptable in interesting ways to the combina-
torial structure of individual problems, and that its full potential has not yet been realized in the area of
approximation algorithms. Our work substantiates this belief. We extend the scope of this schema in the
following way: All primal-dual approximation algorithms obtained so far [1, 5, 22, 41, 21, 35, 26, 20, 23]
work with a pair of covering and packing linear programs, i.e., a primal-dual pair of LP’s such that all
components of the constraint matrix, objective function vector and right hand side vector are non-negative.
This includes, for instance, [41, 21] in which the overall LP-relaxation does have negative coefficients; how-
ever, the problem is decomposed into phases, and the relaxation used in each phase is a covering program.
On the other hand, our algorithm works with primal and dual programs that do have negative coefficients.

Despite this added complexity, our algorithm has a particularly simple description: Each city j keeps raising
its dual variable, a;, until it gets connected to an open facility. All other primal and dual variables simply
respond to this change, trying to maintain feasibility or satisfying complementary slackness conditions.
For the latter, we give a new mechanism as well.

Until the work of [35] (which relaxed the dual program itself), all approximation algorithms based on
the primal-dual schema used the mechanism formalized in [41]. In the first phase, an integral primal
solution is found, satisfying the primal complementary slackness conditions; however, this solution may
have redundancies. In the second phase, a minimal solution is extracted, typically via a reverse delete
procedure, and in the process, dual complementary slackness conditions get satisfied with a relaxation
factor. The final algorithm has this factor as its approximation guarantee.

Our first phase is similar. In the second phase, we first ensure that all complementary slackness conditions
are satisfied; however, the primal solution may be infeasible. The solution is augmented — this time the
primal conditions need to be relaxed by a factor of 3, which is also the approximation guarantee of the
algorithm.

The k-median problem also has numerous applications, especially in the context of clustering, and has also
been extensively studied. In recent years, the problem has found new clustering applications in the area
of data mining (see [6]).

A non-trivial approximation algorithm for this problem eluded researchers for many years. The break-
through was made by Bartal [4], who gave a factor O(lognloglogn) algorithm using a probabilistic ap-



proximation of metric spaces by tree metrics. After a slight improvement to a factor of O(log kloglog k)
[7], a constant factor algorithm was recently obtained by Charikar, Guha, Tardos and Shmoys [9] using
a technique of Lin and Vitter [32]. Their algorithm has an approximation guarantee of 6%; however, it
has the same drawback since it uses LP-rounding. Their algorithm uses several ideas from the constant
factor algorithms obtained for the facility location problem, thus making one wonder if there is a deeper

connection between the two problems.

In this paper, we establish such a connection between the the two problems: that a Lagrangian relaxation of
the k-median problem is the facility location problem. This enables us to use our algorithm for the facility
location problem as a subroutine to solve the k-median problem. The Lagrangian relaxation technique
has been used implicitly in the past by Garg [18] to obtain a factor 3 algorithm for the £-MST problem.
In this paper, we make its use transparent. We also abstract our ideas into a general method for deriving
approximation algorithms using this technique.

These ideas also help solve a common generalization of the two problems — in which facilities have costs,
and in addition, there is an upper bound on the number of facilities that can be opened. We give a factor
6 approximation algorithm for this problem as well; the previous bound was 9.8 [9].

The capacitated facility location problem, in which each facility ¢ can serve at most u; cities, has no non-
trivial approximation algorithms. Part of the problem is that all LP-relaxations known for this problem
have unbounded integrality gap (see [36]). In Section 5 we give a factor 4 approximation algorithm for the
variant in which each facility can be opened an unbounded number of times; if facility ¢ is opened y; times,
it can serve at most u;y; cities. A special case of this version, in which the capacities of all the facilities are
assumed to be equal, is solved with factor 3 in [14], again using LP-rounding. The special case of uniform
capacities is solved within a factor of 5, using at most one extra copy of a facility at each location in [15].

Building on ideas presented in this paper, Charikar and Guha [8] have obtained the following improved
results: a factor 1.853 algorithm for the facility location problem and a factor 4 algorithm for the k-median
problem, both with running times of O(n?).

2 The metric uncapacitated facility location problem

The uncapacitated facility location problem seeks a minimum cost way of connecting cities to open facilities.
It can be stated formally as follows: Let G be a bipartite graph with bipartition (F,C'), where I’ is the
set of facilities and (' is the set of cities. Let f; be the cost of opening facility 7, and ¢;; be the cost of
connecting city j to (opened) facility i. The problem is to find a subset I C I’ of facilities that should be
opened, and a function ¢ : C — [ assigning cities to open facilities in such a way that the total cost of
opening facilities and connecting cities to open facilities is minimized. We will consider the metric version
of this problem, i.e., the ¢;;’s satisfy the triangle inequality.

We will adopt the following notation: n, = |C| and ny = |F|. The total number of vertices n. +n;y = n
and the total number of edges n. X ny = m.

Consider the following integer program for this problem, due to Balinski [3]. In this program, y; is an
indicator variable denoting whether facility 7 is open, and z;; is an indicator variable denoting whether
city 7 is connected to the facility 7. The first constraint ensures that each city is connected to at least one
facility, and the second ensures that this facility must be open.
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The LP-relaxation of this program is:
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The dual program is:
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2.1 Relaxing primal complementary slackness conditions
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Our algorithm is based on the primal-dual schema. As stated in the introduction, instead of the usual
mechanism of relaxing dual complementary slackness conditions, we relax the primal conditions. Before
showing how this is done, let us give the reader some feel for how the dual variables “pay” for a primal
solution by considering the following simple setting: suppose LP (2) has an optimal solution that is integral,

say I C Fand ¢ : C'— I. Thus, under this solution, y; = 1 iff i € I, and z;; = 1 iff ¢ = ¢(j).

Let (o, 3) denote an optimal dual solution. The reader can verify that primal and dual complementary
slackness conditions imply the following facts:

e BEach open facility is fully paid for, i.e., if ¢ € I, then

S Bii= [

it o(5)=i



e Suppose city j is connected to facility ¢, i.e., ¢(j) = i. Then, j does not contribute for opening any
facility besides 1, i.e., §;; = 0if ' # i. Furthermore, o; — 3;; = ¢;;. So, we can think of a; as the
total price paid by city j; of this, ¢;; goes towards the use of edge (7, ), and 3;; is the contribution
of j towards opening facility «¢.

Suppose the primal complementary slackness conditions were relaxed as follows, while maintaining the
dual conditions:

VieC: (1/3)csy; < a5 = Baiyy < o)
and

Vviel: (1/3)f; < > By < fi
jr o(5)=t

Then, the cost of the (integral) solution found would be within thrice the dual found, thus leading to
a factor 3 approximation algorithm. However, we would like to obtain the stronger inequality stated in
Theorem 7, in which the dual pays at least one-third the connection cost, but must pay completely for
opening facilities. This stronger inequality will be needed in order to use this algorithm to solve the
k-median problem.

For this reason, we will relax the primal conditions as follows. The cities are partitioned into two sets,
directly connected and indirectly connected. Only directly connected cities will pay for opening facilities,
i.e., B;; can be non-zero only if j is a directly connected city and i = ¢(j). For an indirectly connected
city 7, the primal condition is relaxed as follows:

(1/3)epiy; < a5 < ey

All other primal conditions are maintained, i.e., for a directly connected city j,
= Py(i)i = Co()i
and for each open facility i,

S Bi =1

it o(5)=i

2.2 The algorithm

Our algorithm consists of two phases. In Phase 1, the algorithm operates in a primal-dual fashion. It finds
a dual feasible solution, and also determines a set of tight edges and temporarily open facilities, F;. Phase
2 consists of choosing a subset I of F; to open, and finding a mapping, ¢, from cities to I.

Algorithm 1

Phase 1
We would like to find as large a dual solution as possible. This motivates the following underlying process
for dealing with the non-covering-packing pair of LP’s. Each city j keeps raising its dual variable, a;, until



it gets connected to an open facility. All other primal and dual variables simply respond to this change,
trying to maintain feasibility or satisfying complementary slackness conditions.

A notion of time is defined in this phase, so that each event can be associated with the time at which it
happened; the phase starts at time 0. Initially, each city is defined to be unconnected. Throughout this
phase, the algorithm raises the dual variable a; for each unconnected city j uniformly at unit rate, i.e.,
a; will grow by 1 in unit time. When a; = ¢;; for some edge (¢, j), the algorithm will declare this edge to
be tight. Henceforth, dual variable 3;; will be raised uniformly, thus ensuring that the first constraint in
LP (3) is not violated. 3;; goes towards paying for facility ¢. Each edge (¢, j) such that §;; > 0 is declared
special.

Facility ¢ is said to be paid forif 5, 8;; = fi. If so, the algorithm declares this facility temporarily open.
Furthermore, all unconnected cities having tight edges to this facility are declared connected and facility @
is declared the connecting witness for each of these cities. (Notice that the dual variables «; of these cities
are not raised anymore.) In the future, as soon as an unconnected city j gets a tight edge to ¢, j will also
be declared connected and ¢ will be declared the connecting witness for j (notice that 3;; = 0, and so edge
(¢,7) is not special). When all cities are connected, the first phase terminates. If several events happen
simultaneously, the algorithm executes them in arbitrary order.

Remark 2 At the end of Phase 1, a city may have paid towards temporarily opening several facilities.
However, we want to ensure that a city pay for only the facility that it is eventually connected to. This is
ensured in Phase 2, which chooses a subset of temporarily open facilities for opening permanently.

Phase 2

Let F; denote the set of temporarily open facilities and T denote the subgraph of G consisting of all special
edges. Let T? denote the graph that has edge (u,v) iff there is a path of length at most 2 between « and
vin T, and let H be the subgraph of 72 induced on F;. Find any maximal independent set in H, say I.
All facilities in the set I are declared open.

For city j, define F; = {i € F} | (¢,7) is special}. Since [ is an independent set, at most one of the facilities
in F; is opened. If there is a facility ¢ € F; that is opened, then set ¢(j) = ¢, and declare city j directly
connected. Otherwise, consider tight edge (¢’,j) such that ¢/ was the connecting witness for j. If i/ € I,
again set ¢(j) = i’ and declare city j directly connected (notice that in this case §;;; = 0). In the remaining
case that ¢/ ¢ I, let ¢ be any neighbor of ¢ in graph H such that ¢ € I. Set ¢(j) = i and declare city j
indirectly connected.

I and ¢ define a primal integral solution: z;; = 1 iff ¢(j) = ¢, and y; = 1 iff ¢ € I. The values of a; and
3;; obtained at the end of Phase 1 form a dual feasible solution.

2.3 Analysis

We will show how the dual variables «;’s pay for the primal costs of opening facilities and connecting cities

f and «f the contributions of city j to these two costs respectively; a; = 04;[ +af.
If 5 is indirectly connected, then oef =0 and of = a;. If j is directly connected, then the following must

hold:

to facilities. Denote by «

o = cij + i,



where 7 = ¢(j). Now, let oef = Bij and of = ¢;j.
Lemma 3 Let: € I. Then,

> =1

j:o(j)=1

Proof :  Since 7 is temporarily open at the end of Phase 1, it is completely paid for, i.e.,

> Bij = [i-

j: (i,5) 18 special

The critical observation is that each city j that has contributed to f; must be directly connected to 7. For
each such city, oef = (3;;. Any other city j’ that is connected to facility ¢ must satisfy oef, = 0. The lemma
follows. a

Corollary 4 > .c7 fi =3 jcc 0‘;‘['

Recall that oef was defined to be 0 for indirectly connected cities. So, only the directly connected cities
pay for the cost of opening facilities.

Lemma 5 For an indirectly connected city j, ¢;; < 3a5, where i = o(7).

Proof :  Let i’ be the connecting witness for city j. Since j is indirectly connected to 7, (7,4') must be
an edge in H. In turn, there must be a city, say j’, such that (¢, 5') and (¢, j') are both special edges. Let
t1 and 5 be the times at which ¢ and i’ were declared temporarily open during Phase 1.

Since edge (', 7) is tight, o; > ¢;r;. We will show that a; > ¢;; and a; > ¢yj. Then, the lemma will
follow by using the triangle inequality.

Since edges (4/,j') and (¢, j’) are tight, a;y > ¢;; and ajy > ¢y, Since both these edges are special, they
must both have gone tight before either ¢ or ¢’ is declared temporarily open. Consider the time min(ty,t3).
Clearly, a; cannot be growing beyond this time. Therefore, ojy < min(ty,¢2). Finally, since ¢’ is the
connecting witness for j, a; > t3. Therefore, a; > s, and the required inequalities follow. O

! 4

J' J

Remark 6 If instead of picking all special edges in T, all tight edges were picked, then Lemma 5 does
not hold. However, if the facilities in H are ordered in the order in which they were temporarily opened,
and [ is picked to be the lexicographically first maximal independent set, then Lemma 5 holds again.



Theorem 7 The primal and dual solutions constructed by the algorithm satisfy:

Z Ciii; ‘|‘3Zfiyi <3 Z a;.

eF, el 1eF =e

Proof :  For a directly connected city j, ¢;; = af < 3o, where ¢(j) = 7. Combining with Lemma 5 we
get

Z cijri; <3 Z oej.

ek jed =e

Adding this to the following inequality obtained from Corollary 4 gives the theorem:

3Zfi§3204§.

€1 =e

2.4 Running time

Sort all the edges by increasing cost — this gives the order and the times at which edges go tight. For
each facility, ¢, we maintain the the number of cities that are currently contributing towards it, and the
anticipated time, t;, at which it would be completely paid for if no other event happens on the way. Initially
all ¢;’s are infinite, and each facility has 0 cities contributing to it. The ¢;’s are maintained in a binary
heap so we can update each one and find the current minimum in O(logn;) time. Two types of events
happen, and they lead to the following updates.

e An edge (7,7) goes tight.

— If facility ¢ is not temporarily open, then it gets one more city contributing towards its cost. The
amount contributed towards its cost at the current time can be easily computed. Therefore, the
anticipated time for facility ¢ to go be paid for can be recomputed in constant time. The heap
can be updated in O(logny) time.

— If facility ¢ is already temporarily open, city j is declared connected, and «; is not raised
anymore. For each facility ¢ that was counting j as a contributor, we need to decrease the
number of contributors by 1, and recompute the anticipated time at which it gets paid for.

e Facility ¢ is completely paid for. In this event, ¢ will be declared temporarily open, and all cities
contributing to ¢ will be declared connected. For each of these city, we will execute the second case
of the previous event, i.e., update facilities that they were contributing towards.

The next theorem follows by observing that each edge (7, j) will be considered at most twice. First, when
it goes tight. Second, when city j is declared connected. For each consideration of this edge, we will do

O(logny) work.

Theorem 8 Algorithm 1 achieves an approximation factor of 3 for the facility location problem, and has
a running time of O(mlogm).



2.5 Tight example

The following infinite family of examples shows that the analysis of our algorithm is tight: The graph has
n cities, 1,2,...,n and two facilities 1 and 2. For each city j, co; = 1. ¢11 = 1 and all other ¢;;’s follows
from the tight triangle inequalities. f; and f; are € and (n 4 1)e respectively, for a small number e.

The optimal solution is to open facility 2 and connect all cities to it, at a total cost of (n + 1)e + n.
Algorithm 1 will however open facility 1 and connect all cities to it, at a total cost of e+ 1+ 3(n — 1).

2.6 Extension to arbitrary demands

A small extension to Algorithm 1 enables it to handle the following generalization to arbitrary demands.
For each city j, a non-negative demand d; is specified; any open facility can serve this demand. The cost
of serving this demand via facility ¢ is ¢;;d;.

The only change to IP (1) and LP (2) is that in the objective function, ¢;;z;; is replaced by ¢;;d;2;;. This
changes the first constraint in the dual (3) to

Viel, je(C: Oé]‘—ﬁijgcijdj.

The only change to Algorithm 1 is that for each city j, «; is raised at rate d;. Notice that because of the
change in the first constraint in the dual, edge (¢, j) still goes tight at time ¢;;. However, once (¢, j) goes
tight, 8;; will be increasing at rate d;, and so facility + may get opened earlier than in the unit demands
case.

An easy way to see that this modification works is to reduce to the unit demands case by making d;
copies of city j. The change proposed above to Algorithm 1 is more general, since it works even if d; is
non-integral, and even if it is exponentially large.

3 The metric k-median problem

The k-median problem differs from the facility location problem in two respects: there is no cost for
opening facilities, and there is an upper bound, k, on the number of facilities that can be opened; k is
not fixed, it is supplied as part of the input. Once again, we will assume that the edge costs satisfy the
triangle inequality.

The power of primal-dual algorithms lies in efficiently making “judicious” local improvements. On the
other hand, the constraint that at most k facilities be opened is a global constraint — one that is not easy
to satisfy through such an algorithm. We observe that the Lagrangian relaxation of the k-median problem
is the facility location problem. This enables us to replace this global constraint by a penalty for opening
each facility.

Following is an integer program for the k-median problem. The indicator variables y; and z;; play the
same role as in (1).

minimize Z Ciiti (4)
ier eC



subject to  Vj e (C': inj >1
1eF
VieF,jeC: y—x;2>0
> —yi> —k
1eF
Vie F,jeC: z;;€{0,1}
Vie F: oy €{0,1}
The LP-relaxation of this program is:
minimize > cijui (5)
ieF el
subject to  Vj e (C': inj >1
1eF
VieF,jeC: y—x;2>0

> —yi> -k

1€EF
VieF,jeC: z;; >0
VieF: y; >0

The dual program is:

maximize Zoej — zk (6)
JeC
subject to Vi€ F,j € C: a; — B < ¢
Vie F: Zﬁijﬁz
JeC
Viel: a; >0
Vie F,jeC: 3;>0
z>0

3.1 The high level idea

The similarity in the linear programs of the two problems is exploited as follows: Take an instance of the
k-median problem, assign a cost of z for opening each facility, and find optimal solutions to LP (2) and
LP (3), say (x,y) and (a, 3) respectively. By the strong duality theorem,

Z Cij$ij‘|‘zzyi = Z%‘-

eF, el 1eF =e

Now, suppose that the primal solution («,y) happens to open exactly k facilities (fractionally), i.e.,
>; yi = k. Then, we claim that (z,y) and (e, 3, z) are optimal solutions to L.P (5) and LP (6) respectively.



Feasibility is easy to check. Optimality follows by substituting > ;y; = k in the above equality, and
rearranging terms to show that the primal and dual solutions achieve the same objective function value:

E CijTi; = E a; — zk.

eF, el =e

Let’s use this idea, together with Algorithm 1 and Theorem 7, to obtain a “good” integral solution to LP
(5). Suppose with a cost of z for opening each facility, Algorithm 1 happens to find solutions (x,y) and
(o, 3), where the primal solution opens exactly k facilities. By Theorem 7,

Z Cij%i; + 3zk < 3 Z ;.

eF, el =e

Now, observe that (z,y) and (a, 3, z) are primal (integral) and dual feasible solutions to the k-median
problem satisfying

Z cijti; < S(Zaj—zk).

eF, el =e

Therefore, (z,y) is a solution to the k-median problem within thrice the optimal.

Notice that proof of factor 3 given above would not work if less than k facilities were opened; if more than
k facilities are opened, the solution is infeasible for the k-median problem. The remaining problem is to
find a value of z so that exactly k facilities are opened. Several ideas are required for this. The first is the
following principle from economics: taxation is an effective way of controlling the amount of goods coming
across the border — raising tariffs will reduce in-flow and vice versa. In a similar manner, raising z should
reduce the number of facilities opened and vice versa.

It is natural now to seek a modification to Algorithm 1 that can find a value of z so that exactly k
facilities get opened. This would lead to a factor 3 approximation algorithm. We don’t know if this is
possible. Instead, we present the following strategy which leads to a factor 6 algorithm. For the rest of the
discussion, assume that we never encountered a run of the algorithm which resulted in exactly & facilities
being opened.

Clearly, when z = 0, the algorithm will open all facilities, and when z is very large, it will open only one
facility. The later value of z can be picked to be nepax, where cpax is the length of the longest edge.
We will conduct a binary search on the interval [0, ncmay] to find 23 and z; for which the algorithm opens
ko > k and ky < k facilities respectively, and furthermore, z;1 — 29 < (Cmin/12n2)7 where ¢, is the length of
the shortest non-zero edge. Let (z*,y°) and (2, y') be the two primal solutions found, with Yier Yl =k
and Y ;cp y! = ky (the superscripts s and [ denote “small” and “large” respectively). Further, let (a*, 3°)
and (a!, 3') be the corresponding dual solutions found.

Let (z,y) = a(x®,y®) +b(x!, y') be a convex combination of these two solutions, with ak; +bky = k; under
these conditions, @ = (ke — k)/(ke — k1) and b = (k — k1) /(ka — k). Since (x,y) is a feasible (fractional)
solution to the facility location problem that opens exactly k facilities, it is also a feasible (fractional)
solution to the k-median problem. In this solution, each city is connected to at most two facilities.

Lemma 9 The cost of (x,y) is within a factor of (34 1/n.) of the cost of an optimal fractional solution
to the k-median problem.



Proof : By Theorem 7 we have:

> el < 33 a) = ak),

el jel =e
and
l l
Z cijry; < 3(2 o — zaks).
el jel =e

Since z1 > zg, (oal7 ﬁl) is a feasible dual solution to the facility location problem even if the cost of facilities
is z;. We would like to replace z3 by z; in the second inequality, at the expense of the increased factor.

This is achieved using the upper bound on z; — 25, and the fact that ZiEF, jec cijxﬁ»j > Cmin. We get:

1
Yol < 34+ )Y al — ziky).

i€F, jeC e’ jec

Multiplying this inequality by b and the first inequality by a and adding, we get

Yo ey < (34 %)(Z%—zlk%

1eF, jeC ¢ jeC

where o = aa® + ba!. Let 8 = aB® + bB'. Observe that (o, 3, z1) is a feasible solution to the dual of the
k-median problem. The lemma follows. a

In Section 3.2 we give a randomized rounding procedure that obtains an integral solution to the k-median
problem from (x,y), with an increase in cost by a small factor. In Section 3.3 we derandomize this
procedure.

3.2 Randomized rounding

We give a randomized rounding procedure that produces an integral solution to the k-median problem
from (@, y). In the process, it increases the cost by a multiplicative factor of 1 4+ max(a,b).

Let A and B be the sets of facilities opened in the two solutions, |A| = k; and |B| = k3. For each facility
in A, find the closest facility in B — these facilities are not required to be distinct. Let B’ C B be these
facilities. If |B’| < kq, arbitrarily include additional facilities from B — B’ into B’ until |B’| = k;.

With probability @, open all facilities in A, and with probability 6 = 1 — a, open all facilities in B’. In
addition, a set of cardinality & — %k is picked randomly from B — B’ and facilities in this set are opened.
Notice that each facility in B — B’ has a probability of b of being opened. Let I be the set of facilities
opened, |I]| = k.

The function ¢ : C' — I is defined as follows. Consider city j, and suppose that it is connected to i1 € A
and i3 € B in the two solutions. If i; € B’, then one of i1 and iy is opened by the procedure given above,
11 with probability @ and 75 with probability b. City j is connected to the open facility.



If iy € B— B’ (see figure 3.2), let i3 € B’ be the facility in B that is closest to 7;. City j is connected to iz,
if it is open. Else, it is connected to ¢y, if it is open. If neither ¢35 or ¢; is open, then j is connected to 3.

A B
k1 ko
21 K ......................... .7/3 B/
]b 14D B — B/

Denote by cost(j) the connection cost for city j in the fractional solution (@, y); cost(j) = ac;,; + beyy;.

Lemma 10 The expected connection cost for city j in the integral solution, Efcy(;);] < (1+max(a, b))cost(j).
Moreover, Elcy(;);] can be efficiently computed.

Proof: [1If iy € B, E[c(b(j)j] = ac;,j + bej,; = cost(j). Consider the second case, that iy ¢ B'. Now, iy
is open with probability . The probability that iy is not open and ¢; is open is (1 — b)a = a?, and the
probability that both iy and ¢; are not open is (1 — b)(1 — a) = ab. This gives

E[C¢(j)j] < bCin + azcilj + abcisj.

Since i3 is the facility in B that is closest to i1, ¢;5, < €i4, < €5 + €iyj, Where the second inequality
follows from the triangle inequality. Again, by the triangle inequality, c;,; < ¢, + €5, < 2655 + ¢4y .
Therefore,

Eley)il < beiyj 4 a*eiyj + ab(2¢i, + ciyj).

Now, a?

iy j + abe; ; = ac; ;. Therefore,
Elegi)) < (aciyj + beiyg) + ablcij + ciy) < (aciyj + beiy;) (1 + max(a, b)).
Clearly, in both cases, E[c(b(j)j] is easy to compute. -

Let (:Izk, yk) denote the integral solution obtained to the k-median problem by this randomized rounding
procedure. Then,

Lemma 11 E[ Z cijxfj] < (14 max(a,b))( Z CiiTii),
1€F, 50 €F, jeC
and moreover, the expected cost of the solution found can be computed efficiently.



3.3 Derandomization

Derandomization follows in a straightforward manner using the method of conditional expectation. First,
the algorithm opens the set A with probability a, and the set B’ with probability & = 1 — a. Pick A4, and
compute the expected value if k& — k; facilities are randomly chosen from B — B’. Next, do the same by
picking B’ instead of A. Choose to open the set that gives the smaller expectation.

Second, the algorithm opens a random subset of k — k; facilities from B — B’. For a choice D C B — B/,
|D| < k — ky, denote by F[D,B — (B"U D)] the expected cost of the solution if all facilities in D and
additionally k—kq—|D| facilities are randomly opened from B—(B'UD). Since each facility of B—(B'UD)
is equally likely to be opened, we get

1
|B - (B"U D) 2

ieB—(B'UD)

E[D,B— (B'UD)] = E[DU {i}, B~ (B'UDU{i})].

This implies that there is an 7 such that
E[Du{i},B- (B UDU{i})] < F[B',B - (B'UD)].

Choose such an i and replace D by DU{i}. Notice that the computation of E[DU{i}, B— (B'UDU{i})]
can be done as in Lemma 11.

3.4 Running time

It is easy to see that @ < 1 — 1/n. (this happens for &y = k — 1 and ky = n.) and b < 1 — 1/k (this
happens for k1 = 1 and ky = k + 1). Therefore, 1 + max(a,b) <2 — 1/n.. Altogether, the approximation
guarantee is (2 — 1/n.)(3+ 1/n.) < 6. Using the method of conditional probabilities, this procedure can
be derandomized, as in Section 3.3. The binary search will make O(logy(n®cmax/cmin)) = O(L + log n)
probes. The running time for each probe is dominated by the time taken to run Algorithm 1; randomized
rounding takes O(n) time and derandomization takes O(m) time. Hence we get

Theorem 12 The algorithm given above achieves an approximation factor of 6 for the k-median problem,
and has a running time of O(mlog m(L + log(n))).

The running time of the algorithm can also be made strongly polynomial by standard method of discretizing
the costs to integers of magnitude O(poly).

3.5 Tight example

We do not have a tight example of factor 6 for the complete k-median algorithm. However, we give below
an infinite family of instances which show that the analysis of the randomized rounding procedure cannot
be improved.

The two solutions (z*,y*) and (', y') open one facility, fo, and k + 1 facilities, fi,..., fri1 respectively.
The distance between fy and any other f; is 1, and that between two facilities in the second set is 2. All n
cities are at a distance of 1 from fy, and at a distance of € from fi11. The rest of the distances are given
by the triangle inequality. The convex combination is constructed with ¢ = 1/k and b=1—1/k.



Now, the cost of the convex combination is an 4+ ben. Suppose the algorithm picks f; as the closest
neighbor of fy. Now, the expected cost of the solutions produced by the randomized rounding procedure
is n(be+a® +ab(2+¢€)). Letting € tend to 0, the cost of the convex combination is essentially na, and that
of the rounded solution is na(l 4 b).

3.6 A Lagrangian relaxation technique for approximation algorithms

Lagrangian relaxation is a fundamental technique in combinatorial optimization. In this section, we will
abstract the ideas developed above to give one method of using this technique to derive approximation
algorithms. This method does not require the constraints of the problem to be linear, and in fact we will
present it in a very general setting.

Let P, be the following optimization problem:

minimize  f(z) (7)

subject to  P(z)
g(z) =k

where f and ¢ are arbitrary real valued functions, P is an arbitrary predicate, and k is a constant. Let
OPT; denote the optimal value of this problem, and let a be the value of @ at which the optimum is
attained.

The Lagrangian relaxation technique consists of relaxing certain constraints by moving them into the
objective function, together with associated Lagrange multipliers. We will use this technique to relax the
constraint g(x) = k. Let z be the Lagrange multiplier. Now, for any value of z,

xff)i(rflu)f(w) + z(g(x) — k)

is a lower bound on OPT;. To see this notice that substituting @ = a in the above expression gives OPT};.
Therefore,

max min f(z)+ z(g(x) — k) (8)

is also a lower bound on OPT;. Let L be the value of this expression.. Let us rewrite this expression as

max [( min f(z) + zg(a:)) — zk] .
Now, for each value of z, consider the following optimization problem, which we will call Pz(z):
minimize  f(z) + zg(x) 9)
subject to  P(z)
(10)

Let OPTy(z) denote the optimum value of this problem. We will show how to derive an approximation
algorithm for problem P using an approximation algorithm for problem P.



Let A be an approximation algorithm which, for each z, finds a solution « satisfying
f(®) + azg(x) < aOPTy(2)

for some constant « > 1. Notice that we have multiplied one term on the left hand side by « as well, and
so this is stronger than an « factor approximation algorithm for problem F,. It must pick a solution so
zg(x) is completely paid for by OPT3(z).

Theorem 13 Suppose there exists approximation algorithm A defined above. Suppose further that there
is a polynomial time procedure R that uses A as a subroutine and finds a value of z for which the solution
found by A satisfies g(x) = k. Then, there is an « factor approximation algorithm for problem P;.

Proof : By the premise, we can find in polynomial time a value of z and a solution @ such that
f(®) + azg(x) < aOPTy(z) and g(x) = k.

Substituting, we get
f(®) < a(OPTy(z2) — zk).

The important observation is that for any value of z,
OPTy(2) — 2k < L,

since L was defined to be the optimal value of expression (8). Therefore, f(z) < aL. Since L is a lower
bound on OPTy, we get f(x) < aOPT;. Since g(x) = k, @ is a feasible solution as well to problem P;. O

Procedure R will be problem dependent. For instance, for the k-MST problem, after getting the two
solutions, Garg [19] uses additional structural properties to obtain a tree containing exactly k vertices.

For the k-median problem presented above, this involved doing a binary search to find two very close
values of z for which ¢ attains values k; and ko with ky < k < ko, taking a convex combination of these
solutions and doing a randomized rounding to get an integral solution with a further slight loss in the
approximation factor. Other than the last step of randomized rounding, the remaining steps apply to any
problem with linear constraints.

For instance, consider the following variant of the k-median problem. Instead of being specified a bound
k on the number of facilities to be opened, we are specified the cost of opening each facility and an upper
bound allowed for opening facilities. Subject to this constraint, the problem is to minimize the total
connection cost. For this problem, we do not know how to carry out the last step of randomized rounding,
and leave this as an open problem.

Another interesting phenonmenon, which we call decoupling, can happen when we take Lagrangian relax-
ation. Suppose we have two kind of facilities, hospitals and schools. Suppose the total number of hospitals
and schools we can open is at most k£ (in practice, this might be the result of a budget constraint) so
that each city is connected to one hospital and one school. This problem can be thought of as two facility
location problems coupled with a k-median kind of constraint. If we take its Lagrangian relaxation we
get 1id of k-median kind of constraint and get two independent instances of the facility location problem,
which can be solved separately.



4 A common generalization of the two problems

Consider the uncapacitated facility location problem with the additional constraint that at most k facilities
can be opened. This is a common generalization of the two problems solved in this paper — if k is made
ny, we get the first problem and if the facility costs are set to zero, we get the second problem.

The techniques of this paper yield a factor 6 algorithm for this generalization as well. The high level
idea is as follows. Using the Lagrangian relaxation technique, we will first remove the restriction that at
most k facilities be opened, and instead set the cost of opening each facility 7 to f; + 2. Now, binary
search on z will yield two values of z, close to each other, for which Algorithm 1 opens ky < k and
ko > k facilities respectively. An appropriate convex combination of these two solutions gives a fractional
solution that opens exactly k facilities, with the additional property that each city is connected to at
most two facilities. The cost of this solution is within thrice the cost of an optimal fractional solution.
Notice that the randomized rounding procedure it ensures that the expected cost of opening facilities in
the rounded solution is the same as the cost of opening facilities in the convex combination. Finally, the
derandomization procedure can also be carried out in this setting.

Theorem 14 There is a factor 6 approximation algorithm for common generalization of uncapacitated
facility location and k-median problems in which facilities have costs and at most k of them can be opened.

5 Dealing with capacities

We consider the following variant of the capacitated metric facility location problem. Each facility can be
opened an unbounded number of times; if facility 7 is opened y; times, it can serve at most wu;y; cities. The
LP-relaxation of this problem has the following extra constraint:

Vi€ F . uiyi—szj > 0.
JjeC

Let the dual variable corresponding to this constraint be ;. Then, the dual program is:

maximize Z a; (11)
jec
subject to Vi€ F,j€C: a; — i —vi < ¢
VieF: uwyi+ Y Biy<fi
jec
Viel: a; >0
VieF': v>0
VieF,jeC: ;>0

For each facility ¢, let us fix v; = ii’ This step enables us to get rid of the variables v; from LP (11), and

the resulting linear program is agafn the dual of an uncapacitated facility location problem. The primal
program for this modified dual is:



o 3fi Ji
minimize Z (cij + 4ui)xij + Z ZYZ (12)

el el 1€
subject to  Vj e (C': inj >1

tEF

VieF,jeC: Y, —x;2>0

VieF,jeC: z;; >0

Vie F: Y;>0

It is easy to see that ¢;; + ii? still satisfies the triangle inequality. Using Algorithm 1, we can now find a

0/1 integral solution to this LP satisfying

3/ s
Z (Cij+4—£)$ij+32{z5@§32%

ek jed ¢ iEF JjEC

by Theorem 7. Now, our solution to the capacitated problem is: z;;’s are as in this solution, and y; =

{ZJGC Ty

Usg

]. This gives the following relationship between y; and Y;:

Yjec Tij
u;

y, <Y, +

Using this relationship and the above inequality we get:
3
> cijuij+ 1 S fiyi <3 aj.
i€FjeC i€F JEC
This implies
ST cijrig+ Y fiyi <4 ay,
i€FjeC i€ JEC
thereby giving an approximation guarantee of factor 4.

Remark 15 Generalizations of the problems considered in Sections 4 and 5 to the case of arbitrary
demands for cities can also be solved within the factors given above, using ideas from Section 2.6.

6 12 clustering

Our k-median algorithm extends, in a fairly straightforward manner, to obtaining a constant factor al-
gorithm for the problem of /2 clustering. This holds even for the case that the number of clusters and
the dimension of the space are arbitrary — a case for which constant factor algorithms were not observed
before. However, we note that such a result follows from previous constant factor k-median algorithms as
well. The result below should be considered preliminary — the factor obtained is too high. See [16] for a
factor 2 algorithm for the case that k is fixed.

Given a set of n points S = {vy,...,v,} in d-dimensional space and a number k, the problem is to find a
minimum cost k-clustering, i.e., to find &k points, called centers, fi,..., fx, so as to minimize the sum of



squares of distances from each point v; to its closest center. This naturally defines a partitioning of the n
points into k clusters.

Suppose points vy, ...v; form one of these clusters with center f;. Define the centroid of vy,...vs to be
c=(v1+---4wv)/t. It is well known that

1 1
oMo = fill? =D Mo = el + el fr = el
=1

=1

where ||u — v|| denotes the square of the Euclidean distance between points u and v. So, each center must
be the centroid of its cluster. Therefore, this problem can be stated as a k-median problem. The cities
are the n given points, vy,...,v,, and the facilities are the centroid of each subset of points. The cost
of connecting a city to a facility is the square of the Euclidean distance between them. Since there are
exponentially many facilities, the corresponding LP is exponential sized, and we do not know how to deal
efficiently with it.

One way of getting around this difficulty is to choose centers from the given points only. Suppose the
closest point from ¢ to vy,...v; is vy, say. Then, using the above equality, we get

1 1 1
Do lloe—wilP <Y Mo — el P+ tlor — el P <23 v — e
=1 =1 =1

Therefore, the cost of the optimal clustering with the given points as centers is within a factor of 2 of the
optimal clustering on centroids. The former problem can be expressed as a polynomial sized k-median LP,
and its Lagrangian relaxation as a polynomial sized facility location LP. Our facility location algorithm
solves the Lagrangian relaxation with a factor of 9. The reason for the larger factor is that edge costs do
not satisfy the triangle inequality. Instead, the statement of Lemma 5 needs to be modified to ¢;; < 9aj.
For the same reason, the factor for randomized rounding also increases to 6. This gives an overall factor
of 2 x 9 x 6 = 108 for l3-clustering.

7 Discussion

A large fraction of the theory of approximation algorithms, as we know it today, is built around linear pro-
gramming, which provides two main algorithm design techniques: rounding and the primal-dual schema.
Both techniques have yielded algorithms with good approximation guarantees, often achieving the inte-
grality gap of the relaxation being used. However, with respect to the running times of the algorithms
derived, the two methods differ widely. Rounding resorts to the “big hammer” approach of solving the
linear program and therefore leads to inefficient algorithms. On the other hand, the primal-dual schema
leaves enough room to exploit the special combinatorial structure of individual problems and has therefore
lead to efficient algorithms. Once the algorithm is obtained, typically the scaffolding of linear programming
can be completely dispensed with to obtain a purely combinatorial algorithm. As was done in this paper,
it seems worthwhile examining various algorithms derived using rounding, to see if efficient combinatorial
algorithms achieving the same factors can be obtained.

Besides the objective measure of running time, another aspect in which primal-dual algorithms are superior
to rounding based algorithms is the ease with which the core algorithmic idea can be modified, generalized



and adapted to special circumstances or variants of the original problem. In this respect, our algorithm
has met special success. Besides the various generalizations covered in this paper, the core idea has been
used to solve:

o A fault tolerant version of the facility location problem, in which we are given a connectivity re-
quirement r; with each city j, specifying the number of open facilities city j should be connected to

27].

e The prize collecting version of both facility location and k-median problems. In this version, we are
not required to connect each city to an open facility; however, there is a specified penalty which we
have to pay if a city is not connected [10].

e The outlier version of the facility location problem, in which we are specified a number T, and are
required to connect only T cities to open facilities [10]. [10] reduce this problem to the prize collecting
version by using the Lagrangian relaxation technique.

e The on-line median problem, in which k is not prespecified and is chosen on-line [33].

It is instructive to compare the current status of primal-dual approximation algorithms with the (mature)
status of exact primal-dual algorithms. In the latter setting, only one underlying mechanism is used:
iteratively ensuring all complementary slackness conditions. On termination, an optimal (integral) solution
to the LP is obtained. In the former setting, we are not seeking an optimal solution to the LP (since the
LP may not have any optimal integral solutions), and so there is a need to introduce a further relaxation.
Relaxing complementary slackness conditions (which itself can be carried out in more than one way) is only
one of the possibilities (see [35] for an alternative mechanism). Another point of difference is that in the
exact setting, more sophisticated dual growth algorithms have been given, e.g. [17]. In the approximation
setting, other than [35], all primal-dual algorithms use a simple greedy dual growth algorithm.

So far, the primal-dual schema has been used for obtaining good integral solutions to an LP-relaxation.
However, it seems powerful enough for the following more general scenario: when the NP-hard problem
is captured not through an integer program, but in some other manner, and there is an LP that provides
a relaxation of the problem. In this setting, the primal-dual schema will try to find solutions that are
feasible for the original NP-hard problem, and are near-optimal in quality. This open problem was first
mentioned in [40].

In Section 3.6 we have stated our Lagrangian relaxation technique in a very general setting in which the
constraints of the problem are provided by arbitrary predicates. This includes, for instance, the possibility
of non-linear constraints. It will be interesting to see if this technique finds applications in non-linear
settings. It will also be interesting to derive an approximation algorithm for a problem in which there
are two global constraints, via the Lagrangian relaxation technique, for instance, the outlier k-median
problem, in which we are specified the number of facilities that can be opened and the number of cities
that need to be connected.

At a more detailed level, the issue of modifying Algorithm 1 so it opens exactly k facilities deserves some
thought — this is a possible avenue for improving the factor for the k-median problem. It would be nice
to improve the running time of the facility location algorithm in case the metric is specified as the closure
of a sparse graph, rather than a complete bipartite graph. Another question is to obtain a non-trivial
approximation algorithm for the capacitated facility location problem.
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