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Abstract

We introduce! a treatment of parametric estimation in which optimality of an estimator is measured
in probability rather than in variance (the measure for which the strongest general results are known
in statistics). Our motivation is that the quality of an approximation algorithm is measured by the
probability that it fails to approximate the desired quantity within a set tolerance. We concentrate on
the Gaussian distribution and show that the sample mean is the unique “best” estimator, in probability,
for the mean of a Gaussian distribution. We also extend this method to general penalty functions and
to multidimensional spherically symmetric Gaussians.

The algorithmic significance of studying the Gaussian distribution is established by showing that
determining the average matching size in a graph is #P-complete, and moreover approximating it re-
duces to estimating the mean of a random variable that (under some mild conditions) has a distribution
closely approximating a Gaussian. This random variable is (essentially) polynomial time samplable,

thereby yielding an FPRAS for the problem.

1 Introduction

The task of estimating a parameter via sampling lies at the heart of numerous algorithms. In particular,
this task is central to approximation algorithms for #£P-complete problems. These algorithms rely on an
wn probability statement: establishing that the parameter in question has been estimated within certain
bounds with “high” probability. (Inverse polynomial probability suffices for polynomial time computabil-
ity.) Despite widespread use of this method, so far questions about the optimality of the estimator have
not been studied.

Such results belong in the area of parametric estimation within the field of statistics. Traditionally, the
notion of optimality most studied in this area is minimization of the mean square error of the estimator.
Indeed, among the celebrated theorems of statistics is the Cramer-Rao lower bound on the mean square
error of an unbiased estimator of a parameter @, in terms of its Fisher entropy. A key application of this
theorem is to show that the sample mean is an optimal unbiased estimator of the mean of a Gaussian
from a variable-location, fixed-scale (unit variance) family {G4} where Gy(z) = (27) /2 exp(—(z — 0)*/2)
[CTI1, Zac81, Fre43, Rao4h, Crad6]. Notice, however, that optimality of an estimator in mean square error
does not imply optimality in probability. Furthermore, establishing a bound on the mean square error of
an estimator is not sufficient for the purposes of deriving an approximation algorithm, for instance for
giving a fully polynomial randomized approximation scheme, FPRAS, for a #P-complete problem.

The traditional worst case analysis of algorithms has been particularly successful in unraveling algo-
rithmically relevant combinatorial structure in problems, and in designing powerful algorithmic tools to
exploit this structure. We adopt this paradigm in our criteria for parametric estimation.

The current paper is an attempt at initiating a theory of parametric estimation in which optimality is
measured in probability in the worst case over the possible values of the parameter. Although our original
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motivation 1s algorithmic, we believe that this theory will find value in other areas as well. We derive
results for the Gaussian distribution. The reason for concentrating on this distribution is twofold. First,
the Gaussian distribution lends itself to a very precise analysis. Second, this distribution arises naturally
in several computational situations. Here is a particularly striking case.

Consider the problem of computing the average matching size in a given graph. In Theorem 5 we show
that exact computation of this parameter is #P-complete. Now, consider the random variable that is the
size of a random, uniformly chosen, matching in GG. This random variable is (essentially) polynomial time
samplable, since there exists an almost uniform generator for matchings in a graph [JS95]. Therefore, it
can be used to estimate the average size of a matching in GG; in fact it even leads to an FPRAS for this
problem. The algorithm is straightforward: sample this random variable an appropriate number of times,
depending on the error parameter, and output the mean of these samples.

Under some mild conditions, this random variable has essentially a Gaussian distribution. This fol-
lows from an exceptionally strong result of Godsil describing the size distribution of the matchings of a
graph [LP86, God81]. Hence, the FPRAS stated above is simply estimating the mean of this Gaussian
distribution! Moreover, it is using the mean estimator to do so. We are interested in whether this is the
best estimator for the mean of a Gaussian distribution, where “best” is, as is customary for algorithmic
analysis, defined in terms of the probability of failing to estimate the mean within the desired accuracy on
a worst-case input. In Section 2 we define this question more precisely, and in Theorem 2 we answer it in
the affirmative.

2 The model and our results

Consider a probability density f on the real line with first moment 0 and finite second moment. Form the
family of densities {fs}, which are the translations of f, indexed by their means 6. (So fy = f.)

Now, 8 is fixed and unknown to us, and we collect n samples z1, ..., z, from the density fy. We wish
to infer an estimate of the parameter §. For each ¢ > 0, we are interested in the probability that our
estimator S(z1,...,%,) falls within distance ¢ of #. Furthermore, we are interested in the worst case (over
) performance of S. For this purpose, let us define the e-quality of estimator S to be

Q5 = inf[P(1S— 0] < ]
Definition 1 We say that estimator I' majorizes S if for all ¢ > 0, Q% > Q%.

Theorem 2 For the family {Gg}, for any given n, the mean estimator, T(x1,...,2n) = % >~ ®;, majorizes
every other estimator.

In Theorem 14 we will further establish that 7' is the unique majorizing estimator.

Let X = (1,...,%,) denote n independent samples picked from Gy. Let ¢ : R — R* (where R™ is the
nonnegative reals) be a penalty function satisfying the following conditions: (a) ¢ is symmetric, (b) ()
is nondecreasing in |z|, (c) ¢ is not a constant function, and (d) L = ffooo P(2)G(z)de < oo.

Without loss of generality we may assume that 1(0) = 0. Note also that conditions (a) and (b) imply
that ¢ is measurable.

Define the ¢'* central moment of estimator S at 0 to be

M;”(S):/P(XW) W(t — ) P(S(X) =t)dtdX.

In case ¥(x) = 2", this is simply the 7’th central moment of the estimator S at .
be

By an extension of the method of Theorem 2, we show the more general:

Theorem 3 For the family {Gy}, for every n and every penalty function 1, the mean estimator minimizes
Supy M;ﬂ(S) among all estimators S.



We next extend the method to higher dimensions. Let X = (#1,...,2,) denote n independent samples
in R? picked from Gg, the spherically symmetric Gaussian distribution

Gi(z) = (2 exp (—% PECE e<i>>2) .

1

Let ¢ : RY — R* (where Rt is the nonnegative reals) be a penalty function satisfying the following
conditions: (a) ¢ is spherically symmetric: (z) = ¢¥(y) if || = |y|. (b) ¢¥(x) is nondecreasing in the
Euclidean norm |z|. (c) ¢ is not a constant function. (d) L = [z.%(2)Gi(z)dx < co.

These assumptions imply that ¢ is “unimodal on lines,” meaning that for every set of real parameters
ay,...ag, b1, ..., bg, the function (a1t + by, ..., aqt + bg) is a unimodal function of the real parameter ¢. The
central moment of an estimator 5, M;ﬂ(S), is defined in R¢ analogously to R. In section 6 we show:

Theorem 4 For the family {Gg}, for every n and every penalty function ¢, the mean estimator minimizes
Supy M;ﬂ(S) among all estimators S.

Cramer-Rao

Among the celebrated theorems of statistics is the Cramer-Rao lower bound (due independently to Cramer,
Rao and Frechet) on the mean squared error of an unbiased estimator of a parameter . A key application
of that theorem is to show that the sample mean is an optimal unbiased estimator of the mean of a Gaussian
from the family {Ggy} [CT91, Zac81, Fre43, Rao45, Crad6]. Theorem 3 represents an improvement in the
sense in which the mean estimator for the Gaussian i1s shown to be optimal, as it implies optimality of the
mean estimator in mean square (variation), as indeed in any central moment, among all (not only unbiased)
estimators. However it says this only about the worst-case # while Cramer-Rao enables statements about

each 0.

Confidence Intervals

Motivated by the algorithmic applications, we have chosen to measure the quality of an estimator T of a
parameter f by the function infs[P(|7 — | < £)]. A somewhat “dual” notion is studied in the statistical
literature. A confidence interval of level p is a pair of estimators 77, T5 s.t. for every 8, with probability at
least p, T1 < § < T5. Obviously it is desirable that the intervals [T7,T5] be as short as possible subject to
the confidence level p; this objective is complementary to our goal of maximizing the estimator’s probability
of falling within a fixed width interval, infg[P(|T — 8| < ¢)].

However, in the case of confidence intervals, there is an additional degree of freedom available in “sliding”
both ends of the interval without changing the confidence level. While this flexibility is desirable for some
applications (e.g. if the penalties for errors in the two directions are unequal), it reduces the extent to
which the quality of estimators can be compared. In particular, there does not exist any family of densities
{fs}, and any 0 < p < 1, for which there is an optimal estimator (in the sense that its confidence intervals
are contained within those of any other estimator). (And a statement nearly as strong can be made also
for families of distributions which do not arise from densities.) To see this, one has only to consider the
two optimal estimators subject to the restrictions that the lower or upper endpoints are at —oo or +oo.
Estimators that are optimal subject to these restrictions are termed “uniformly most accurate upper/lower
(respectively) confidence limits”; this appears to be the closest definition in the literature to our notion of
a majorizing estimator. However, as just implied, no statement resembling theorem 2 can exist for upper
and lower confidence limits. Thus one of the contributions of this paper is the introduction of Q% as a
measure of the quality of an estimator .S, since this defines a partial order on estimators that is on the
one hand, more refined than that defined by commonly used criteria such as mean squared error; and on
the other hand, the resulting partial order on estimators is not so weak as to preclude the existence of a
greatest element in the partial order.



3 Estimating average matching size in a graph

A counting problem, I1, consists of:
e A set of instances, Dr.

o The size of instance I € Dy, denoted by ||, is defined as the number of bits needed to write I under
the assumption that all numbers occurring in the instance are written in binary.

o A solution space Sy, typically of size exponential in |I|, is associated with instance I. A parameter

of Sy, b7, is defined.

For the problem of interest, an instance is an undirected graph, (G, and the solution space is the set
of matchings (of all sizes) in . The parameter of interest is the average size of a matching in G. Let us
denote it by u(G).

The interesting case is when II € P, and when computing ; as a function of I i1s complete for the
counting class #P introduced by Valiant in [Val79a]. The problem of finding a matching, even a maximum
matching, in G is polynomial time solvable. Below we show that the problem of computing p(G) exactly
18 #P-complete.

Theorem 5 The problem of computing p(G) is #P-complete.

Note that p(G) is the ratio p/q of two integers each bounded by 2F(G) (F being the edge set of G).
Computation of ;(G) can be understood to mean either of two things: (a) computation of a pair p’, ¢’ such
that p’/q’ = p/q. (b) Computation of any number 7 such that |r — p/q| < 272F(@I=1 By the theory of
continued fractions, p/q is the unique rational with denominator bounded by 21E(G) within this distance
of r. Hence a pair p, ¢’ as in (a) can be computed from r (simply by computing enough of its continued
fraction expansion).

Proof: We reduce from the problem of computing ¢(G), the number of matchings in G, demonstrated
#P-complete by Valiant [Val79b].

Consider any edge uv of GG. Note that

B(G) = (G —u— ) + 6(G — ).

Denote by s(G) the sum of sizes of all matchings in G clearly, s(G) = u(G)¢(G). Observe that among
matchings of G which do not use wv, the average matching size is u(G — uv) = s(G — uv)/¢(G — uv).
Among matchings of G which do use uv, the average matching size is one more than in G — u — v, hence
(s(G—u—v)+¢(G—u—v))/¢(G —u—v). Considering the matchings of G according to whether they

contain uv, we see that

s(G—u—v)+ ¢(G—u—v)+s(G—uv) (1)
$(G—u—v)+ ¢(G—uv) ’

u(G) =

The following is our polynomial time Turing reduction of the computation of ¢(G) to the computation of

1(G):

Algorithm which computes ¢(G) on input G:

Pick any edge uv.

Compute p(G — uv), (G —u —v) and pu(G).

Recursively compute ¢(G — uv).

Set (G — uv) := p(G — wv)¢(G — uv).

Set ¢(G—u—v) = ¢(G1;ﬁgf(f_)v_)‘i(§(g;v)) which is a consequence of equation 1.

Output ¢(G) := ¢(G — uv) + ¢(G — u — v). O




We will say that an algorithm A is a fully polynomial randomized approximation scheme (FPRAS) for
computing 8 if for each instance I and error parameter ¢ > 0,

PA() — 0] < <61) > 3,
and the running time of A is polynomially bounded in |I| and % Once this 1s achieved, the probability
of success can be amplified using the “median trick”: Run algorithm A a number of times and output the
median answer. It is easy to show that to achieve a probability of success of 1 — § it suffices to run A
O(log(1/4)) times.

Typically, an FPRAS for computing 87 is constructed as follows: A polynomial time samplable proba-
bility distribution is defined on Sy, together with a random variable X, which is shown to be an unbiased
estimator of 8;, or nearly so, the error being < ¢. A specified number of sample points are picked from the
probability distribution, the random variable 1s computed at these points, and the mean of these values
is output. It is a consequence of work of Canetti, Even and Goldreich [CEG95], and also implied by the
present paper, that generally there is not much more that one can do: Specifically, if all we know about
the random variable X7 is its standard deviation o(X7), then a necessary and sufficient condition for the
existence of a FPRAS for F(X7) is that o(X7)/E(X1) < p(|I|) for some polynomial p.

Let X be the random variable that on random, uniformly chosen, matching in G is the size of the
matching. Clearly, F(X) = u(G), and therefore, estimating p(G) amounts to estimating the mean of
X. Jerrum and Sinclair [JS95] use the Markov chain Monte Carlo method to give an almost uniform
generator for matchings in a graph, thereby showing that a random variable having probability distribution
arbitrarily close to that of X is polynomial time samplable. As shown in Theorem 7 this yields an FPRAS
for estimating p(G).

Under some mild conditions, random variable X has essentially a Gaussian distribution. This follows
from an exceptionally strong result of Godsil describing the size distribution of the matchings of a graph
[L.P86, God81]. Let Gy, ... be a family of graphs. Let ¢5(Gy) be the number of matchings with & edges in
Gp and let ¢(Gp) = >, 1 (Gy) be the total number of matchings of G,,. Let u(G,) be the average size of
a matching of G, u(Gn) = (-5 kx(Gn))/6(Gy). Let 0?(Gy) be the variance of the distribution of sizes
of matchings of Gy, ¢(G,) = Ok — wW(Gn)) 2ok (Gn))/d(Gr). Suppose that o(G,) — co. Then:

Theorem 6 (Godsil) The distribution of matching sizes is asymptotically locally normal, meaning that
of we fix any real © and let n — oo, then

¢k(Gn)U(Gn) —)(271’)_1/26_172/2

¢(Gn)
for k such that k ~ p(Gp) + zo(Gy).
Theorem 7 There exists an FPRAS for estimating p(G).

Proof: Let n denote the number of vertices in the given graph G. First consider the random variable X
defined above. X has polynomially bounded standard deviation, since it takes values only in the polynomial
range: {1,2,...,n/2}. Therefore, it suffices to sample it polynomially many times, in n and 1/¢, and output
the mean value. We formalize this first, and then deal with the fact that whereas we do not know how to
efficiently sample X itself, we do know how to sample a close, in variation distance, random variable.

Let X denote the mean of £ samples of X. Using Chebyshev’s inequality it is easy to see that for
k=n?/e?,

PlIXy = (G| 2 ep(G)] <

o] =

As before, let ¢(G) denote the number of matchings in G. An almost uniform generator for matchings is a
randomized polynomial time algorithm 4 that for any 6 > 0 and graph G outputs a matching satisfying:
for each matching M in G,

1 1

P[A outputs M] € [(1 —5)m, (1 +5)m].



Furthermore, the running time of A is polynomial in n and log(1/4).

Let Y be the random variable that is the size of the matching generated by the almost uniform generator
of Jerrum and Sinclair [JS95]. Observe that the error parameter 6 can be made inverse exponential in
polynomial time, therefore giving

E(Y) = 1(G)| < en(G).
As before, an FPRAS follows by sampling Y polynomially many times and outputting the mean. a

Remark 8 Typically, FPRAS’s for #P-complete problems, obtained using the Markov chain Monte Carlo
method, reduce the approrimate counting problem to random generation using self-reducibility of the problem
[JVV86]. An interesting feature of the FPRAS derived above is that we did not need to resort to self-
reducibility.

4 The mean is a majorizing estimator for the family {Gy}

Let T be the mean estimator. Clearly, an arbitrary estimator .S may be able to do better than 7" on certain
specific values of #. We wish to show that even so, in the worst case, 7' must be doing at least as well as
S. An important observation is that T commutes with translation, i.e., T[X + a] = T[X] + a, where X +a
denotes the n samples (1 4+ a, 22+ a, ..., x, + a). Therefore, its probability of falling within an ¢ distance
of 8, P(|T — 0| < ¢), is independent of 6.

Thus, the worst case performance of T is the same as its performance at any 6. The worst case per-
formance of a general estimator S, however, is difficult to characterize. Instead, we will show that in the
limit, the average performance of T over a large range of #’s must be at least as good as that of S. This
will lead to the majorization result.

Proof of theorem 2:
We begin with a fact that substantially simplifies the matter.

Lemma 9 [t suffices to consider the single-sample case.

Proof: This is because: (a) The mean of several iid Gaussian random variables is also a Gaussian random
variable. (b) The mean is a sufficient statistic for samples drawn from the family {G¢}. This means that
for every 6, the samples z1, ...2,, drawn from (G are independent of 8 given z = %Z x;, or in other words
that there is a distribution P((x1,...2,)|Z) such that

P((x1, .xn)|0) = P((x1, ...00)|7) P(2]0).

Consequently the performance of any estimator will be unchanged if, given 1, ..., z,, we first compute
the mean & = 1 3" &;, then choose a list of differences (2] — )7 from the same distribution as for the
Gaussian (note in particular that the distribution is supported only on lists whose sum is 0), then supply
the estimator with the list #{,...,2],. The distribution of the lists produced this way is the same as that
of the lists xq,...,z,, whence the conclusion that the performance is unaffected. Now, the process of
substitution followed by application of the estimator, may be viewed jointly as a (randomized) estimator
that takes as its input only the mean z. a

Now consider the following process: Let € > 0 be fixed. For fixed o > 0, 6 is picked uniformly at
random from the interval I, = [—a, ], and then a sample z is picked from the distribution Gg. (We will
call this the finite-o experiment.)

Let S : R — R be an estimator of 6. In general, S may be randomized; P(S(x) = y) denotes the
probability (density) with which the estimator S outputs y on input z. Let £ > 0 be fixed. We will say
that S succeeds if @ € [S(x)—e, S(x)+¢]. The probability of success of S over the entire finite-a experiment

is given by
S(z)+e
// P(0)P(x)|0)dbdx
S(z)—¢



if S is deterministic, and by

//_O; P(S(z) = v) /f P(0)P(x|0)d0dydx

if S is randomized.
In the single-sample case, the mean estimator is simply the identity estimator T'(z) = x.
For o > ¢ let I!, denote the interval [—(a — ¢), (o — £)].

Lemma 10 Forz €I/,
00 y+e
| pw =y [ POG)say
— 00 y—e

1s untquely maximazed for the identity estimator.

Proof:
y+e

/ P(0)Gy(x)do
y

—£
1s uniquely maximized at y = x. The lemma follows. a

For an estimator S, let Pg"® denote the probability of success of S in the finite-a experiment. Since the
identity estimator commutes with translation, we find:

Observation 11 Qs = Pp-.

Let M(a,¢) denote the supremum over all estimators S of P, Let B(a,e) be the event that, after
picking 6 at random from I, and & at random using the distribution Gy, = ¢ I/,. By Lemma 10, we get:

Corollary 12

P2 > M(a,e) — P(B(a,¢)).

Finally, let Q(¢) = supg Q%. We wish to show that Q5 = Q(¢), and thus prove the theorem.
By Observation 11 and Corollary 12,

Q7 = Pp° > liminf M (a, e) — limsup P(B(a, ¢)).

(a4

Since any estimator can be employed without modification in the finite-ov experiment, M (o, ) > Q(e).
Therefore,

Q5 > Q(e) — limsup P(B(a, e)).

Now,

limsup P(B(«, €))

< limsup[P(|f| > a—a'?)+ Pz ¢ I, | |§] < o — a'/?)]
<04 limsup P(|z — 0] > o'/? —¢).
Since z is normally distributed with variance 1/n, this is bounded above by

lim supexp(—n(ozl/2 —¢)?/2) = 0.

(a4

Hence Q% > Q(¢). O



5 Optimality of the mean estimator for {G,} with respect to
general penalty functions

Proof of theorem 3:
The proof of theorem 3 is similar to that of theorem 2. Instead of providing an upper bound on a “benefit
function” (e.g. 1 if |T'(z) — 0] < € and 0 otherwise), we provide a lower bound on a penalty function (e.g.
|T(z)—0|"). Again as in theorem 2, because the mean z = 1 3" z; is a sufficient statistic for the parameter,
we may assume that an estimator is a function only of the mean; and because the mean has a Gaussian
distribution, it suffices to show that the identity estimator performs at least as well (in supremum over all
0 of expected penalty) as any other estimator.

Recall that we have defined L = ffooo ¥(2)G(x)dz and that L < co. Note that for any 6, the expected

penalty of the identity estimator 1s L.
Now fix any € > 0. Select a large enough so that the following condition is satisfied:

/Oo G(0)y(0)do < Le/2.

Let S be an arbitrary estimator. Pick 6 uniformly in the interval [—«, «]. The expected penalty of S is

1 « o0 1 o0 (a3
_a/_a /_Oo Gz — 0)y(S(z) — 0)dzdf = %/_Oo B Gz — 0)p(S(x) — 0)dodx

Now we ignore z’s outside the range [—a, «], and treat negative and positive #’s separately. For each x we
consider the penalty due only to a limited range of ’s.

> o /_a /ma (z — 0)9(S(x) — 0)dodz + %/Oa /Zj_aG(x — 0)4(S(x) — 0)dOda

Now we apply unimodality of GG and i to conclude that

_QQ/_Q/MQ x—Hl/)(x—H)dex—l——/ /Zxa (z — 0)(z — 0)dodx

Since these two expressions are identical,

_ é/oa /Zj_aG(x — )4 (x — 6)d0da

Now make the change of variables z = o — .

_ é/a CGO)w(0)dod: > é/a CGowoydsd: = (1—o [ Goywe)do

—E

Now apply the assumption on «

> (1—¢)?L.

The supremum penalty of S over @’s in the interval [—a, ] is therefore at least L(1 — €)?; since € was
arbitrary, this means that the supremum of S over § € R is at least L, and therefore at least as great as
the supremum penalty of the identity estimator. a

6 Optimality of the mean estimator for {G{} with respect to
general penalty functions

Proof of theorem 4:



The mean %le 18, just as in one dimension, a sufficient statistic for the parameter ¢, so we may
assume that an estimator is a function only of the mean; and because the mean has a spherically symmetric
Gaussian distribution, it suffices to show that the identity estimator performs at least as well (in supremum
over all @ of expected penalty) as any other estimator.

For z € R? and r € R let b(x,r) be the open ball of radius r about z; if » < 0 b(z, r) is empty.

Recall that we have defined L = [, 4 (x)G(x)dz and that L < co. Note that for any 6, the expected
penalty of the identity estimator 1s L.

Now fix any € > 0. Select a large enough so that the following condition is satisfied:

/ G(0)(0)do < Le.
R4—b(0,cc)

Let S be an arbitrary estimator. Pick @ uniformly in the ball 5(0, ). The expected penalty of S is
(with eqr? = fb(O ") 1d6)

1
Glx—10 S(z) — dxdd = Gle — 6 S(z) — 0)dodz
Lo [Lee-ovse —omao= 5 [ ] ce-ouse) o

cqad

Now we ignore #’s outside the ball b(0, «). For each # we consider the penalty due only to a limited range

of 0’s.
z CdOéd / b(0,a) /x a— |x| x - 6)¢(S(x) - g)dgdx

Lo
.= G(u)Y(S(z) — z — u)dude
Cdad b(0,a) Jb(0,—|x]|) ( ) ( ( ) )

We show below that unimodality (and symmetry) of G and ¢, applied to the inner integral, imply
fb(O,a_|x|) Gu)y(S(z) — v — u)du > fb(O,oc—|x|) G(u)¢(u)du. Thus

1
> dudxr > / / G(u)Y(u)dudz
Cdad/0a /w |2]) Je) caa® Joqo, (12¢)a) Jo(0,c0) (up{w)

And, applying the assumption on «:

Let u=0—=z.

1 1 —)a)d(1—e)L
> — / (1= &) de = < 6)a)d( L _ (1,
Cd™ Jp(0,(1—¢)a) Cqtx

The supremum penalty of S over @’s in the ball 5(0, «) is therefore at least L(1—¢)4*!; since ¢ was arbitrary,

this means that the supremum of S over § € R is at least L, and therefore at least as great as the supremum

penalty of the identity estimator. a
It remains to show that:

Lemma 13 fb(o,a—|x|) Gu)y(S(z) — 2 — u)du > fb(O,oc—lxl) Gu)(u)du.

Proof: Applying symmetry of ¢, letting x = S(x) — #, and introducing a real parameter s, it suffices to
show that

F(s) = /b(o ol G(u)(u— sy)du

is minimized at s = 0. For u € R? and t > 0, let duy = 1if G(u) > t, and 8, ¢+ = 0 otherwise. Let
n(t) = sup{|u| : 64 ¢+ = 1}; if the set is empty let n(t) = 0. Now

F(s):/b(oyoé_lxl)G(u)w(u—sx)du:/Oa o) / du s ¥(u — sx)dtdu

= / / du s ¥(u — sx)dudt = / / P(u — sx)dudt
0 b(0,a—|z|) 0 b(0,min{a—|z|,n(t)})



Let yt = {v € RY:v.x =0}. For v € x* let k(z,t,v) = {a € R : v+ ax € b(0, min{a — |z|,n()})}.
Observe that k(z,t,v) is a (possibly empty) interval that is symmetric about the origin. Now

= |X|/ / / ¥(v + (a — s)x)dadvdt
0 X+ Jk(ztv)

Define v, : R — RT by ¢, (y) = ¢(v + yx). By the assumptions on %, ¢, is unimodal and symmetric. We

have -
= |X|/ / / ty (a — s)dadvdt
0 xt JE(ztw)

Let K(x,t) C x* be the ball for which k(z,¢,v) is nonempty, and for v € K (z,t) let k(x,t,v) = sup{a :

a € k(x,t,v). Then
(z,t,v)
= |x| / / / (a — s)dadvdt
K(zt) k(z,tv)

(z,t,v)
|X| / / / (a — s)dadvdt
K(zt) k(z,tv)

le/ /M (Vo (—k(x,t,v) — 8) — W, (k(x,t,v) — s))dvdt

If 5 is negative, then the symmetry and unimodality (increasing away from the origin) of ¢, along with the

nonnegativity of k(x,t,v), imply that v, (k(x,t,v) — s) > ¢, (—k(z,t,v) — s) and therefore that L = F(s) is

nonpositive. Similarly if s 1s positive, %F( s) is nonnegative. Hence F(s) achieves its minimum at s =0.
O

We differentiate with respect to s.

7 Uniqueness of the mean as a majoring estimator for {Gy}

We now strengthen Theorem 2 by showing that the mean is the unique majorizing estimator for the family
{Go}. This requires a more delicate argument than the earlier theorem. In the earlier case we did not
have to rule out an estimator which improved its odds of success at some values of #, so long as we
could rule out its doing better, by an amount bounded away from 0, everywhere; for this purpose 1t was
sufficient to look at a long enough segment of #’s, show that not much benefit could be contributed to
this interval by samples from outside of it, and then average uniformly the probability of success within
the interval, showing that this average could improve over the mean estimator only by a quantity tending
to zero in the length of the interval. There was nothing to prevent the estimator differing from the mean
estimator, and indeed improving on the mean estimator locally, so long as it compensated for that change
by “importing” estimates toward the values of 6 that were “neglected”. Now, however, we have to show
that if the estimator differs from the mean estimator anywhere, then such a compensation mechanism,
while easy to construct in the neighborhood of a small difference, must ultimately fail. The reason for this
failure is that the needed compensations in the estimator themselves require compounding compensations,
and that this process “diverges”.

We begin with some notation: £ is the set of Lebesgue measurable sets in RY and g is the usual Lebesgue
measure on RY (we write £ and p regardless of 7). For an interval B C R we also write |B| = u(B). Let

G(y) = (2m)~ 2 exp(—y?/2), and let N(y) = fy z)dz. The uniqueness theorem is proven in the
following generality: an estimator S is a measure on (R”"’l,ﬁ) (arguments 2,...,n+ 1 are the samples
Z1, ..., &p, the first argument is the estimate for @), that satisfies the following condition: for all measurable

sets U CR™ SR x U) = u(U).

Theorem 14 If there is a measurable set A such that S(A) # T(A) then for every e, Q% < Q%.
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Proof: Again as in theorem 2, it suffices to consider the single-sample case, with 7" the identity estimator.
More precisely T is the diagonal measure: if J = {({,z) : ¢ = #} and 75 is the projection of R? on its
second coordinate then T(A) = p(ma(A N J)).
Define the e-quality of estimator S at 8 to be

Q5(0) :/xERG(x—H) /t:—;dS(t,x).

For any 6 € R, the e-quality of T" at 6 is N'(¢) — N'(—¢) = 2N () — 1. For the rest of the discussion, assume
that € > 0 is fixed.

The quantity of interest for us is Q% = infy Q% (6). As in the proof of Theorem 2, we will need to
consider the average performance of S in order to characterize its worst case performance. Thus, for a
measurable set B, we will be interested in

04¢
FS(B;]R):/ / G(a:—@)/ dS(t,z)d.
9€B JueR t=0—c

Let us define this to be the estimation total for & in B. For convenience, let us first express this as a double
integral: Let up be the characteristic function for B. For = ¢t € R, define

t+e
a(z,t, B) :/ G(s — x)up(s)ds,
t—e
For instance, if B = R, then this is simply N (—z +¢+¢) — N (—z +t — ¢). The reader can now verify that

Fs(B;R) = /xe]R /te]R o(z,t, B)dS(t, z).

More generally, for two measurable sets B and D, let us define the estimation total for 8 in B due to z
mn D to be

Fs(B; D) = /xED /te]R o(z,t, B)dS(t, z).

A quantity of special interest is the total amount accrued due to z in D, Fg(R; D). Notice that this is
maximized by the mean estimator; in particular,

Prp(R; D) = p(D)(2N (e) - 1).

Finally, define the deficit of estimator S on set B,

Ag(B) :/ / alz, t, R)(dT(t,z)— dS(t, z)).
rzeEB JteR
For the special case of finite measure B this is the same as
As(B) = Pr(R; B) - Fs(R; B).
Lemma 15 If S(A) # T(A) for a measurable set A, then there is a finite interval B for which Ag(B) > 0.

Proof: By countable additivity, we may assume that there is a finite interval B such that A CR x B. We
first claim that S(R x B) —J) > T((R x B) = J). Clearly, S(ANJ) < T(ANJ). If S(ANJ) < T(ANJ),
the claim follows since S(R x B) = u(B). On the other hand, if S(ANJ) =T(ANJ), then S(4A—J) >
T(A—J) =0. Since T((R x B) — J) = 0, the claim follows again.

Partition (R x B) — J into regions K; = {(t,z) : 2/ < |t — z| < 27F1} N (R x B), for each integer j.
Again, using countable additivity, there is a j such that S(K;) > 0.

Then Ag(B) > S(K;)[(N(g) — N(=¢)) — (N (e +27) — N(—¢ + 27))] > 0. |

Let B’ denote the interval obtained by extending interval B by ¢ on each side. The next lemma shows
that deficit must lead to a smaller estimation total for S (as compared to T').

11



Lemma 16 For a finite interval B, Fr(B’; B) — Fs(B'; B) > Ag(B).

Proof: Observe that Fp(R; B) = Fr(B’; B). Furthermore, since a(z,t,R) > «a(z,t, B') for any z,t € R,
Fs(R; B) > Fg(B’; B). Therefore,

As(B) = Fr(R; B)— Fs(R; B) < Fr(B'; B) — Fs(B'; B).

Lemma 17 If Ag(R) > 0 then there is a set D of finite measure such that Fs(D;R) < Fp(D;R).

Proof: There are two cases:

Case (i): Ag(R) is infinite.

Let B be a finite interval such that Ag(B) > e. By Lemma 16, Fs(B’; B) < Fr(B';B) — Ag(B) <
Fr(B'; B) —e. Clearly, Fs(B’; R — B) is maximized by the estimator that, for each € R — B, guesses the
closest endpoint of B. Tt is easy to verify that for such an estimator, Fg(B';R — B) < . Therefore,

Fs(B';R) < Fs(B'; B) +¢ < Fr(B'; B) < Fr(B';R).

Case (ii): Ag(R) is finite.
Let B be a finite interval such that g(Ag(R — B)) < Ag(B)/2, where g, to be defined below, is a monotone
increasing continuous function on the nonnegative reals, with g(0) = 0. Define B’ as above.

By Lemma 16,

FS(B/;B) < FT(B/;B) — AS(B) < |B|(2N(6) - 1) - AS(B),

we get

Fs(B';R) = Fs(B'; B) + Fs(B';R — B)
< IB|(2N(e) = 1) = As(B) + Fs(B"; R — B).

In the simplest case, that S is identical to 7" on R — B, the last term equals 2¢(2A (¢) — 1) and so
Fs(B;R) < |B'|(2N(¢) — 1) — As(B) < |B'|(2N(¢) — 1) = Fp(B’;R). However, Ag(R — B) may be
nonzero. This allows estimates to be shifted so as to increase Fs(B';R). The remainder of the argument is
devoted to showing that this increase, which we call DFg(B’;R), is less than Ag(B), provided Ag(R — B)
1s sufficiently small as specified above.

If, at distance y from B, the estimator is shifted by distance r toward B, then the contribution toward
Ag(R — B) is proportional to f; (G(—¢ +s) — G(c +5))ds = =N (e +7) + N(e) + N(—¢ +r) — N(=¢).
Meanwhile, DFg(B’;R) is N'(e + r) — N () for y < 2¢, provided 0 < r < y (greater values of r contribute
less to Fg(B’;R)); while for y > 2¢ DFg(B’;R)is 0 for 0 < r < y —2¢, and N(e +7) — N(y — ¢) for
y — 2e < r < y (again, greater values of r contribute less to Fg(B';R)).

First, we claim that the best gain in Fg(B’;R) (greatest value of DFg(B’;R)) given the limit on
Ag(R — B) is achieved by a “deterministic” estimator, i.e. one which for any y, places the entire measure
on a particular value of . This is for the following reason. Let the equation

—NE+r)+NE)+ N(—e+7r)—N(—¢) =2

implicitly define 7 as a function of z, and let h denote the function such that h(z) equals (¢ +r) — N(¢)
for the r corresponding to z. Then calculation shows that for y < 2, h is a convex cap, increasing function,
hence a convex combination Zp, h(z;) is maximized, given an upper bound on Zp, z;i (the local deficit),
by choosing a singular distribution, 1.e. a deterministic estimator. A similar argument yields the same
conclusion for y > 2¢.

Moreover, the ratio of “gain” to “cost”

N(e+7r)—N(e) @)
~N(e+7r)+N(e) + N(—e+7) - N(~¢)
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does not depend on y, for y < 2¢; hence it is optimal to use the same shift r for all y < 2¢. Moreover since
the ratio 1s only worse for y > 2¢, where it is given by the equation

NE+r)—N(y—e) 3)
~N(e+7r)+N(e) + N(—e+7) - N(~¢)

it follows that in an optimal estimator the shift used at that range can be no greater. We therefore obtain
an upper bound on DFg(B’;R) in the following way: considering only y < 2, find the shift 7y such that
DFg(B’;R) is maximized without the deficit exceeding Ag(R — B). Observe that rg is at least as great as
the shift used by the optimal estimator for y < 2 (the optimal estimator may not use all of the deficit on
these values of y, and so may not be able to “afford” as great a shift.) Now since ¢ can be at most 2, and
since the optimal estimator uses a shift of at most ry for y > 2¢, it follows that the optimal estimator does
not introduce any shift at all for any y > 4¢. So we can upper bound DFgs(B’;R) by 8 (N (¢ +7g) — N (¢)).
(A factor of 2 has been introduced to account for both sides of B.)

The equation defining ro is Ag(R — B) = 4e[-N (e +70) + N (e) + N (—¢ + 1) — N (—¢)]. Let g1 denote
the implicitly defined function on Rsq giving 7¢ as a function of Ag(R — B); note that g; is monotone
increasing, continuous and that lim,_o g1 (x) = 0. Next, let go(z) = 8¢(N (¢ + ) — N (¢)); note that g- is
monotone increasing, continuous and that limy_o g2(x) = 0. The composite function g(z) = g2(g1(x)) is
an upper bound on DFs(B’;R) as a function of Ag(IR — B); note that ¢ is monotone increasing, continuous
and that limy_, g g(x) = 0. This is the function g required at the outset of the proof in the selection of B;
and now, using the assumption that g(Ag(R — B)) < Ag(B)/2, we find that DFg(B’;R) < Ag(B)/2 and
therefore (by comparing with the estimator which is equal to the mean outside B), we find that Fs(B';R) <
|B'|(2N(e) —1) —Ag(B)+DFs (B ;R) < |B'|(2N(¢) —1) — Ag (B)/2 < |B’|(2N(¢) = 1) = Fp(B;R). O

8 Discussion

The main open issue suggested by our work is whether the concept of a majorizing estimator, as well as
the techniques we use for the Gaussian family, can be useful in establishing optimality of estimators for
other families of distributions.

Regarding the Gaussian distribution we conjecture that the mean estimator 7" is the unique penalty-
minimizing estimator for any nonzero penalty function v, i.e., for all nonzero penalty functions ¢, if S is
an estimator and there is a measurable set A such that S(A) # T(A), then M¥(T) < M¥(S).

Another interesting question has to do with the fact that the Cramer-Rao lower bound (on the variance
of any unbiased estimator) varies at the parameter values 6, depending on the sensitivity of the parametric
family to change about #. In the same spirit one may ask (for a general parametric family) for a lower
bound p(#, €) on the probability that an estimator of § falls outside of the interval (§ —¢,0+¢). The bound
should have the property that lim._,o p(f,2) = 1. Some assumption must be made to keep the estimator
“honest” (to rule out a constant function for example), such as unbiasedness, or an assumption about the
estimator achieving some minimal in-probability performance for some interval length at all 4.
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