
Primal-dual RNC approximation of covering integer programs

Sridhar Rajagopalan Vijay V. Vazirani
DIMACS, Georgia Institute of Technology,

Princeton University. Atlanta.

Abstract

We build on the classical greedy sequential set cover algorithm, in the spirit of the primal-dual schema, to obtain simple
parallel approximation algorithms for the set cover problem and its generalizations. Our algorithms use randomization, and our
randomized voting lemmas may be of independent interest. Fast parallel approximation algorithms were known before for set
cover [BRS89] [LN93], though not for all its generalizations.

Work donewhile the author was a graduate student at the University of California, Berkeley, supportedby NSF PYI Award CCR 88-96202and NSF grant IRI 91-20074. Part of this

work was done when visiting IIT, Delhi.

Partial support providedby DIMACS. Work done while author was at the Indian Institute of Technology, Delhi.

1 Introduction
Given a universe , containing elements, and a collection, , of subsets of the universe, the set cover
problem asks for the smallest sub-collection that covers all the elements in , (i.e.). In a more general
setting, one can associate a cost, , with each set and ask for the minimum cost sub-collection which covers all of the
elements. We will use to denote .

Set multi-cover and multi-set multi-cover are successive natural generalizations of the set cover problem. In both problems,
each element has an integer coverage requirement , which specifies how many times has to be covered. In the case of
multi-set multi-cover, element occurs in a set with arbitrary multiplicity, denoted . Setting and choosing

from to denote whether contains gives back the set cover problem.
The most general problems we address here are covering integer programs. These are integer programs that have the fol-

lowing form:

MIN c x s.t. x r x

the vectors c and r and the matrix are all non-negative rational numbers.
Because of its generality, wide applicabilityand clean combinatorial structure, the set cover problem occupies a central place

in the theory of algorithms and approximation. Set cover was one of the problems shown to be NP-complete in Karp’s seminal
paper [Ka72]. Soon after this, the natural greedy algorithm – which repeatedly adds the set that contains the largest number of
uncovered elements to the cover – was shown to be an factor approximation algorithm for this problem (

) by Johnson [Jo74] and Lovasz [Lo75]. This result was replicated for the minimum cost case by Chvatal [Ch79].
Lovasz establishes a slightly stronger statement, namely that the ratio of the greedy solution to the optimum fractional solution
is at most . Consequently, the integrality gap, the ratio of the optimum integral solution to the optimum fractional one is at
most . An approximation ratio of for this problem has been shown to be essentially tight by Lund and Yannakakis
[LY92]. More recently, Feige [Fe95] has shown that approximation ratios better than are unlikely.

The first parallel algorithm for approximating set cover is due to Berger, Rompel and Shor [BRS89], who found an
algorithm with an approximation guarantee of . Further, this algorithm can be derandomized to obtain an algo-
rithmwith the same approximation guarantee. Luby and Nisan [LN93] buildingon the work of [PST91] have obtained a
factor (for any constant), approximation algorithm for covering and packing linear programs. Since the integrality
gap for set cover is , the Luby-Nisan algorithm approximates the cost of the optimal set cover to within an factor.
Furthermore, (as noted by Luby and Nisan), in the case of set cover, by using a randomized rounding technique (see [Ra88]),
fractional solutions can be rounded to integral solutions at most times their value.

This paper describes a new , approximation algorithm for the set cover problem. This algorithm extends
naturally to algorithms for the various extensions of set cover each achieving an approximation guarantee of .
In addition, the approximation guarantee that we obtain in the case of covering integer programs is better than the best known
sequential guarantee, due to Dobson, [Do82].

2 A closer look at Set Cover
We begin by taking a closer look at the greedy algorithm for set cover. In the minimum cost case, the greedy algorithm chooses
the set that covers new elements at the lowest average cost. More precisely, let denote the set of yet uncovered elements
in . The greedy algorithm repeatedly adds the set argmin to the set cover.

Choose cost to be the cost of covering by the greedy algorithm. Thus, if is the first set to cover and before
was added to the cover, then cost . Let be the th last element to be covered. Let OPT denote the the optimum

set cover as well as its cost.
We now observe that cost OPT . Because, there is a collection of sets, namely OPT, which covers all elements

. Thus, there is a set such that OPT . Since is the element of smallest cost among ,
cost OPT . Therefore, the cost of the cover obtained by greedy is at most cost OPT OPT . Which
provides the approximation guarantee.

Here it is to be understood that the cost of a sub-collection is .
More precisely, Lund and Yannakakis establish that there is a constant such that unless P NP, set cover cannot be approximated to a ratio smaller than
.

1

The simple proof given above can be viewed in themore general and powerful framework of linear programming and duality
theory. One can state the set cover problem as an integer program:

IP
MIN
s.t.

By relaxing the integrality condition on x, we obtain a linear program which has the following form and dual:

LP DP
MIN MAX
s.t. s.t.

The primal linear program is a covering problem and the dual is a packing problem. Wewill now reanalyze the greedy algorithm
in this context. Define value , of an uncovered element as

value

The “value” of an element is a non-decreasing function of time, in that it gets bigger as more and more elements get covered
and therefore each gets smaller. The greedy algorithm guarantees that cost value at the moment is covered.

Now consider any set . Let be the th last element of to be covered by the greedy algorithm. Then, clearly,
cost value at the moment of coverage. Thus, we establish the following inequality for each set :

cost

Alternately, if is the size of the largest set , then the assignment cost is dual feasible. The dual value for this
assignment to y isDP cost Greedy cost. Due to the duality theorem of linear programming,DP is
a lower bound on the value of OPT. Thus, the greedy algorithm approximates the value of set cover to within a factor of .

3 The key ideas behind our parallel algorithm
The greedy algorithm chooses a set to add to the set cover for which value . One of the key ideas in this paper is
to find a suitable relaxation of this set selection criterion which guarantees that rapid progress is made but does not degrade the
approximation guarantee significantly. This is by no means a new notion. Indeed, it has been used in the context of set cover
earlier [BRS89]. However, the way in which the relaxation is made and the resulting parallel algorithms are different from the
choices made in [BRS89].

In our algorithm we identify cost effective sets by choosing those that satisfy the inequality,

value

This criterion can be distinguished from the greedy criterion in that elements with different values contribute to the desirability
of any set. This weighted mixing of diverse elements and the consequent better use of the dual variables, value , appears to
lend power to our criterion.

Our relaxed criterion guarantees rapid progress. To see this consider value . Then, any set for which
qualifies to be picked. Thus, after each iteration, the value of doubles. This, and a preprocessing step will enable us

to show rapid progress for our algorithm. However, an algorithm based solely on this relaxed criterion will not approximate set
cover well as exhibited by example 3.0.1.

Example 3.0.1 Let . Let be the sets of size derived from . The cost of each set is . The optimal
cover consists of sets. However, the relaxed criterion chooses all the sets.

2

We now address the approximation guarantee. We will be able to assign costs to each element, denoted cost such that
the cost of the set cover is at most cost . Further, we will establish that at the moment of coverage cost value
for each element and a suitably chosen constant . If, for any algorithm, it is possible to choose element costs such that these
conditions are satisfied, then we will say that the algorithm has the parsimonious accounting property with parameter . It is
evident from the analysis of the greedy algorithm detailed earlier that the parsimonious accounting property with parameter
suffices to establish an approximation guarantee of where is the cardinality of the largest set in .

These observationsmotivate a straightforwardmethod of relaxing the set selection criterionwhich, however, fails to achieve
our stated goal, namely fast parallel execution. The relaxation and an instance exhibiting its shortcomings are detailed by ex-
ample 3.0.2 below.

Example 3.0.2 Number the sets arbitrarily. In each iteration, each uncovered element votes for the lowest numbered set that
covers it at least average cost. Any set with more than votes adds itself to the set cover. It is easily verified that this
algorithm has the parsimonious accounting property with parameter . However, the algorithm can be forced to execute

iterations on the following input: Let . Choose where
and . Finally, choose the set costs to satisfy for each

.

The solution we propose finds a compromise between the two strategies detailed above to achieve both objectives, namely,
rapid progress as well as good approximation. The critical extra ingredient used in making this possible is the introduction of
randomization into the process.

The primal-dual scheme provides a general framework in which we can search for good and fast approximation algorithms
for otherwise intractable problems. In the typical case, the hard problem is formulated as an integer program which is then re-
laxed to obtain a linear program and its dual. In this context, the algorithm starts with a primal, integral infeasible solution and
a feasible, suboptimal dual solution. The algorithm proceeds by iteratively improving the feasibility of the primal and the opti-
mality of the dual while maintaining primal integrality until the primal solution becomes feasible. On termination, the obtained
primal integral feasible solution is compared directly with the feasible dual solution to give the approximation guarantee. The
framework leaves sufficient room to use the combinatorial structure of the problem at hand: in designing the algorithm for the
iterative improvement steps, and in carrying out the proof of the approximation guarantee.

The greedy algorithm for set cover can be viewed as an instance in the above paradigm. At any intermediate stage of the
algorithm let cost if has been covered and value otherwise. Then, by the arguments presented in section 2, y is
feasible for DP. The currently picked sets constitute the primal solution.

4 The Parallel Set Cover Algorithm.
Our proposed algorithm for set cover is described in figure 1. The preprocessing step is done once at the inception of the com-
putation and is a technical step which we will explicitly establish in the next section. The purpose of this step is to reduce the
range of values of to one wherein the largest and smallest values are at most a polynomial factor from each other.

Notice that value is computed only at the beginning of an iteration, and is not updated at the inception of each phase.

4.1 Analysis of PARALLEL SETCOV
We now present an analysis of the proposed algorithm. We will first consider the approximation guarantee and then the running
time. The content of the preprocessing step will be defined with the analysis of the running time.

4.1.1 Approximation guarantee

The algorithm PARALLEL SETCOV satisfies the parsimonious accounting property with . If we choose cost
value if votes for and is added to the set cover in the same phase, then, it is easily verified that cost

cost of cover.

3

PARALLEL SETCOV

Preprocess.

Iteration:
For each uncovered element , compute value .
For each set : include in if

() value .
Phase:

(a)Permute at random.
(b)Each uncovered element votes for first set (in the random order) such that .
(c)If votes value , is added to the set cover.
(d)If any set fails to satisfy (), it is deleted from .

Repeat until is empty.
Iterate until all elements are covered.

Figure 1: The parallel set cover algorithm.

4.1.2 Running time

We will now establish that PARALLEL SETCOV is in . In order to do this, we will establish the following three assertions.

1. The algorithm executes iterations.

2. With high probability, (), every iteration terminates after phases.

3. Each of the steps in figure 1 can be executed in time , where is the length of the largest set cost in bits.

These three assertions imply that PARALLEL SETCOV is in . Indeed, it follows that PARALLEL SETCOV runs in
time on any standard PRAM or circuit model with access to coins.

The third assertion follows from the parallel complexity of integer arithmetic and parallel prefix computations. The details
of these operations can be found in a number of standard texts on parallel computation (see [Le92] for instance).

In order to prove the first assertion, we have to detail the preprocessing step. Define . Then,
Cost of optimal cover . The first inequality is because any cover has to pick some set that contains , the maximizing
element for . The second inequality holds because for any arbitrary element , there is a set of cost at most containing .
Thus, there is a cover, comprising of all these sets of cost at most .

Thus, any set such that could not possibly be in the optimum cover. The preprocessing step eliminates all such
sets from consideration. Further, if for any element there is a set containing it with cost less than , then we will add
to the set cover immediately. Since there are at most elements, at most sets can be added in this manner. These can all be
added in parallel and the total cost incurred is at most an additional . Since is a lower bound on the cost of the set cover, the
additional cost is subsumed in the approximation.

Thus, we can assume that for each set surviving the preprocessing stage, . This consequence of the prepro-
cessing stage is a key ingredient in establishing the following lemma.

Lemma 4.1.1 PARALLEL SETCOV requires at most iterations.

Proof: Define value . At any point in the current iteration, consider a set that has not yet been included in the
set cover and such that . Then by definition of ,

value

4

Thus satisfies and must have satisfied it at the inception of the iteration. Thus . However, at the end of an iteration,
is empty. Thus for every remaining , or alternately, . This ensures that in the next iteration,

increases by a factor of . Since is at least , and is at most , there can be no more than iterations.
We will now show that the number of phases in every iteration is small with high probability. To this end, we will show the

following lemma:

Lemma 4.1.2 Consider a fixed iteration, . The probability that the number of phases in iteration exceeds is
smaller than .

Proof: We will focus our attention only on those sets that are in . Thus, the precondition value is imposed
on all sets that participate in this proof unless otherwise specified. The proof of this lemma is made via a potential function
argument. The potential function is . In other words, it is the number of uncovered element-set pairs in .
In what follows, we will show that decreases by a constant fraction (in expectation) after each phase. Since the initial value
of is at most , the lemma will follow from standard arguments.

Define the degree of an element as

Call a set-element pair good if for at least th of the elements in .
Let such that . Let and be the number of sets that contain but not , but not

, and both and respectively. Thus, prob votes . The probability that both and vote for is exactly the
probability that is the first among sets which is exactly . Since implies that

we have:

prob votes votes
prob and vote
prob votes

The statement above provides the heart of the proof since it implies that if is good, then should get a lot of votes if
votes for . Thus, under this condition should show a tendency to get added to the set cover. We shall now make this formal.

Noting that for any , value , we see that for any good , . Since
satisfies , We obtain,

value

The conditional probability statement above allows us to infer that if is good and votes for , then, the expected value of
votes value is at least . An application of Markov’s inequality will show that the probability that is picked

is at least .
We will ascribe the decrease in when an element votes for a set and is subsequently added to the set cover to the

set-element pair . The decrease in that will then be ascribed to is , since decreases by for each set
containing . Since voted for only one set, any decrease in is ascribed to only one pair. Thus, the expected decrease
in , denoted , is at least

prob voted for , was picked

good

(prob voted for prob was picked voted for)

good

number of good pairs

Finally since at least a th fraction of all relevant pairs are good, we observe that . We recall the following
fact from probability theory:

5

Fact 4.1.3 Let be a sequence of integer valued and non-negative random variables such that
for some constant , Let . Then, prob . Here the asymptotic notation hides the
dependence on which is linear.

Notice that we have just established that the evolution of satisfies the preconditions that allow us to apply fact 4.1.3. Therefore,
choosing we have our lemma.

Theorem 4.1 PARALLEL SETCOV finds a cover which is at most times the optimal set cover. Further, the total running
time is with probability .

Comment: The constant can be improved to for any . This is done by changing the number in step (c) to
and the quantity in the definition of to .

Comment: The conditional statement is a correlation inequality which we feel should be of independent interest. Generalizing
this correlation inequality will be a central issue in our analysis of parallel algorithms for the generalizations of set cover.

5 Set Multicover and Multiset Multicover
The set multicover problem is a natural generalization of the set cover problem. In this generalization, each element is as-
sociated with a coverage requirement, , which indicates the depth to which must be covered by any feasible cover. Thus,
the set multicover problem can be formulated as an integer program as follows: MIN subject to and

.
Multiset multicover is the generalization where in addition to the coverage requirement each element appears in any set

with a multiplicity, . Thus, the integer program is MIN subject to and .
On relaxing the integrality requirement on we obtain the following linear program and dual in the case of multiset mul-

ticover.

LP DP
MIN MAX
s.t. s.t.

In the case of set multicover, is simply the indicator function that takes a value of if and otherwise. The
interesting feature here is the need to explicitly limit the value of to at most and the associated appearance of the dual
variables . Notice that in the set cover problem the limit of on the value of was implicit.

In the following discussion, we shall largely restrict our attention to the more general case of multiset multicover. In places,
it is possible to obtain slightly stronger results in the case of set multicover. We will indicate these at appropriate points in the
text.

5.1 Greedy algorithms
There is a natural greedy sequential algorithm for multiset multicover. Like the set cover algorithm, this algorithm works by
repeatedly picking sets until all the coverage requirements are met. At an intermediate stage of this process, let be the
residual requirement of . Thus, is initially and is decremented by each time a set is added to the cover.
Define and the set of alive elements in , to be the multiset containing exactly
copies of any element if is not already in the set cover and the empty set if it is. The greedy algorithm repeatedly adds a set
minimizing to the set cover.

Wewill extend this notation tomulti-sets in general. Thus, wewill denote . Let .
Let denote . Dobson, [Do82] shows that this natural extension of the greedy algorithm to set multicover achieves an
approximation ratio of . However, he does this by comparing the cost of the multicover obtained directly to the optimum
integral solution of the set multicover problem. In what follows, we will establish an approximation ratio of by comparing

6

the greedy solution to the best possible fractional multicover. Since we can always restrict to at most , . Thus,
this represents a slight improvement over Dobson’s result.

When a set is picked, its cost, is ascribed equally to each tuple where covers for the th time. Here, ranges
from to . We will say covers , in short, to describe this case. Obviously, the cost assigned to each tuple is exactly
cost . Now, we choose cost cost . If a set is not picked, let , and otherwise let

covered by cost cost
.

The value of this dual assignment is easily verified to be the cost of the greedy multicover divided by .

Lemma 5.1.1 y z is dual feasible.

Proof: First, trivially, both y and z are non-negative. Consider for any ,

cost
covered by

cost cost

covered by

cost
, not covered by

cost

We want to view a multi set as a set which contains copies of element . Notice that there is a term in the right hand
side of the above expression corresponding to each element copy . Thus, there are terms corresponding to . Let us
arrange the element copies in in the reverse order inwhich they were covered – for instance, if and ,
and suppose fell to before fell to before fell to . Then, the th copy of precedes the th copy of which
precedes the th copy of in this reverse ordering. Notice that the term corresponding to the th element in this ordering is at
most . Thus, we have

In other words, the dual constraint corresponding to is satisfied. Thus, we establish the feasibility of y, z for the dual problem.

The consequence of the above arguments is the following theorem.

Theorem 5.1 The extended greedy algorithm finds a multiset multicover within an factor of LP .

5.2 Parsimonious Accounting
More pertinently, the proof implies that the parsimonious accounting principle ensures approximation in the case of multiset
multicover as well. By this we mean the following. Define the dynamic quantity value . Then, as long as we
can assign costs cost where ranges from to such that

1. cost value at the moment that the set covering is picked.

2. cost Cost of cover.

then, the algorithmapproximates the value of themultisetmulticover towithin . Here is the largest set size, i.e. .
We note that in the case of set multicover, is at most and thus, we would have a approximation. Moreover, in many in-
stances, could be substantially smaller than .

Recall that in the case of set cover, the approximation factor is logarithmic in the size of the largest set and not just in , the size of the universe. Similarly,
in this case, the ratio is logarithmic in , which is the “local size”, as opposed to , the “global size” of the problem.

7

PARALLEL MULTMULTCOV
Set for each .
Iteration:

For each element , compute value .
For each set : include in if

value .
Phase:

Initialization:
(a) Permute at random.
(b) Each element votes for first copies of itself in the random ordering of .
(c) If votes value , is added to the set cover.
(d) Decrement appropriately. Adjust as required.

Delete sets that are picked or fail to satisfy from .
Repeat until is empty.

Iterate until all elements are covered.

Figure 2: The parallel multiset multicover algorithm.

5.3 Parallel algorithms and analysis
We now outline parallel algorithms for multiset multicover. The parallel multiset multicover algorithm is essentially the same
as the set cover algorithm except that with each element we associate a dynamic variable, , initially , which tracks the
residual requirement of . After a random permutation of the candidate sets is chosen, each element votes for the first
copies of itself in the sequence. The algorithm is detailed in figure 2. Notice that we can assume without loss of generality
that .

5.4 Analysis
It is easy to see that the algorithm satisfies that parsimonious accounting property with . This establishes the approxi-
mation ratio.

The number of iterations is bounded by . As earlier, we will denote the cost of the optimummultiset multicover
by IP . The proof follows exactly along the lines of the proof for the set cover case. The only change required for proving this
is in the definition of the crude estimator : Let be the sets arranged in increasing order of cost. Let be the cost
of the set containing the th copy of , and let . Then, IP . As before, we can restrict attention to
the sets such that . Again, it can be easily established that value increases by a constant factor after
each iteration. Since, value for any element is at least and at most , there can be only iterations.

Notice that for the special case of set multicover, is at most . Thus, the bound is iterations.

5.4.1 Phases in an iteration

The number of phases required in an iteration is at most . This is established by extending the corresponding lemma
for set cover. However, the extension is non-trivial and we shall need some machinery to do this.

First we restrict our attention to the sets in , i.e., sets that satisfy . In the following discussion, we will denote the copies
of element in the set by . Here, ranges from to . We say that votes for if is among the first
copies of in the random ordering of .

For example, is and , and . Let the permutation be . Then, votes for twice, and
twice. Casting a total of votes. If the total number of copies of in the candidate sets is less than , then votes for them all

8

We will now introduce some notation that will simplify our analysis. We denote by . We denote
by . Notice that from the definitions, it follows that and

. The second since is at most . In general, it is tricky to get a handle on the probability that obtains a
vote for . However, we shall now show the following lemma which says that the quantity approximates this quantity
quite nicely.

Lemma 5.4.1 prob votes

Proof: The proof has two parts, the first establishes the upper bound and the second the lower bound. For the upper bound
we notice that with each permutation of the sets such that votes , we can associate at least permutations such
that does not vote for . In order to make this association, consider the notion of a “rotation”, exhibited by figure 3. This

r(e,i)

Figure 3: The top bar shows a permutation of and the bottom a rotated permutation

figure is to be interpreted as follows: The figure shows two permutations of . These two permutations differ by a “rotation.”
The shaded rectangles representing each permutation, represent the various sets in . The length of these rectangles correspond
to their contributions to . Thus, the total length of the set of rectangles representing any permutation of is exactly

.
A rotation is made by extracting from the end of the permutation a minimum number of sets such that they contribute at least
towards and placing them in reversed order in the front of the permutation (as shown).

It is easily verified that a rotation is reversible, i.e., it is possible to “unrotate” any rotated permutation to the original per-
mutation. This is most easily seen by turningfigure 3 upside down. More formally, the unrotation is performed by reversing the
sequence, rotating, and then reversing again.

It is also easily verified that for any configuration such that votes , it is possible to rotate at least times
such that for each rotated configuration, does not vote . This is because, the maximum contribution of any set towards

, is . Thus, we have associated with each voting permutation at least non-voting permutations. Thus,
the probability that votes for is at most . It can be seen via some simple algebraic
manipulations that this implies that prob votes .

For the second part, we need to do some simple analysis. Let us imagine that we permute by choosing at random,
for each set and then sorting in increasing order of . Notice that we do not need to do this algorithmically, we

introduce this just as a means to get a handle on the probability that interests us. Define .
Then, it is easily verified that the events (votes) and are equivalent. Since for any ,

, we have by Markov’s inequality,

prob votes prob

To see this, we consider two cases. If , then the conclusion is trivial. Otherwise, it is easy to see that
by cross multiplication

9

Let , then

prob votes prob votes d

Choosing completes the proof; since by our assumption (which, as we pointed out, can be made without loss of
generality) that , this fraction is smaller than . Otherwise, the lemma is trivial.

Lemma 5.4.2 Let , then

prob and vote

Proof: The proof of this lemma is very similar to the proof of lemma 5.4.1.

prob and vote

prob and vote

prob and vote

prob does not vote prob does not vote (1)

Define and as in the previous lemma,

prob does not vote for

and similarly for . Substituting these values back in (1), we obtain

prob and vote for

Choosing the value of to maximize the right hand side, we get

prob and vote

Lemma 5.4.3 Let such that .

prob votes votes

Proof: Immediate from the previous two lemmas.
Remark: In the case of set multicover, the first of the two lemmas implying lemma 5.4.3 is trivial. Indeed, since is either
or , we can immediately infer that prob votes . The second lemma (with and both set to 1), immediately

implies the corresponding version of lemma 5.4.3 with a bound of .

Say that a set-element pair is good if for at least th of the elements . Then, as in the
case of set cover, lemma 5.4.3 implies that if is good

prob is picked votes for

Again, the assumption that implies that our choice of is at most .

10

where . The potential function we use is:

Initially, , where r is the largest requirement. The expected decrease in ascribable to a good set-element pair
, denoted is at least

prob voted for prob was picked voted for

The first inequality is from the definition of , the second, due to lemmas 5.4.1 and 5.4.3. The last since .
Since, a constant fraction of all are good, E where is the largest requirement value. From fact 4.1.3,
we know that the total number of phases is at most .

Theorem 5.2 PARALLEL MULTMULTCOV approximates multiset multicover to within , using a linear number of pro-
cessors and running in time .

Corollary 5.4.4 If the number in step (c) of figure 2 were changed to , and the algorithm were run on an instance of set
multicover, then it would be a algorithm approximating set multicover to within .

Proof: From the remark following lemma 5.4.3.

6 Covering Integer Programs
Covering integer programs are integer programs of the following form:

CIP
MIN
s.t.

Here, are the non-negative integers. The vectors c and r and the matrix are all composed of non-negative (rational)
numbers. At this stage, the notion of a ‘set’ does not have any meaning, however, we continue to use this notation simply to
maintain consistency with the previous discussion. For the purpose of the subsequent discussion, the reader should keep in mind
that varies over one set of indices and over the other. Without loss of generality, we may assume that .

What we present here is a scaling and rounding trick. The goal is to reduce to a instance of multiset multicover with poly-
nomially bounded (and integral) element multiplicities and requirements. Moreover, in making this reduction, there should be
no significant degradation in the approximation factor.

Lemma 6.0.5 There is an reduction from covering integer programs to multi-set multi-cover with element multiplicities
and requirements at most such that the cost of the fractional optimal (i.e., the cost of the LP-relaxation) goes up by at
most a constant factor.

Proof: Essentially, we need to reduce the element requirements to a polynomial range, and ensure that the requirements and
multiplicities are integral. Then, replicating sets to the extent of the largest element requirement, we would get an instance of
multi-set multi-cover. We will achieve this as follows: we will obtain an (crude) approximation to the fractional optimal within
a polynomial factor, and then we will ensure that the costs of sets are in a polynomial range around this estimate. Also, we
will set all element requirements at a fixed polynomial and set the multiplicities accordingly. At this point, rounding down the
multiplicities will change the fractional optimal by only a constant factor.

11

Let , and . Clearly, CLP , where CLP is the cost of the optimal solution
to the LP-relaxation of CIP. If a set has large cost, i.e, , then will not be used by the fractional optimal, and we
will eliminate it from consideration. So, for the remaining sets, . Define . We will clump together

copies of (i.e. ,). The cost of the set so created is at least . Additionally, the fractional
optimum is not affected by this scaling (though the same cannot be said of the integral optimal). Thus, we can assume that for
each , .

If any element is covered to its requirement by a set of cost less than , cover the element using that set and eliminate the
element from consideration. The cost incurred in the process is at most for all elements so covered, and this is subsumed in the
constant factor. Notice that as a result of this step, the multiplicity of an element in a set will still be less than its requirements.
The reason we require to be integral is that we need to map back solutions from the reduced problem to the original problem.
Henceforth, we can assume that the costs satisfy . Next, we will fix the requirement of each element to be , and
we will set the multiplicities appropriately . Since this is just multiplying each inequality by a constant,
this will not change the (both fractional and integral) optimal solution or value.

Finally, we will round down the multiplicities, . We will show that this will increase the fractional
optimal by a factor of at most 4. The same cannot be said for the integral optimum. This is the reason whywe needed to compare
the solution obtained by our approximation algorithms for multiset multicover to the fractional optimum.

Consider an optimal fractional solution to the problem with multiplicities . Since the cost of this solution is at most
, and the is at least , . Consider an element , and let be the collection of all sets such that .

Then, the total coverage of due to sets in is at most . Therefore, the total coverage of due to the remaining sets is at least
. Since for each of these sets, , if we multiply each by 4, element will be covered to the extent of

at least in the rounded down problem. The lemma follows.
Notice that the reduction in lemma 6.0.5 is such that a feasible solution to the instance of the multiset multicover problem

can be mapped back to a feasible solution of the original problem of without increasing the cost. Hence we get:

Theorem 6.1 There is an factor approximationalgorithmfor covering integer programs requiring
processors, where is the number of non-zero entries in .

Since in the reduction, all element requirements are set to , we obtain the processor bound stated above. Further, since
we are comparing the performance of our algorithm with the fractional optimal, it follows that the integrality gap for covering
integer programs, in which element multiplicities are bounded by requirements, is bounded by . It is easy to see that if
multiplicities are not bounded by requirements, the integrality gap can be arbitrarily high.

The previous best (sequential) approximation guarantee for covering integer programs was , where is
the largest entry in , assuming that the smallest one is 1 [Do82]. Moreover, in that result, the performance of the algorithm
given was compared to the integral optimal.

Notice that the multi-set multi-cover problem with the restriction that each set can be picked at most once is not a covering
integer program, since we will have negative coefficients. This raises the question whether there is a larger class than covering
integer programs for which we can achieve (even sequentially) an approximation factor.

Acknowledgements
We thank the referees. Their comments greatly improved the presentation in the paper.

References
[BRS89] Berger, B., Rompel, J., and Shor, P. Efficient NC Algorithms for Set Cover with applications to Learning and

Geometry. thIEEE Symposium on the Foundations of Computer Science (1989), proceedings pp 54-59.

[Ch79] Chvatal, V. A greedy heuristic for the set covering problem.Math. Oper. Res. 4 pp233-235.

[Do82] Dobson, G. Worst-Case Analysis of Greedy Heuristics for Integer Programming with Non-Negative Data.Math.
Oper. Res.7 pp515-531.

12

[Fe95] Feige, U. A threshold of for approximating set cover. Manuscript.

[Jo74] Johnson, D.S. Approximation Algorithms for Combinatorial Problems. J. Comput. Sys. Sci. 9 pp256-278.

[Ka72] Karp, R.M. Reducibilityamong combinatorial problems.Complexity of Computer Computations.R.E.Miller and
J.W. Thatcher (eds.) Plenum Press, New York. pp85-103.

[LN93] Luby, M. and Nisan, N. A parallel approximation algorithm for Positive Linear Programming. thACM Sym-
posium on Theory of Computing (1993), proceedings, pp 448-457.

[Lo75] Lovasz, L. On the ratio of Optimal Integral and Fractional Covers. Discrete Math. 13 pp383-390.

[Le92] Leighton, F.T., Intro. to Parallel Algorithms and Architectures, Morgan Kaufman publishers, 1992.

[LY92] Lund, C. and Yannakakis, M. On the hardness of approximatingMinimization Problems. thACM Symposium
on Theory of Computing (1993), proceedings, pp 286-293.

[PST91] Plotkin, S.A., Shmoys, D.B. and Tardos, E. Fast approximation algorithms for fractional packing and covering
problems. nd IEEE Symposium on the Foundations of Computer Science (1991), proceedings pp 495-504.

[Ra88] Raghavan. P. ProbabilisticConstruction ofDeterministic Algorithms: Approximating packing Integer Programs.
J. Comput. Sys. Sci. 37 pp 130-143.

13

