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ABSTRACT
Consider the following stochastic process executed on a graph
G = (V, E) whose nodes are initially uncovered. In each
step, pick a node at random and if it is uncovered, cover
it. Otherwise, if it has an uncovered neighbor, cover a ran-
dom uncovered neighbor. Else, do nothing. This can be
viewed as a structured coupon collector process. We show
that for a large family of graphs, O(n) steps suffice to cover
all nodes of the graph with high probability, where n is
the number of vertices. Among these graphs are d-regular
graphs with d = Ω(log n log log n), random d-regular graphs
with d = Ω(log n) and the k-dimensional hypercube where
n = 2k.

This process arises naturally in answering a question on
load balancing in peer-to-peer networks. We consider a dis-
tributed hash table in which keys are partitioned across a set
of processors, and we assume that the number of processors
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grows dynamically, starting with a single processor. If at
some stage there are n processors, the number of queries re-
quired to find a key is log2 n+O(1), the number of pointers
maintained by each processor is log2 n + O(1), and more-
over the worst ratio between the loads of processors is O(1),
with high probability. To the best of our knowledge, this is
the first analysis of a distributed hash table that achieves
asymptotically optimal load balance, while still requiring
only O(log n) pointers per processor and O(log n) queries for
locating a key; previous methods required Ω(log2 n) pointers
per processor and Ω(log n) queries for locating a key.

Categories and Subject Descriptors
F.3 [Mathematics and Computing]: Probability and
Statistics—Stochastic processes; D.1 [Data]: Data Struc-
tures—Distributed data structures

General Terms
Algorithms

Keywords
Peer to peer, coupon collector, hypercube, hash table, load
balancing

1. INTRODUCTION
In the past few years, there has been a considerable amount

of research on peer-to-peer applications. A central problem
for such applications is developing a distributed protocol
that finds a data item stored on one of a potentially large
number of processors. We can think of this as a distributed
hash table: given a key, we want to hash that key to a value



that identifies the processor that holds that key. We also
require an efficient method for finding that processor. This
hash table should function without centralized control and
should also provide an efficient technique for dealing with
the frequent and unpredictable arrival and departure of the
processors that store the table. Research that has addressed
this problem includes [13, 11, 12, 10, 4, 6, 8].

In this paper, we consider distributed hash tables of the
following type. Each key is hashed to a real number in the
interval [0, 1]. The task of storing this interval is partitioned
across the processors. In particular, the processors are orga-
nized using a (not necessarily complete) binary tree, where
each leaf of the tree corresponds to a processor. Each leaf
is also assigned a binary string describing the path from the
root to that leaf, with left branches represented by a 0 and
right branches represented by a 1. Let S(i) be the string
assigned to the ith leaf in the left to right ordering of leaves.
Let n be the number of processors, and let N(i) be the real
number (in [0, 1)) obtained by interpreting the string S(i) as
a binary decimal. The processor corresponding to leaf i < n
is responsible for storing items that hash to the real interval
[N(i), N(i+1)]. In addition, the processor corresponding to
leaf 1 is also responsible for the real interval [0, N(1)]. The
processor corresponding to leaf n is responsible for the real
interval [N(n), 1].

In order to allow navigation through this data structure,
processors store pointers to each other. In particular, the
processor at leaf j maintains a pointer to the processor at
leaf i if S(i) is a prefix of a string obtained from S(j) by
flipping one bit in S(j) and appending it with zeros. In
Figure 1 we show an example of such a tree, illustrating
the pointer set of one of the vertices. Such pointers can be
thought of as a generalization of the hypercube. Using these
pointers, if a search for an item starts at any processor, the
hashed item can be found using at most h queries to pro-
cessors, where h is the height of the tree (our analysis shows
that h = log2 n+O(1)). Also note that the number of point-
ers needed for each processor is at most h. These pointers
are also used to handle processor arrivals and departures.
An arrival is accomplished by first finding an appropriately
chosen leaf of the tree, and then performing a split opera-
tion on that leaf. A split of leaf i replaces i with an internal
node, as well as two children of that node. The processor
that previously resided at leaf i is assigned to one child, and
the new arrival is assigned to the other child. Storage of the
content hashed to the original region as well as the pointers
held by processors are adjusted appropriately. The process
for choosing which leaf to split is central to this paper, and
will be discussed below. We further suggest a departure
strategy which seems to work well in practice, although it is
left open to obtain a rigorous analysis for that process.

We shall refer to this distributed hash table as the hyper-
cubic hash table. The hypercubic hash table is motivated
by the hash table introduced in [11]. Instead of the hyper-
cubic structure we consider, [11] considers a d-dimensional
torus, where each processor is responsible for a subregion
of the torus, and maintains pointers to processors that are
responsible for neighboring regions. Arrivals are handled by
splitting an existing region in half along one dimension. The
hypercubic hash table we consider here can be viewed as the
structure from [11], where the dimension d is chosen to be
so large that no dimension is ever split more than once.

There are a number of measures of the performance of a

Figure 1: An example of a tree containing the
strings 000, 001, 0100, 0101, 011, 100, 101, 11. Each of the
hosts is located in one of the leaves. The tree is vir-
tual in the sense that its edges do not exist in the
network. The dotted lines are the actual connections
in the network. In this case, the host correspond-
ing to the leaf 11 has pointers to the hosts located
in 100 and 0100. These neighbors are determined by
flipping one of the bits in the string 11, and padding
it with zeros at the end.

distributed hash table. Of primary interest are the number
of queries required to locate a requested item, the num-
ber of pointers each processor must store, as well as how
well the storage load is balanced between the processors.
The distributed hash tables of [4], [12], [10], and [13] all
require O(log n) queries for location and O(log n) pointers
per processor for a data structure with n processors. The
hash table of [11] requires O(dn1/d) queries for location, and
O(d) pointers per processor. The hash table of [8] requires
O(log n) queries, O(1) pointers in expectation, and O(log n)
pointers per processor with high probability.

In this paper, we concentrate on the third indication of
performance: load balancing. The analysis of this measure is
typically more involved than that of the other two described
above, and it has seen much less attention in the existing
work. Let Vmax(D) be the maximum fraction of the range
of the hash function stored on any processor with hash table
D, and let Vmin(D) be the corresponding minimum fraction.
We say that a distributed hash table D achieves load balance
α if Vmax(D)/Vmin(D) = α. For example, the hypercubic
hash table we consider achieves load balance 1 if the un-
derlying binary tree is complete. Note that the fraction of
the hash function range is an appropriate measure of load
balance, since we expect the number of hashed items to be
much larger than the number of processors.

The actual load balance achieved by the hypercubic hash
table will depend on the rule for choosing which node of the
tree to split on a processor arrival. The “vanilla” version
of the [11] scheme suggests a strategy for choosing a region
to split that, in our framework, is equivalent to choosing a



value in the interval [0, 1] uniformly at random, and then
splitting the leaf of the binary tree that is responsible for
the region containing that value. Such a rule can be easily
implemented in a distributed fashion, but it is not difficult
to show that the resulting distributed hash table on n nodes
achieves load balance Ω(log n). The distributed hash tables
of [4], [12], and [10] use similar splitting rules. The scheme
from [13] also achieves load balance Ω(log n). They describe
how to improve this to load balance O(1), but this requires
the number of pointers stored at each processor to be in-
creased to Θ(log2 n).

In this paper, we study a second technique suggested in
[11] for choosing which node to split. A leaf node is chosen
randomly as before. However, instead of splitting that leaf
node, we consider the set consisting of that node as well as all
the leaves that the processor assigned to the chosen leaf has
pointers to. The leaf node in this set with minimum distance
from the root is split. If there is more than one such node,
the originally chosen node is given preference, and, if that
node does not have the minimum distance, one of the nodes
that do is chosen uniformly at random. This splitting rule
is shown in [11] to perform quite well through simulations,
but no analytical evidence for this has existed prior to the
work described here. We demonstrate that the resulting
hypercubic hash table achieves constant load balance. In
particular, we demonstrate that there are constants c1 and
c2 such that after n split operations have been performed,
with high probability the maximum height of any node in
the tree is log2 n+c1, and the minimum height is log2 n−c2.

To the best of our knowledge, this is the first analysis of
a distributed hash table that achieves asymptotically opti-
mal load balance, while still only requiring O(log n) queries
for location, and O(log n) pointers per processor.1 Further-
more, the rule we consider for performing a split does not
affect the number of queries required for the split by more
than a constant factor. In particular, the number of queries
required to find a randomly chosen initial node is O(log n);
the improved rule for choosing which node to split only re-
quires querying the O(log n) neighbors of this node.

In order to prove the above bounds, we introduce the fol-
lowing random process on the k-dimensional hypercube. In
this process, each node could be either covered or uncovered.
The initial state is when all nodes are uncovered. At each
step of the process we pick a random node v of the hyper-
cube. If v is uncovered, we cover it. If v is covered and all
its neighbors are also covered, we do nothing. Otherwise,
we randomly pick one of its uncovered neighbors and cover
it. We call this process Process 1. We show that with high
probability, Process 1 covers all vertices of the hypercube
after O(n) steps, and each of the first Ω(n) steps covers an
uncovered node, where n = 2k. We then use these bounds
to show that the tree representing the hypercubic hash table
is balanced, which provides the bounds claimed above.

Process 1 can be defined on any graph G = (V, E). If
the graph is an independent set, this is exactly the coupon
collector process and therefore, with high probability, the
process covers all nodes after O(n log n) steps. We show
that our proof techniques can be extended to other graphs:
we prove that for every d-regular graph, Process 1 covers all

1We point out that while [8] does not address the issue of
load balance at all, their distributed hash table could also be
used to achieve a similar result by using a technique similar
to that used to improve the load balance of [13].

vertices after O(n + n log n log d
d ) steps. We also show that

for random d-regular graphs the stronger bound of O(n +
n log n

d ) holds. These extensions may be useful in the design
of different algorithms and data structures. We note that
independently, Alon [1] proved that for any (n, d, λ)-graph2

G, O(n+n(λ
d )2 log n) steps are sufficient. Alon further shows

that for any d-regular graph on n vertices, the expected
number of steps that Process 1 uses until it covers the whole
graph is at least n− n

d + n
d loge(n/d). Alon’s proof also gives

a bound of n+(1+o(1))n loge n/d steps for random d regular
graphs.

This paper is organized as follows: in the remainder of this
section, we provide more details concerning other proposed
distributed hash tables, as well as other related work. In
Section 2, we reduce the task of analyzing the performance
of the hypercubic hash table to the problem of analyzing a
simple stochastic process on the hypercube. In Section 3, we
analyze this hypercubic process. In Section 4, we describe
extensions of our techniques to other graphs. In Section 5
we provide an alternative proof of the bound on the cover
time of the random process on the hypercube. In Section 6
we describe the results of some simulations.

1.1 Previous Work
In the distributed hash table of [10], each participating

processor i is assigned a random k-bit string S(i), where
k is large enough that it is unlikely for two processors to
have the same string. Each hashed key is stored on the
processor i such that S(i) is closest to its hash value in
lexicographic ordering. Note that choosing a random k-bit
string for an arrival is similar to the version of the hypercubic
hash table where a new arrival is handled by splitting a
randomly chosen node (without regard to the neighbors of
that node). The main difference is that the entire string S(i)
stays with the processor in the technique of [10]; with the
technique we consider here only the portion of the randomly
chosen real number that describes the first currently unsplit
node of the binary tree is ever used.

The rule used in [10] for choosing which pointers between
processors to maintain can also be thought of as a generaliza-
tion of the hypercube. This rule takes into account locality
in the underlying network, and thus has the advantage that
the real network length of a path in the data structure will
typically be considerably shorter than if this measure is not
taken into account. The distributed hash table of [10] is
static (i.e., it does not allow for the arrival and departure
of processors), but techniques for making it dynamic have
been described in [12], [4], and [6].

In the distributed hash table of [13], data items and pro-
cessors are hashed to integers chosen uniformly at random
from the range [0, 2k − 1]. Each data item is stored on
the processor with the next largest hash value (mod 2k)
to the data item’s hashed value. In order to locate data
items, each processor stores log n pointers: for each integer
j, 0 ≤ j ≤ log n − 1, the processor with the ith largest hash
value stores a pointer to the (i+2j mod 2k)th largest hash
value. It is not difficult to show that this data structure
achieves load balance Θ(log n) with high probability. This
can be improved to O(1) by simulating log n virtual proces-
sors on each actual processor. However, this increases the

2G is an (n, d, λ)-graph if G is a d regular graph on n ver-
tices, such that the absolute value of every eigenvalue of the
adjacency matrix of G, besides the largest one, is at most λ.



number of pointers that each real processor must store to
Θ(log2 n).

The idea of using the best out of multiple possibilities to
improve load balance has been studied extensively in the
analysis of “balls into bins” games (see [7] and [3] for early
work, and [9] for a recent survey). The scenario considered
there, as well as the notion of load balance, is significantly
different from this paper. However, the observation that
more choices is helpful is similar.

2. THE STOCHASTIC PROCESS
In order to analyze the hypercubic hash table described

in the previous section, we consider Process 1 which was
defined in the introduction. Let n = 2k be the number of
nodes in the hypercube. We show the following:

Theorem 2.1. Process 1 covers all the nodes of the hy-
percube in O(n) steps with high probability; the probability
of error is at most inverse polynomial in n.

Theorem 2.2. There exists a constant c, such that with
high probability, each of the first #cn$ steps of Process 1
cover an uncovered vertex; the probability of error is at most
inverse polynomial in n.

Observe that a bound of O(n log n) in Theorem 2.1 fol-
lows trivially from the coupon collector argument, since the
above process dominates the coupon collector process. A
bound of O(n) steps is easy to show for the following modi-
fication of the coupon collector process: pick log n items at
random and if any of them is not covered, cover a random
uncovered item. In our case, the randomization is in the
choice of the initial node – the k = log2 n nodes that are
examined subsequently are completely determined by this
choice. On the other hand, each node has a “funnel” of size
k, its k neighbors, that helps it get covered – we will use
this critically in the proof.

The subsequent sections of this paper concern the analy-
sis of this stochastic process. In the remainder of this sec-
tion, we demonstrate the implications of Theorem 2.1 to
the hypercubic hash table. We state these implications as
bounds on the minimum and maximum height of any leaf
in the underlying binary tree. From these bounds, it follows
easily that after n split operations, the hypercubic hash ta-
ble achieves asymptotically optimal load balance, while still
only requiring O(log n) queries for location, and O(log n)
pointers per processor.

Corollary 2.3. There is a constant c2 such that after n
split operations have been performed on the hypercubic hash
table, the probability that the minimum height of any node in
the tree is less than log n− c2 is at most inverse polynomial
in n.

Proof. At any point during the n split operations, con-
sider some level # of the tree such that every node at level
# − 1 has been split, but there is some node at level # that
has not been split. It is easy to see that the process of in-
serting a new processor to the hash table is equivalent to
the hypercube process in the following sense. The vertices
of the hypercube are the nodes in level #− 1. A node is cov-
ered if it has already been split, and is uncovered otherwise.
From Theorem 2.1, we know that there is a constant α such
that after α2" more split operations have been performed,

the probability that there are any unsplit nodes on level # is
inverse polynomial in 2".

Let c2 = log(4α). For each level i of the tree, 1 ≤ i ≤
log n − log log n − c2, we allocate α2i log n split operations
to level i. These splits are further subdivided into log n
phases of α2i split operations each. Given that all nodes at
level i − 1 have been split before a given phase for level i,
with probability at least 1/2 there are no unsplit nodes at
level i after that phase. Thus, if all nodes at level i − 1 are
split before the log n phases allocated to level i, the proba-
bility that i has any unsplit nodes after the split operations
allocated to it is at most inverse polynomial in n.

For each level i of the tree, log n − log log n − c2 < i ≤
log n− c2, we allocate α2i split operations to level i. This is
sufficient that the probability that any such i has any unsplit
nodes is also at most inverse polynomial in n. Note that we
have allocated a total of at most n split operations. Since
we are considering a total of only log n−c2 levels of the tree,
the probability that any of the first log n − c2 levels of the
tree fails to have every node split is still inverse polynomial
in n.

Corollary 2.4. There is a constant c1 such that after n
split operations have been performed on the hypercubic hash
table, the probability that the maximum height of any node
in the underlying binary tree is larger than log n + c1 is at
most inverse polynomial in n.

Proof. Consider the level l = log n + c1 for c1 large
enough. We can view the process of splitting vertices of level
l as dominated by the hypercube process on the hypercube
with 2l vertices. By Theorem 2.2, the first c2l insertions
do not split any vertex in level l + 1 with high probability,
where the probability for error is inverse polynomial in 2l,
that is, inverse polynomial in n. By setting c1 = log2(1/c),
we get that with high probability we do not split any vertex
in level l + 1 in the first n insertions. Thus, the corollary
follows.

3. ANALYSIS OF THE STOCHASTIC
PROCESS

In this section we prove Theorem 2.1.

3.1 An easier bound of O(n log log n)

A bound of O(n log log n) is easier to establish and is quite
instructive, so we will present it first.

We first need some notations and definitions. In all the
statements below, “high probability” will mean one minus
inverse polynomial in n probability; the exact polynomial
depends on the multiplier of n chosen in the number of steps
executed. An uncovered node will also be called free. For a
vertex v, let NF (v) and NC(u) be the set of free and covered
neighbors of v respectively. For a vertex v and a set A, let
dv(A) be the number of neighbors of v in A. We will use
the following Chernoff-like upper bound for large deviations
(the proof can be found, e.g., in [2]).

Lemma 3.1. Let Z be a random variable with the bino-
mial distribution, Z ∼ B(n, p). For every a > 0, prob(Z <

np − a) < e−a2/(2np).

It is easy to see that O(n) steps suffice to ensure that
with high probability each node has at most k/2 uncovered



neighbors; in fact, this is true for the simpler coupon col-
lector process as well. We will call this phase 0, and will
execute log k more phases of O(n) steps each, numbered
1, . . . , log k. We say that phase i is successful if at the end

of phase i, |NF (v)| ≤ k
2i+1

for every vertex v. The claimed

bound follows from:

Lemma 3.2. With high probability, for i = 1, . . . , log k,
phase i is successful.

Proof. Assume that at the beginning of phase i, each

node has at most
k
2i

uncovered neighbors. Consider a node

v such that |NF (v)| ≥ k
2i+1

. We will show that at the end of

phase i, with high probability, v has at most
k

2i+1
uncovered

neighbors, hence proving the lemma.
Let L1 denote the free neighbors of v, and L2 the covered

neighbors of L1, though not including v.
We now consider a single step, and we show that as long

as |L1| ≥ k
2i+1 , the probability to cover a vertex in L1 is

large. Clearly, in order to cover such a vertex, the process
has to choose a vertex u of L2, and then to choose one of
its du(L1) neighbors in L1. Recall that the number of free

neighbors of u is bounded by
k
2i

. We thus get that this

probability is at least

u∈L2

1
n
· du(L1)

2i

k
=

2i

nk
v∈L1

|NC(v)| ≥ 2i−1

n
|L1| ≥

k
4n

.

Let c be a large constant. Consider a sequence of cn steps
of the algorithm, and let X be a random variable, where

X ∼ B(cn, k
4n ). Clearly, as long as |L1| ≥

k
2i+1

, the num-

ber of vertices of L1 covered by the process is dominating
X, that is, the probability that after cn steps we still have

|L1| ≥
k

2i+1
is at most the probability that X <

k
2i+1

. By

Lemma 3.1 we get

prob(X <
k

2i+1
) ≤ prob(X <

ck
4

− k
4
(c − 1/2i−1))

≤ e−k(c−1/2i−1)2/8c < e−2k,

where the last inequality holds for c large enough. We now
use the union bound, and since the total number of vertices
is 2k, and the total number of phases is log k, the proba-
bility that phase i is not successful for some i is at most
log k2ke−2k which is inverse polynomial in n.

3.2 Exploiting differential progress
via convexity

At any step during Process 1, different nodes will be at
different stages of progress, where by progress of a node we
mean the number of its covered neighbors. A shortcoming
of the argument given above is that it has no way of taking
advantage of nodes that are further along – it only utilizes
the worst case progress made in previous phases to bound
the number of steps needed in future phases.

From the proof of Lemma 3.2, it is easy to see that if each
node of L2 had < k/2i+j uncovered neighbors, then O(n/2j)

steps would guarantee that with high probability the number
of uncovered neighbors of v are halved. Lemma 3.3 below
shows that this would be the case even if on average nodes
in L2 had fewer uncovered neighbors, thereby enabling us to
argue about the progress made by aggregates of nodes.

Conduct a breadth first search starting with node v, and
let Bi(v) be the nodes at level i, i = 1, . . . , k. W.l.o.g.
assume that v is labeled with the k-bit string (0, . . . , 0).
Then, Bi(v) contains all nodes having exactly i 1’s in their
labels. Therefore, the number of neighbors of a node u ∈
Bi(v) in the proceeding set Bi−1(v) is exactly i – those labels
obtained by flipping one of the 1’s in u’s label to a zero.
Define Li(v) ⊆ Bi(v), for 1 ≤ i ≤ 5 as follows: L1(v) is the
set of free neighbors of v, L2(v) the set of covered neighbors
of L1(v), L3(v) the set of free neighbors of L2(v), L4(v) is
the set of covered neighbors of L3(v), and L5(v) the set of
free neighbors of L4(v). Furthermore, define Ni(v) ⊆ Bi(v),
for 2 ≤ i ≤ 5 as follows: N2(v) is the set of neighbors of
L1(v), N3(v) is the set of free neighbors of N2(v), N4(v) is
the set of covered neighbors of N3(v) and N5(v) is the set
of free neighbors of N4(v). Note that |Ni(v)| ≥ |Li(v)| for
i = 2, 3, 4.

Lemma 3.3. Assume that at least half the neighbors of
each node are covered. Let v be a vertex and let i, j be such
that 1 ≤ i ≤ log k and i + j ≤ log k. Suppose

k
2i+1

≤ |NF (v)| <
k
2i

and

|L3(v)| ≤ k3

22i+j
.

Then, after O(
n
2j

) steps, the number of free neighbors of v

must be smaller than
k

2i+1
with high probability.

Proof. Recall that for every l, a node in Ll+1(v) can
have at most l + 1 neighbors in Ll(v). By this property,
we have that u∈L2(v) |NF (u)| ≤ 3|L3(v)| + |L1(v)|k, since

we count each vertex of L3(v) at most three times. Since

i+ j ≤ log k and |L1(v)| ≤ k
2i , we get that |L1(v)|k ≤ k3

22i+j ,

and thus, u∈L2(v) |NF (u)| ≤ k3

22i+j−2 . Furthermore, since
each vertex has at least k/2 covered neighbors, and each
vertex of L2(v) has at most two neighbors in L1(v) we have

that |L2(v)| ≥ |L1(v)|k
4 ≥ k2

2i+3 .
We now lower bound the probability of covering a vertex

of L1(v) as long as |L1(v)| ≥ k
2i+1 . This probability is at

least

u∈L2(v)

1
n
· 1
|NF (u)| ≥ 1

n
|L2(v)|2 1

u∈L2(v) |NF (u)|

≥ 22i+j−2|L2(v)|2

k3n
≥ k2j−8

n
,

where the first inequality follows from the convexity of the
function f(x) = 1/x. The proof now follows by the same
arguments given in Lemma 3.2.



3.3 Establishing a linear bound
As before, we will have log k+1 phases numbered 0, 1, . . . ,

log k, and will prove that at the end of the ith phase, the

number of free neighbors of each node is at most
k

2i+1
, with

high probability. Phase 0 is as before, and takes O(n) steps.
In each of the remaining phases, we will execute a number of
iterations whose purpose is to “thin down” L3(v), for each
node v. This time around, L4(v) acts as a funnel, and since
we are dealing with an aggregate of nodes, the funnel is much
larger and so the number of steps required is fewer than in
Lemma 3.2. Next, we will “thin down” L1(v). By Lemma
3.3, this also takes fewer steps than before. The number of
iterations executed in phase i is ti = min{i, log k − i}. Each
iteration within phase i consists of O(n/2i) steps.

Lemma 3.4. By the end of iteration j within phase i, with
high probability, for each node v with |NF (v)| ≥ k/2i+1,

|L3(v)| ≤ k3

22i+j
.

Proof. The proof is similar to that of Lemma 3.2, with
L4(v) acting as a funnel to cover nodes in L3(v).

We will actually prover a stronger claim: By the end of
iteration j within phase i, with high probability, for each
node v with |NF (v)| ≥ k/2i+1,

|N3(v)| ≤ k3

22i+j
.

Clearly, since |L3(v)| ≤ |N3(v)|, the lemma follows.

Assume that |N3(v)| > k3

22i+j in the beginning of iteration
j (otherwise we are done with N3(v) for iteration j).

Recall that for every u ∈ N4(v), du(N3) ≤ 4 and that
for every u ∈ N3(v), |NC(u)| ≥ k/2, and on the other hand
du(N2) ≤ 3. Thus, |N4(v)| ≥ |N3(v)|(k/8−3) ≥ |N3(v)|k/16

for sufficiently large k. As long as |N3(v)| >
k3

22i+j
, the prob-

ability of covering a vertex in N3(v) is at least

u∈N4(v)

1
n

1
|NF (u)| ≥

2i

kn
|N4(v)| ≥ 2i

8n
|N3(v)| >

k3

2i+j+4n
.

We note that the quantity i + j is not increasing with
i since i + j ≤ log k. Assume that iteration j consists

of cn/2i steps for c large enough. If |N3(v)| >
k3

22i+j
,

the number of vertices of N3(v) covered in iteration j is a
random variable dominating the binomial random variable

X ∼ B(
cn
2i

,
k3

2i+j+4n
). By Lemma 3.1,

prob(X <
|N3(v)|

2
) ≤ prob(X <

k3

22i+j
)

= prob(X <
ck3

22i+j+4
− k3

22i+j
(

c
16

− 1))

< e−Ω(k3/22i+j ) ≤ e−Ω(k),

where the last two inequalities follow from the fact that c is
large enough, and that i + j ≤ log k. We now use the union
bound over all 2k vertices, and all O(log2 k) iterations, and
we get that for every v, by the end of iteration j, |N3(v)| ≤

k3

22i+j with high probability.

After the ti iterations in phase i, we execute O(
n
2ti

) more

steps. By Lemma 3.3, these suffice to ensure with high prob-
ability that |NF (v)| ≤ k

2i+1 for all nodes v.
Finally, since

log k

i=1

ti

2i
+

log k

i=1

1
2ti

≤
log k

i=1

i
2i

+ 2

log k
2

i=1

1
2i

= O(1),

the total number of steps is O(n), hence proving Theorem
2.1.

3.4 Establishing the Lower Bound
In this section we prove Theorem 2.2. We shall show that

there is a constant c such that with high probability each of
the first #cn$ steps covers an uncovered vertex. We will use
the following lemma (its proof can be found, e.g., in [2]):

Lemma 3.5. Let Z be a random variable with a binomial
distribution Z ∼ B(n, p). For every λ > 1, prob(Z >
λnp) < (eλ−1λ−λ)np.

In order to prove Theorem 2.2, we introduce the following
definitions. As before, for every v ∈ V we define L1(v) =
NF (v) and L2(v) = u∈L1(v) NC(u)−{v}. We say that step

i is successful if after step i, for every vertex v, |L1(v)| ≥ k/2.
The theorem follows from the following claim:

Claim 3.6. There exists a universal constant c, such that
for 1 ≤ t ≤ ck3, the first tn

k3 steps are successful with high
probability.

Proof. The proof is by induction on t. For t a positive
integer, let At be the event that the first tn

k3 steps are suc-
cessful. For the base case, we show that A1 occurs with high
probability. In order to cover a vertex of L1(v), we have to
either choose a vertex u of L2(v), or choose vertex v. Since
|L2(v)∪ {v}| ≤ k|L1(v)| ≤ k2 we get that the probability of

covering a vertex in L1(v) is at most k2

n . Let X be the ran-
dom variable that denotes the number k − |L1(v)| after the
first n/k3 steps. Let Y be a random variable with the bino-

mial distribution, Y ∼ B( n
k3 , k2

n ). We get that Y dominates
X, and by Lemma 3.5,

prob(X > k/4) ≤ prob(Y > k/4) = e−Ω(k ln k). (1)

Therefore, by a union bound, with high probability, for every
vertex v, |L1(v)| > k/2.

We now prove the inductive step: we assume that At oc-
curs with high probability, and show that if t ≤ k3, then
At+1 also occurs with high probability. Let A′

t(v) be the
event that after the first tn

k3 steps, |L1(v)| ≥ 3k/4. We
first show that if At occurs, then we can actually make the
stronger claim that for every vertex v, A′

t(v) occurs with
high probability. We then use a similar argument as above
to show that, with high probability, in the last n/k3 steps,
for any v, at most k/4 additional vertices in L1(v) get cov-
ered.

To show that A′
t(v) occurs with high probability, note that

Pr[A′
t(v)] ≤ Pr[A′

t(v)∩At]+Pr[At], and thus, by the induc-
tive hypothesis, we only need to show that the probability
of A′

t(v) ∩ At is inverse polynomial in n. Thus, we focus on



the first tn/k3 steps, and only consider the case where for
every u ∈ L2(v), |L1(u)| ≥ k/2.

Since each vertex in L2(v) has at most two neighbors in
L1(u), in each of the first tn/k3 steps, the probability of
covering a vertex of L1(v) is at most 4

kn |L2(v)| ≤ 4k
n . Let X1

be the random variable that denotes the number k− |L1(v)|
after the first tn/k3 steps. Let Y1 be a random variable with
the binomial distribution, Y1 ∼ B( tn

k3 , 4k
n ). We get that Y1

dominates X1, and by Lemma 3.5,

prob(X1 > k/4) ≤ prob(Y1 > k/4) = e−Ω(k ln(k3/t)),

as long as t < ck3 for sufficiently small (but constant) c. If
c is small enough, then we get by a union bound that for
every vertex v, X1(v) ≤ k/4.

We are now left with the last n/k3 steps. We define X =
k − |L1(v)|−X1 to be the number of vertices removed from
L1(v) in the last n/k3 steps, and define Y as before, i.e.

Y ∼ B( n
k3 , k2

n ). Then the situation is exactly as in the
base case, and therefore Equation (1) holds, and by a union
bound we can assume that for every vertex v, X < k/4, and
thus, |L1(v)| > k/2. This completes the proof.

4. EXTENSIONS OF THE PROCESS
In this section we introduce and analyze a variant of Pro-

cess 1, and give some upper bounds on the covering time
of the processes in different graphs. We first show that our
proof holds for every d-regular graph. We have the following
theorem:

Theorem 4.1. Let G = (V, E) be a d-regular graph with
n nodes. With high probability, after O(n(1 + log n·log d

d ))
steps of Process 1, all nodes are covered.

Proof. We first note, that in the proof of Lemma 3.2 we
did not use the fact that graph is the hypercube, but simply
the fact that the graph is k-regular for k = log n. Thus, we
only have to show that the same holds for d-regular graphs
for d += log n.

The proof has the same flavor as Lemma 3.2. We have
log d phases. After phase i, we will have at most d

2i uncov-
ered neighbors for every vertex v. Since the coupon collector
process is dominated by Process 1, it is easy to see that by
using Θ(n+n log n log d

d ) steps for phase 0, we have that each
vertex has at least d/2 covered neighbors with high proba-
bility.

As long as |L1| ≥ d/2i+1, the probability of covering a
vertex in L1 is at least

u∈L2

1
n
· du(L1)

2i

d
=

2i

nd
v∈L1

|NC(v)| ≥ 2i−1

n
|L1| ≥

d
4n

.

Consider a sequence of cn steps of the algorithm where c
will be determined later, and let X be a random variable,
where X ∼ B(cn, d

4n ). As long as |L1| ≥ d/2i+1, the num-
ber of vertices of L1 covered by the process stochastically
dominates X, that is, the probability that after cn steps
we still have |L1| ≥ d/2i+1 is at most the probability that
X < d/2i+1. By Lemma 3.1 we get

prob(X <
d

2i+1
) ≤ prob(X <

cd
4
− d

4
(c−1/2i−1)) ≤ e−Θ(cd),

for c > 1
2i−2 .

If d/2i > 10 log n, we take c = Θ(1/2i), and otherwise
we take c = Θ( log n

d ). We thus get that prob(X < d
2i+1 )

is inverse polynomial in n, and by applying a union bound
over all log d phases and all n vertices, we get that with
high probability after phase i each vertex has at most d/2i+1

uncovered neighbors. The total number of steps we use for
all the phases is at most O(n + n log n·log d

d ).

As a corollary of Theorem 4.1 we get that for every d-
regular graph with d > log n·log log n, O(n) steps of Process
1 are sufficient to cover all nodes with high probability.

Modify Process 1 so that after picking a random node,
v, it only covers a random uncovered neighbor of v. If all
neighbors of v are covered, it does nothing. Call this Process
2. In this process, a node has a funnel of size k all the way
until it is covered. Hence, phase 0 is unnecessary, and the
rest of the proof remains essentially unchanged to show the
following theorem:

Theorem 4.2. Using Process 2, O(n) steps suffice to cover
all nodes of the hypercube with high probability. Further-
more, O(n+n log n·log d

d ) steps are sufficient to cover all nodes
of any d-regular graph.

Next, consider a family of graphs having maximum degree
d, minimum degree Ω(d) and the following additional prop-
erty: For every v ∈ V , if we conduct Breadth first search
from v, and let Bi for i = 1, 2, . . . denote the levels. As-
sume that for i = 2, 3, 4 and for every u ∈ Bi, the degree
of u into Bi−1 is bounded by a constant. Then, it is easy
to see that the proof of Theorem 2.1 goes through, and we

get that O n(
log n

d
+ 1) steps suffice to cover all nodes

of the graph with high probability using either Process 1
or Process 2. Since random d-regular graphs satisfy these
conditions, we get

Theorem 4.3. For a random d-regular graph, the num-
ber of steps suffice to cover all nodes of the graph with high
probability using either Process 1 or Process 2 is at most
O n( log n

d + 1) .

Consider now the infinite process inferred by the hypercu-
bic hash table, where there is an infinite sequence of arrivals.
The following theorem shows that the probability that there
never is a difference of more than d between the shallowest
and deepest levels of the tree is at least 1 − eΩ(d). This
demonstrates that this process is self correcting.

Theorem 4.4. The probability that there is never a dif-
ference of more than d between the shallowest and deepest
levels of the tree in the hypercubic hash table over an infi-
nite sequence of arrivals is at least 1 − eΩ(d)

Proof. Let Am denote the event that until step m the
difference between the shallowest and deepest levels is at
least d. We first note that one can modify the constants
c1, c2 from Corollaries 2.3 and 2.4 such that the events de-
scribed in the lemmas happen with probability at most 1

m2

where m is the number of steps. Assume that d is much
larger than the constants c1, c2.

Consider the first N = 2d−c1 steps. By Corollary 2.4,
with probability at least 1−1/N2 the deepest level until that
point is at most d. Therefore, prob(A1∪. . .∪AN ) ≤ 1

N2 . On



the other hand, by Corollaries 2.3 and 2.4, prob(Am) ≤ 2
m2 .

Therefore,

prob(
m>N

Am) ≤
m>N

prob(Am) ≤
m>N

2
m2

≤ 2
N

.

Since N = Θ(2d) the theorem follows.

5. AN ALTERNATIVE PROOF
TO THEOREM 2.1

We now introduce a different proof of Theorem 2.1 using
coupling. This proof provides a tighter analysis than the
one given in Section 3, but it is not clear how to extend this
proof to other cases such as d-regular graphs.

We will prove the theorem for Process 2, but we note that
the proof is almost identical for Process 1. Let Tn be the
cover time of Process 2, that is, the number of steps until
every vertex is covered. We shall investigate the probability
distribution of Tn.

We prove the Theorem by comparing Tn with the cover
times of two other stochastic processes: a random probing
process with cover time Pn and a rejection process with cover
time Rn.

By comparing the random probing process with the stan-
dard coupon collector process we show that Pn = O(Rn)
with high probability. We then show that the rejection pro-
cess can be viewed as the random probing process slowed
down by a constant factor. Finally, we complete the proof
with a coupling argument showing that Tn is stochastically
smaller than Rn.

The proof is designed for clarity rather than for optimizing
the constant factor in the time bound for Tn.

The random probing process is as follows. Initially all
vertices are uncovered. At each step a multiset S of k ver-
tices is chosen uniformly at random with replacement. If S
contains an uncovered vertex then an occurrence of an un-
covered vertex in S is chosen uniformly at random and the
vertex becomes covered; otherwise no vertex becomes cov-
ered at this step. Define the cover time Pn of this process
as the number of steps until every vertex is covered.

We shall relate Pn to the standard coupon collector pro-
cess, in which elements are drawn with replacement inde-
pendently and uniformly at random from an n-set until all
elements have been drawn. Let Cn be the number of draws
in the coupon collector process.

Lemma 5.1. Pn is stochastically smaller than Cn+n(k−1)
k

Proof. Consider the following method of implementing
the random probing process: at each step the vertices in S
are inspected sequentially in a random order until an uncov-
ered vertex is found or the set S has been exhausted. Once
an uncovered vertex has been found the remaining vertices
in S are discarded without being inspected. The number of
inspected vertices is distributed as Cn, and the number of
discarded vertices is always less than or equal to n(k − 1).
But dkPn is equal to the number of inspected vertices plus
the number of discarded vertices.

Lemma 5.2. P (n) < n( 1
log2e + 2) whp

Proof. The probability that C(n) > n(ln n+k) is bounded
above by n(1− 1/n)n(ln n+k) which is exponentially small in
k. Combining this fact with the above lemma and the fact
that k = ln n

log2 e the result follows.

For any vertex v, let N(v) be the set of neighbors of v
in the hypercube. Consider a state S (i.e., a designation of
each vertex of the hypercube as covered or uncovered). Let
a(u, S) denote the number of uncovered neighbors of u and
let a2(u, S) denote the number of uncovered vertices at dis-
tance 2 from u. Define Cov(v, S), the covering probability of
an uncovered vertex v, as the probability that v will get cov-
ered at the next step of the covering process, given that the
present state is S. Then Cov(v, S) = 1

n u∈N(v) 1/a(u, S).
We now give the definitions and lemmas required for defin-

ing and analyzing the rejection process. Let p be a rational
number i/n between 0 and 1. A random p-state is a state
drawn uniformly at random from the set of states in which
there are exactly pn uncovered vertices.

Lemma 5.3. In a random p-state S, the probability is less
than 1

n2 that there exists an uncovered vertex u such that

Cov(u, S) < 1−(1−p)k

6.4pn .

Proof. In a random p-state S the random variable a2(u, S)
has a hypergeometric distribution with mean k

2 p. Using
Chvatal’s bound on the tail of the hypergeometric distribu-
tion [5] the probability that a2(u, S) > s k

2 p, where s > 1,

is less than (e/s)s(k
2)p. Let r be the value of s where this

bound is equal to 6−k. Then, by a union bound, with prob-
ability 1 − 4−k, a2(u, S) ≤ r k

2 p for every vertex u. Let v

be an uncovered vertex in state S. If a2(v, S) ≤ rp k
2 then

u∈N(v) a(u, S) = k + 2a2(u, S) ≤ k + 2rp k
2 and, by the

convexity of the function 1/x it follows that Cov(v, S) ≥
k

n(1+rp(k−1)) . Therefore, with probability (1− 4−k), this in-
equality holds for every uncovered vertex in S.

We now examine the ratio 1+rp(k−1)
1+p(k−1) . We shall show that

this ratio is less than 3.2. Since the ratio is less than r,

we may assume that r > 3.2. Since (e/r))r(k
2)p = 6−k,

(r/e)r
(k−1)p

2 = 6. Let a > 0 be such that r/e = 6a. Then

ae6a (k−1)p
2 = 1. It follows that p(k−1) = 2

ae6a , 2rp(k−1) =

2/a and 1+rp(k−1)
1+p(k−1) = 1+2/a

1+ 2
ae6a

. It is easy to show that this

function is bounded over the positive reals, and numerical
computation shows that it is less than equal to 3.2 for all
positive a.

Next we observe that (1−(1−p)k)(1+p(k−1))
kp ≤ 2. Putting

the inequalities together, the lemma follows.

The rejection process is designed so that, at any stage
where the number of uncovered vertices is pn, all p-states are
equally likely. We shall show by induction over the steps of
the process that this property holds (with high probability)
and that, when the process is in a p-state S, every uncovered

vertex u satisfies Cov(u, S) < 1−(1−p)k

6.4pn . The process oper-
ates as follows. Initially all vertices of the k-dimensional unit
hypercube are uncovered. At each step, let S be the state,
let i be the number of uncovered vertices, and let p = i/n. A
vertex v is chosen at random. If v has at least one uncovered
neighbor then an uncovered neighbor u of v is chosen uni-
formly at random. By induction hypothesis, assume that

Cov(u, S) ≥ 1−(1−p)k

6.4pn . With probability 1−(1−p)k

6.4pnCov(u,S) the
step is accepted and u becomes covered. With the comple-
mentary probability the step is rejected. Each uncovered

vertex has probability 1−(1−p)k

6.4pn of becoming covered at this
step.



Since, at each step, all uncovered vertices are equally likely
to become covered, it follows that, any stage where pn ver-
tices are uncovered, the state is a random p-state, as was
required for the induction in the above analysis.

Next we compare the rejection process with the random
probing process and with the original covering process. In a
p-state the random probing process has probability 1− (1−
p)k of covering a vertex, whereas the rejection process has
probability 1

6.4 (1 − (1 − p)k) of covering a vertex. Thus the
progress of the rejection process is stochastically the same as
that of a process which, at each step, tosses a coin with prob-
ability of heads 1/6.4 and, if heads comes up, executes a step
of the random probing process. It follows that the number
of steps of the rejection process is less than 6.5n( 1

log2e + 2)
with high probability.

Finally, we observe that the number of steps in the original
covering process is stochastically smaller than the number of
steps in the rejection process. To see this we use a coupling
argument. Assume that, at each step, the two processes se-
lect the same random vertex, and inspect its neighbors in
the same order to select an uncovered vertex if one exists.
Then, step by step, the set of vertices covered by the rejec-
tion process is a subset of the set of vertices covered by the
covering process.

Summing up, we have:

Theorem 5.4. Tn < 6.5n( 1
log2e +2) with high probability.

6. EXPERIMENTAL RESULTS
AND A DELETION PROCESS

We ran some simulations to study the performance of Pro-
cesses 1 and 2 in practice. As seen in Figure 2, in practice
the number of steps required to cover all nodes of the hy-
percube is bounded by 2n. Furthermore, it is not clear cut,
but it seems that the constant in Process 1 is slightly better
than the constant in Process 2.

Next, we define a leaf deletion process that is in the spirit
of our leaf addition process: suppose leaf i needs to be
deleted. Consider the leaves that i points to and among
the ones at the deepest level pick a random one, say j. It
is easy to see that the sibling of j will also be a leaf, say k.
Now, the processor at j takes over i’s job (the processor at i
is relieved), and the processor at k takes over j and k’s job
and sits at the parent of j and k.

We do not have a good analysis of this deletion process at
present, but report the following experiments which suggest
that it should also perform well. The first set of experiments
start with complete binary trees of depth 20, and at each
step performing a delete at a leaf which is chosen uniformly
from the set of leaves. It was observed that the difference in
depth of the deepest and shallowest leaves was bounded by
4 throughout the process.

The next set of experiments involved starting with a com-
plete binary tree of depth 10, and adding 10,000 more nodes
as follows: pick a leaf, and with probability 0.5 declare it
a permanent leaf, and with probability 0.5 add two new
children to it. In the resulting tree, the difference between
depths of deepest and shallowest leaves was 20. Next, we
performed random deletes on this tree. After 8,000 steps,
the difference went down to 10. We observed that the differ-
ence was almost monotonically decreasing, in the sense that
it increased by only 1 a few times (thus, it would go from

Figure 2: The distribution of the constants d1, d2

such that Processes 1 and 2 respectively cover all
nodes after d1n and d2n steps respectively. We pre-
formed 100 experiments on the 25-dimensional hy-
percube. The x-axis is the constants (d1 or d2), and
the y-axis refers to how many experiment each con-
stant appeared in. Clearly, both constants are al-
ways smaller than 2, and Process 1 is more concen-
trated than Process 2, and is usually faster.

14 to 15, before going to 13, but not from 14 to 15 and then
to 16, before going to 13).
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