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Abstract

Recent results, establishing evidence of intractability for such restrictive utility functions as
additively separable, piecewise-linear and concave, under both Fisher and Arrow-Debreu market
models, have prompted the question of whether we have failed to capture some essential elements
of real markets, which seem to do a good job of finding prices that maintain parity between
supply and demand.

The main point of this paper is to show that even non-separable, concave utility functions can
be handled efficiently in a suitably chosen, though natural, realistic and useful, market model,
our model allows for perfect price discrimination. Our model supports unique equilibrium prices
and satisfies both welfare theorems.
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1 Introduction

The celebrated Arrow-Debreu theorem [AD54], which establishes the existence of equilibria in a
very general model of the economy, has been deemed to be “highly non-constructive” since it
crucially uses Kakutani’s fixed point theorem; as shown by Uzawa [Uza62], the existence of general
equilibrium is equivalent to fixed point theorems. The conditions imposed on utility functions of
buyers in the Arrow-Debreu theorem are very weak: continuity, quasi concavity, and non-satiation.

Over the last decade, there has been a surge of interest within theoretical computer science on
studying the question of efficient computability of market equilibria — not only to provide an
algorithmic ratification of Adam Smith’s “Invisible hand of the market” but also because of potential
applications to new markets on the Internet. This study started with highly restricted utility
functions, i.e., linear [DPSV08, Jai07], before moving to more general functions. Several specialized
classes of non-linear utility functions were also solved, e.g., Cobb-Douglas, CES and Leontief, see
[CV04, Ye07, CVOT7].

We remark that convex programs have turned out to be the tool for efficient computation of
equilibria. For several utility functions, equilibria of the corresponding markets have been captured
as optimal solutions of convex programs, which have been solved by either combinatorial algorithms
(see [Vaz07, Vazl2]) or convex program solvers (see [CV07]). To our knowledge, so far all markets
that have yielded to efficient algorithms, either exact or approximable to any degree of accuracy,
have done so via this tool.

Regarding attacking general classes of utility functions, the obvious next question was additively
separable, piecewise-linear, concave utility functions (SPLC utilities); henceforth, by “additively
separable” we will mean additively separable over goods, i.e., each agent has a separate utility
function for each good and her total utility is additive over goods. This long-standing open prob-
lem was resolved recently for both market models. First, [CDDT09] proved PPAD-hardness for
the Arrow-Debreu model under SPLC utilities. Subsequently, PPAD-hardness was established for
Fisher’s model, independently and concurrently by [CT09, VY11] and [VY11l]. Membership in
PPAD was established for both models, first via an indirect proof in [VY11] and later by demon-
strating path following algorithms in [GMSV12]. Hence, for both market models under SPLC
utilities, the complexity of computing an equilibrium has been precisely pinning down.

These results dealt a serious blow to the program of algorithmically ratifying the “Invisible hand
of the market” — assuming P # PPAD, these results effectively rule out the existence of efficient
algorithms for almost all general and interesting classes of “traditional” market models. On the
other hand, markets in the West, based on Adam Smith’s free market principle, seem to do a good
job of finding prices that maintain parity between supply and demand!. This has prompted the
question of whether we have failed to capture some essential elements of real markets in our models,
see [Vaz10]. Some progress has been made on this latter question: polynomial time algorithms
were given for spending constraint utilities [Vaz10] and for SPLC utilities in the Fisher model,
provided perfect price discrimination is introduced in the model [GV11]. Both these works deal
with additively separable utility functions.

'For example, in the West, it is hard to see a sight that was commonplace in the Soviet Union, with massive
surpluses of some goods and empty shelves of others.



Clearly, for traditional market models, the gap between the “positive” algorithmic results summa-
rized above and the generality of the Arrow-Debreu Theorem is rather large. The main point of this
paper is to show that even non-separable, concave utility functions, with the additional restrictions
of continuous differentiability and non-satiation, can be handled efficiently in a suitably chosen,
though natural, realistic and useful, market model; our model allows for perfect price discrimina-
tion. Our work also provides insights into the widely used practice of price discrimination, and in
Section 2.1, we give an application of our market model to online display advertising marketplaces.

1.1 Price discrimination and our results

Most businesses today charge different prices from different consumers for essentially the same
goods or services in order to maximize their revenues. This practice, called price discrimination,
is not only good for businesses but also customers — without it, some customers will simply not be
able to avail of certain goods or services. It is not only widespread [Var85] but is also essential for
the survival of certain businesses, e.g., in the airline industry.

Price discrimination is particularly important in new industries, such as telecommunications and
information services and digital goods. Traditional economic analysis, which assumes decreasing
returns to scale on production, recommends pricing goods at marginal cost. However, this is
not relevant to several new industries, since they have very high fixed costs and low marginal
costs, and hence such prices will not even recover the fixed costs; in particular, this phenomenon
is commonplace in the drug industry; the cost of discovering a drug is extremely large but the
marginal cost of making a pill is very small. In these situations, product differentiation and price
discrimination are an important recourse. Motivated by these considerations, price discrimination
has been extensively studied in economics from many different angles; see [WMT88, Var85, Var96,
Sun04, EEH98, EEH94, BT04] for just a small sampling of papers on this topic.

Price discrimination was first introduced by Pigou [Pig00], who gave the notions of first, second
and third degree price discrimination. First degree price discrimination also called perfect price
discrimination can only be practiced by a monopoly that has complete information about the
buyers’ utility functions. The price charged from a buyer is such that her marginal willingness to
pay is equal to the marginal cost of the good, see also [Var96]. The following quote from [Pig00]
(pp. 279) makes this even more clear, “A first degree would involve the charge of a different price
against all the different units of commodity, in such way that the price extracted for each was equal
to the demand price for it, and no consumers’ surplus was left to the buyers.”

Clearly, in these quotes, Pigou and Varian are talking about an indivisible good. Since our market
model assumes divisible goods, the natural way of interpreting Pigou’s advice is to apply it to
each infinitesimal quantity of good sold. Indeed, this is what we accomplish in Section 2. We do
remain with the abstraction proposed by Pigou, namely that the monopolist has complete infor-
mation about the buyers’ utility functions. As in [GV11], we model this situation by introducing
a middleman, who has complete information about the buyers’ utility functions. He buys goods
from sellers in the standard way, i.e., by paying the same price for each unit of good. Then, using
his information about the buyers’ utility, he knows how much the buyer is willing to pay for each
(infinitesimal) quantity of the good and he charges accordingly. In general, the total amount payed
by buyers to the middleman exceeds the amount he payed for the goods; the difference being his



profit. The middleman makes no profit if and only if buyers’ utility functions are linear.

We give a convex program that captures equilibrium for this model. Its optimal primal and dual
solutions yield equilibrium allocations, under price discrimination, as well as equilibrium prices of
goods. The latter are prices that the middleman pays to the sellers of goods. As detailed in the
proof of Theorem 3, the exact amount the middleman needs to charge from each buyer can also
be computed from the optimal primal and dual solutions. In retrospect, our convex program is a
generalization of the classic Eisenberg-Gale convex program, which captures equilibrium for Fisher
markets under linear utilities (see [Vaz07] for a detailed explanation). The convex program also
yields particularly simple proofs of both welfare theorems for our model.

Since the monopolist needs to have complete information about the buyers’ utility functions, per-
fect price discrimination is primarily a useful abstraction and has somewhat limited applicability.
However, in Section 2.1 we do provide a setting, namely online display advertising marketplaces,
which satisfies this stringent criterion to a high degree.

2 The Market Model

Our market model is based on that of Irwing Fisher [BS00]. It consists of sellers of distinct, divisible
goods, a middleman and buyers. Let G and B be the set of goods and buyers, respectively. Assume
that |G| = g, | B| = n, the goods are numbered from 1 to g, and the buyers are numbered from 1 to
n. Assume w.l.o.g. that there is 1 unit of each good. Let m; € Q" dollars be the money of buyer
i. For each buyer ¢ we are specified a function f; : R% — R4 which gives the utility derived by i
as a function of allocation of goods. Each f; is differentiable, concave and satisfies non-satiation;
moreover, it is polynomial time computable. We will say that f satisfies non-satiation if for any
allocation y, there is an allocation y  that weakly dominates y component wise and such that
f(y") > f(y). Since there is one unit of each good, it is sufficient if each f; is defined over the
domain [0,1+4 A)9, where A > 0 is a constant, and satisfies non-satiation for allocations in this set.

The buyers have no access to the sellers; however, the middleman does. The middleman also has
full information about the utility function of each buyer. He buys goods from the sellers and sells
them to the buyers. The sellers and the middleman have no utility for the goods and both are
trying to maximize their earnings. The buyers have no utility for money and are interested in
obtaining a utility-maximizing bundle of goods.

In this situation, perfect price discrimination is natural. Since the buyers have access to goods only
through the middleman and the latter has full knowledge of their utility functions, he is able to
maximize his profit by extracting all the consumer surplus.

The middleman buys goods from the seller, who charges the middleman in the usual manner,
i.e., depending on the prices of goods and the amounts bought. However, in selling goods, the
middleman charges buyers on the basis of the utility they accrue rather than the amount of goods
they receive. The charging mechanism detailed below ensures, as promised in Section 1.1, that
the rate (i.e., money charged per unit of good) at which the middleman charges a buyer for each
infinitesimal quantity of a good is proportional to rate at which the buyers derives utility at this
point in the allocation, with the minimum rate being equal to the actual price per unit of the good.



Henceforth, we will use the term rate in a different sense than that in the previous paragraph.
Let r; be the rate at which buyer ¢ gets utility per dollar charged from her, at any given prices
p. It should be easy to see that the requirements of the previous paragraph can be achieved if
the middleman fixes each buyer’s rate appropriately, as a function of prices p. Below we will show
something stronger: we will show that under the following two assumptions, each buyer can be
allowed to determined her rate so as to mazrimize the utility she accrues.

1. Each buyer has no utility for money but wants to maximize the utility she accrues.

2. The middleman refuses to sell any part of a good at a loss — the fact that the middleman
knows buyers’ utility functions enables him to do this (we will specify in Section 2.2 what
this restriction means mathematically).

We show in Lemma 2 that under these assumptions, there is a unique rate r; for each buyer ¢, as a
function of prices. This is also the rate at which each buyer’s marginal willingness to pay equals the
marginal prices of goods she gets, as required under perfect price discrimination. At this rate r;,
the total utility buyer ¢ is able to get will be 7; - m;. In our model, the elasticity among consumers
leads to profit for the middleman; in particular, if the utility functions of all buyers are linear, then
the middleman will make no profit.

We will use the following notation and definitions throughout. x will denote allocations made of
all goods to all buyers. x; will denote the restriction of x to allocations made to buyer ¢ only, and
x;; will denote the amount of good j allocated to buyer 7. For the sake of ease of notation, let us
introduce the following w.r.t. a generic buyer: y, a vector of length g, will denote allocation and
its jth component, y;, will denote the allocation of good j. f: R} — R, will denote her utility
function. Function f is concave if for any allocations y and v,

s <y+y'> it) +fy)
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The overall objective is to find prices for goods such that under these transactions, the market
clears, i.e., there is no surplus or deficiency of any good. These will be called equilibrium prices.
More formally, let p be prices of goods and r be the corresponding rates of buyers, as given by
Lemma 2. Assume that each buyer i is charged at rate r; and is allocated a bundle of goods. We
will say that prices p are equilibrium prices if they satisfy the following conditions:

1. Each good having positive price is completely sold.

2. The money spent by each buyer i equals m; and ¢ accrues utility at rate r; described above
and formally defined in Section 2.2.

2.1 Applying non-separable utilities to online display advertising marketplaces

[GV11] show how the perfect price discrimination market model can be applied to online display
advertising marketplaces. Their model assumes additively separable utilities. We show that ex-
tending the model from separable to non-separable utilities makes it even more relevant to this
application.



We first recall the setting from [GV11], which applies to companies that sell ad slots on web sites
to advertisers. [GV11] view such a company as the middleman, the owners of web sites as sellers
and the advertisers as buyers. They view ad slots on different web sites as goods which need to
be priced. An advertiser’s utility for a particular ad slot is determined by the probability that
her ad will get clicked if it is shown on that slot. Advertisers typically pay at a fixed rate to the
middleman for the expected number of clicks they get, i.e., they are paying at fixed rate for every
unit of utility they get. Using knowledge of the utility function of buyers, the middleman is able
to price discriminate.

In the model of [GV11], an advertiser’s total utility is additive over all the slots she is allocated.
We note that the utility to an advertiser from placing ads on multiple web sites would typically be
an involved, non-separable function because the web sites may be substitutes, complements, etc.
Hence, extending to non-separable utilities makes the model more relevant to this application.

2.2 Determining buyers’ rates

With respect to any prices, we will give a closed-form definition of each buyer i’s rate, r;; for ease
of notation, we will do this for the generic buyer, i.e., we will define her rate r*. For this section,
assume that prices of goods are set to p. In Lemma 2 we will show r* is indeed her optimal rate,
i.e., it maximizes her utility. In Section 3 we will show that the solution of the convex (nonlinear)
program will assign utilities to a buyer at precisely this rate w.r.t. equilibrium prices. Hence, there
is no need to explicitly compute buyers’ rates.

Given two allocations y and y', we will say that y weakly dominates y' if for each good j, y; > y}.
The next lemma gives the mathematical condition that an allocation needs to satisfy in order to
satisfy Condition 2.

Lemma 1 An allocation y made by the middleman at rate r satisfies Condition 2 iff

0
Yy’ s.t. y weakly dominates y',¥7j : <8f(y’) = r) > pj.
Yj
Proof: Conceptually, assume that the middleman is making an allocation to the buyer gradually

and continuously and is charging the buyer at the rate of r units of utility per dollar. Clearly, the
effective price at which he is selling her good j depends on the allocation made already. If the
latter is y, then the marginal price of good j at allocation y is

of

8—%(3/) = T

Therefore, at this point the middleman is selling good j at a loss iff
of :
<8yj(y) - 7“) < pj,

since then he is charging the buyer less for good j than the amount charged from him by the seller.
The lemma follows. g



Let us say that an allocation y is feasible for rate r if it satisfies the condition given in Lemma 1.
We next define, for each r > 0, the entire set of allocations that are feasible,

S(r) = {y\ (g;(y) = pj> > r if y; >0 and §rotherwise}.
j

The function U : Ry — R gives the largest utility attained by a feasible allocation at rate 7:

U(r) =sup{f(y) | y € S(r)}.

Clearly, if 71 > ra, S(r1) C S(r2) and therefore U(r;) < U(rg). Hence U is a decreasing function
of r. Observe that because of the non-satiation condition, lim,_.o U(r) is unbounded.

Finally, we define rate r* as follows

r* = arg rngx{U(r) >m-r},

where m is the money of the generic buyer. Since function U(r) is unbounded as r — 0, r* is well
defined for all m.

Lemma 2 r* mazimizes the utility accrued by the generic buyer.

Proof :  Since U(r) gives the maximum utility that the buyer can get from a feasible allocation
at rate r, and since this is a decreasing function of r, if the rate is fixed at § > r*, then the utility
accrued by the buyer is U(S) < U(r*). The maximum amount of utility the buyer can get for
money m at rate r is r - m. Therefore, if the rate is fixed at o < r*, then the utility accrued by ¢
is a-m < r*-m. Hence r* is the optimal rate. O

3 The Convex Program

Optimal primal and dual solutions of convex program (1) give equilibrium allocations and prices,
respectively. Besides non-negativity, the only constraint is that at most 1 unit of each good is sold.
We will denote the Lagrange variables corresponding to these constraints as p;’s and will show that
at optimality, they will be equilibrium prices of the corresponding market.

maximize Z m; log(fi(xi)) (1)
1€B
subject to  Vj e G: inj <1
1€B

Vie B, Vj€G: a;ijzo
The KKT conditions for this convex program are:

1. VieG: p; >0.



2. VjeG: p; >0 = injzl-
i€B
m;  Of;
fz(l'z) aﬂfij

3. Vi€ B, Vj € G: Dj > (CCZ)

mi  Ofi
fz(ml) 39%’

4. Vie B,VjeG: z; >0 = p;j = (xz;).

Theorem 3 The optimal primal and dual solutions to convex program (1) give equilibrium alloca-
tions and prices, and the latter are unique. Moreover, both can be computed to any required degree
of accuracy in polynomial time.

Proof :  Because utility functions are assumed to be continuously differentiable, for an optimal
solution to program (1) there is a unique dual, i.e., prices, that satisfies the KKT conditions stated
above. From these, we will derive the 3 conditions defining equilibrium. Clearly, a separation oracle
for the constraints and objective function can be implemented in polynomial time. Moreover, since
the constraints are all linear, by [GLS88], the optimal solutions can be computed in polynomial
time to any required degree of accuracy.

The first equilibrium condition is implied by the KKT conditions 1 and 2. Consider buyer q.
Because of non-satiation, x;; > 0 for some j. For this j, let

ofi
T, = <axfw (iBZ) - pj> .

By KKT condition 4, any good j with x;; > 0 must satisfy this equality, and if for some good j,
x;5 = 0, then by KKT condition 3,

83)@'

This proves that the middleman does not sell any part of a good at a loss. Substituting r; back in
KKT condition 4, we get m; - r; = fi(x;), thereby proving that all money of buyer i is spent and r;
is the rate whose existence is established in Lemma 2. O

4 The Welfare Theorems

The first welfare theorem states that allocations made at equilibrium prices are Pareto optimal and
the second welfare theorem states that for any Pareto optimal utilities w*, there is a way of setting
the initial moneys of buyers in such a way that an equilibrium obtained for this instance gives
precisely u* utilities to buyers.

Theorem 4 Both the welfare theorems are satisfied by our market model.



Proof : If an allocation is not Pareto optimal, then it cannot maximize the objective function
of program (1). Hence, the first statement follows from Theorem 3.

Let S be the image of the map from the polytope of feasible allocations to utilities accrued. Because
of concavity of the utility functions, S is a convex region in R’}. Let u* be any Pareto optimal
utilities. Clearly, u* must lie on the boundary of this convex region. Let > ;,cpa;-u; = c be the
hyperplane that is tangent to region S and contains the point uw*. By Pareto optimality of w*,
a; > 0, for each ¢ € B, with at least one of these values being positive.

Let m; = a; - u}. Find the largest value of ¢’ so that Yiepmilogu; = c contains the point u*.
Now, it is easy to see that for the chosen values of m;’s, >_;c g m;logu; = ¢’ must be tangent to S

at u*. Therefore, if the market is run with the money of each buyer ¢ set to m;, the equilibrium

utilities will be u*, hence proving the second welfare theorem. O
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