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Abstract

We present an efficient algorithm for computing the minimal trellis for a group code over a
finite Abelian group, given a generator matrix for the code. We also show how to compute a
succinct representation of the minimal trellis for such a code, and present algorithms that use
this information to efficiently compute local descriptions of the minimal trellis. This extends
the work of Kschischang and Sorokine, who handled the case of linear codes over fields. An
important application of our algorithms is to the construction of minimal trellises for lattices.

A key step in our work is handling codes over cyclic groups Cpe, where p is a prime. Such
a code can be viewed as a submodule over the ring Z,~. Because of the presence of zero-
divisors in the ring, submodules do not share the useful properties of vector spaces. We get
around this difficulty by restricting the notion of linear combination to p-linear combination,
and introducing the notion of a p-generator sequence, which enjoys properties similar to that of
a generator matrix for a vector space.
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1 Introduction

Ever since the success of trellis coded modulation [22] (which revolutionized transmission rates of
modems in bandwidth limited channels), researchers have been studying block coded modulation [7,
12, 14]. Block group codes constitute a basic ingredient for a large class of block coded modulation
schemes [7]. The coding gain achieved by these schemes is possible only with soft-decision decoding
[22, 21]. Trellises provide a general framework for efficient soft-decision decoding of codes [25], for
instance using the Viterbi algorithm [4]. Since the decoding effort is directly related to the size of
the trellis, much work has been done on characterizing and constructing minimal trellises for group
codes [20, 6, 9, 15, 16].

In this paper, we present an O(k*n + s) time algorithm for constructing the minimal trellis for
a block code over a finite Abelian group, given a generator matrix for the code, where n is the
length of the code, k is the number of rows in the generator matrix, and s is the number of states
in the minimal trellis; throughout the paper, we will assume that it takes one unit of time to
perform an operation over the underlying field, ring or group. For decoding purposes, it is perhaps
more important to be able to efficiently compute required local descriptions of the minimal trellis.
For this purpose, we show how a succinct description of the minimal trellis for such codes can be
computed in O(k%*n) time and occupying O(kn) space; notice that this is polynomial in n amount
of space, even though the minimal trellis may be exponentially large. We give algorithms that use
this information to compute, for example, all transitions in to or out of a state in O(k) time.

Perhaps the most important application of our work is to the construction of minimal trellises for
lattices, since this problem essentially reduces to that of constructing minimal trellises for block
codes over Abelian groups. This is elaborated in Section 11. Another application arises as a
consequence of the following result: Certain famous non-linear binary codes (including Kerdock,
Preparata and Goethals codes) contain more codewords than any known linear code of the same
length. In a recent breakthrough result, Hammons, Kumar, Calderbank, Sloane and Sole have
shown that under the Gray map from (Z3)? to the ring Z4, these codes turn out to be linear over
Z4 [11]. Note that linear codes over Z; are the same as group codes over Cjy.

We have built directly on the work of Forney and Trott [9] and Kschischang and Sorokine [15].
Forney and Trott, building on the work of Willems on dynamical systems [23, 24], show that group
codes admit unique minimal trellises. Furthermore, they present important structural properties of
such trellises, especially in their State Space Theorem (see Section 3). Kschischang and Sorokine
have given an O(k*n+s) time algorithm for constructing the minimal trellis for a linear code over a
field, given a generator matrix for the code (see Section 4). They also present an efficient algorithm
for computing local descriptions of the minimal trellis.

The essential step in the algorithm of Kschischang and Sorokine is obtaining a special generator
matrix for the code: a two-way proper generator matrix. A simpler proof is offered to show that
such a generator matrix yields a minimal trellis (Section 4). A key step towards extending this to
codes over finite Abelian groups is handling codes over cyclic groups Cpa, where p is a prime. Such
codes can be viewed as linear codes over the ring Z,« and are therefore submodules over Z,a. The
extension is not straightforward; the main difficulty is the presence of zero-divisors in the ring. In
Section 5 we state the difficulties encountered because of zero-divisors. Some of these are quite
general, e.g., the inability to give satisfactory definitions for basis and dimension of submodules
over Z,a; and others are specific to minimal trellises. We then introduce the notions of p-linear



combinations and p-generator sequences that enable us to get around these difficulties (Section 6).
We show how Gaussian elimination can be adapted to this setting, and can be used for obtaining
a p-generator sequence for any submodule over Z,a, given a usual generator matrix for it. These
notions should find other applications as well, since they enable one to perform certain operations
on submodules over Z,a similar to the manner in which these operations are performed on subspaces
of a vector space.

In Section 7 we give a natural generalization of a two-way proper matrix: a two-way proper p-
generator sequence, and we show how Gaussian elimination can be used for obtaining it. Once
this is done, a minimal trellis for a linear code over Z,» can be constructed essentially in the same
manner as the field case.

Finally, in Section 8 we consider codes over finite Abelian groups. First, we show that group codes
over elementary Abelian groups can be seen as linear codes over an appropriate finite field. We
obtain a minimal trellis for this linear code, and from this trellis, using sectionalization, we obtain
a minimal trellis for the given group code. For dealing with arbitrary finite Abelian groups, we
show that it is sufficient to consider Abelian p-groups. A code over such a group is in turn same as
a linear code over a ring Z,«, and can be handled analogously.

The problem of computing local descriptions of minimal trellises is addressed in Section 9. Two
types of problems are solved: Given two states in successive time indices, determine if there is a
transition between them, and if so, determine the set of labels on the transition. Also, given a state
at time index 7, compute all transitions in to it and out of it.

In Section 10, we build on the State Space Theorem to give algebraic structural properties of the
set of transitions between two time indices in the minimal trellis for a group code; we call this the
Transition Space Theorem. This theorem also defines a succinct representation for the minimal
trellis for a group code, from which local descriptions can be computed. This applies to group codes
over non-Abelian groups as well; however, in general, the representation may be super-polynomial
sized.

2 Preliminaries

In this paper, we will only deal with block codes, i.e., codes for which each codeword is of the same
length, denoted by n. Let GG be a finite group (in this paper, all codes are over finite Abelian
groups), and let W = G™ be the n-fold direct product of G'. A subgroup C of W under the
componentwise addition operation of G is said to be a group code over G. Let I denote the set of
positive integers from 1 to n; I will be called the time azis. An element a € W will be called a
sequence; a = (a;,1 € I).

Let R be a ring; as a special case, R may also be a field. As before, let W = R™. Let C be a
subgroup of W under the componentwise addition operation of R, and assume furthermore that
C is closed under multiplication with elements of R, again carried out componentwise. Then, C is
said to be a linear code over R. Clearly, the class of linear codes over fields is contained in the class
of linear codes over rings, which is in turn contained in the class of group codes.

A trellis, T, for a group code C is an edge-labelled directed layered graph. The vertices of T are
partitioned into disjoint subsets Vg, V1, ---V,,. The set V; is referred to as the set of states at time



index ¢. V4 contains a unique start state vg, and V,; contains a unique terminating state v,. Edges
of T' are allowed to run only between states in successive time indices. A transition (v — v),
u € Vv € Viyq is labelled with a non-empty subset of elements from the group (G. This transition
is said to be out of state u and in to state v. A state having more than one out-transition (in-
transition) will be called forking state (collapsing state). A state w in trellis 7" will be said to be
forward proper (backward proper) if the sets of labels on the out-transitions (in-transitions) of u are
pairwise disjoint. Finally, trellis 7" will be said to be two-way proper if each of its states is forward
proper and backward proper.

A path from vy to v, consists of n transitions, vg — vy — v9--- — v,, where v; € V;. Such a
path defines all the n length words (aq, ag,---a,), where «; is drawn from the set labelling the
transition (v;—1 — v;). We require that each state must be useful, i.e., it must be on some path
from vy to v,. Finally, we require that the set of all words defined by all paths in T from vy to v,
be exactly the set of codewords in C. We will say that state s is responsible for all the codewords
whose paths use state s.

Clearly, there exists a trellis for each group code C: create a unique path from vy to v, for each
codeword, with unique intermediate states. Such a trellis will have as many states at each time
index as the number of codewords in C. For several reasons, including efficient decoding, it is
important to obtain a trellis for C having as few states as possible. Let us say that T is a minimal
trellis for C if at each time index, T has the smallest possible number of states.

Let C; and Cs be two group codes over the same underlying group G, and let T} and Ty be trellises
for these codes. Let C = C1Cy be the product of these two group codes. Notice that in general, C
may not be a group code; however, if G is commutative, C will be a group code. We can define the
operation of taking the product of trellises Ty and T, to obtain a trellis T for the code C as follows:
Let U;,0 <7 < nand V;,0 <1t < n be the set of states of T; and T5. Trellis T" will have states
W;,0 < i < n, where |W;| = |U;]|Vi|, and corresponding to each pair of states v € U; and v € V},
there is a state (u,v) € W;. There is a transition from (u,v) € W; to (v/,v’") € Wigq iff (v — o)
and (v — v') are transitions in T} and T; respectively. Let o and 3 be the labels on the transitions
(u— u') and (v — ). Then, the set of labels on transition ((u,v) — (v/,v")) is {abla € o, b € §}.

3 Structural properties of minimal trellises for group codes

As established by Forney and Trott, structural properties of group codes lead to structural prop-
erties of minimal trellises for such codes. In this section, we will review properties essential for our
work, especially those following from the State Space Theorem.

Let J C I be a subset of the time axis. The projection map Py : W — W sends sequence a € W
to the following sequence b:
m:{miﬁeJ

0 ifeel—-J

Thus, the projection map Pj simply ‘zeros out’ the I — J components of a sequence. Define
projection P;(C) = {Pj(c)|c € C}, i.e., the image of C under the projection map P;. The projection
map is a homomorphism, since Pj(ab) = Pj(a)P;(b). Further, since C is a group, the image of C
under Py, P;(C) is a subgroup of W. If J consists of the first k£ time indices, we will denote Py(C)



by P,-(C), and Pr_j(C) by P+ (C); for a € W, P,—(a) and P+ (a) are similarly defined. P, (C)
will be called the set of codeword pasts and Pj+ (C) the the set of codeword futures.

The cross section of C in J, denoted by Cj, is a subcode of C consisting of all codewords whose
components in I — .J are zero, i.e.,

Cij={celC|lexy=0,kel—J}.

Notice that Cj is the kernel of the projection map Pj_; restricted to C. Again, if J consists of the
first k time indices, we will denote Cj by Cp- and Cy_j by Cp+; these are called the past subcode
and future subcode, respectively, in [9]. Since C- and Cp+ are both normal subgroups of C, C;—-Cj+
is also a normal subgroup of C. Furthermore, since Cp,— NCp+ = {0}, C,,~Cp+ is a direct product.

The State Space Theorem of Forney and Trott [9] states that

P=(C)/Ch= = P+ (C) /Crt ~ C/(Cp-Ci ).

It will be instructive to consider the following bipartite graph, Hy the past-future graph at time
index k: Its vertex sets are P, (C) and P+ (C), and two vertices u € P,—(C) and v € P+ (C) are
joined by an edge iff uv € C. We will say that (4, B), A C P,—(C), B C P+ (C) is a bipartite clique
if for each u C A and v C B, (u,v) is an edge in Hy. The State Space Theorem shows that Hy
consists of disjoint bipartite cliques.

Notice that C,- C P,—(C) and Cy+ C P+ (C). Since Cp,-Cy+ is a direct product, there is a bipartite
clique between the corresponding sets of vertices in Hy. This clique will be called the zero cligue
since it corresponds to the subgroup C,-Cp+ of codewords of C; one of its edges corresponds to the
all zeros codeword.

For any ¢ € C, consider the coset ¢C,-Cp+. The codewords in this set consist of pasts corresponding
to the elements of the coset P,—(C)P;-(c) and futures corresponding to the elements of the coset
P+ (C) P+ (c). In Hy, there is a bipartite clique between these sets of vertices; the edges of this
clique correspond to ¢Cp—-Cp+.

The construction of the unique minimal trellis, T, for C follows from the past-future graphs Hy, 1 <
k < mn. T has |C/(C,-Cp+ )| states at time index k; each state is responsible for codewords in one of
the cosets. The state that is responsible for codewords in the subgroup C,-Cp+ will be called the
zero state, and will sometimes be denoted by 0. If u and v are states at time indices k£ and k& + 1
respectively, then there is a transition from u to v iff the sets of codewords they are responsible for
have a non-empty intersection, say A. If so, the set of labels on this transition is the set of symbols
in P(p41)(A), i.e., the projection of A onto the (k + 1)t coordinate. Define the output group at
time index k + 1 to be G11 = Fy11)(C); notice that Gy is a subgroup of G.

4 Minimal trellises for codes over fields

In this section we will introduce the algorithm of Kschischang and Sorokine [15] for linear codes
over fields, since we build directly on it. We will also give a simpler proof for their algorithm. The
running time of their algorithm is O(k%*n 4 s), where the generator matrix has size k x n, and s is
the number of states in the minimal trellis.



Our simplified proof of minimality relies on the following characterization established by Willems
[23, 24] in the context of dynamical systems. We will use this characterization for proving minimality
of trellises constructed for the cyclic group and Abelian group cases as well.

Theorem 4.1 (Willems [23, 24]) A two-way proper trellis for a block code, C, is the unique
minimal trellis for C.

For a simplified proof of Theorem 4.1, proven in the context of minimal trellises for group codes,
see [17, 18]. For further extensions of Willems’ results to codes over finite Abelian groups, see [3].
In general, a code may not admit a two-way proper trellis. However, if such a trellis does exist for
the code, it is guaranteed to be minimal; see [13] for a proof of this fact.

A linear code, C, over a field, GF(q), is a vector subspace, and can be described by its generator
matrix, A. The minimal trellis for the code generated by a single row vector of A can be obtained
in a straightforward manner as explained below. Since C is the sum of the codes generated by
the rows of A, the product of the trellises for these codes will be a trellis for C; the operation of
computing the product of trellises was introduced by Kschischang and Sorokine [15] for precisely
this reason. In general, this trellis may not be minimal. Forney has called a generator matrix that
gives rise to a minimal trellis a trellis-oriented generator matriz [6]. The key step in the algorithm
of Kschischang and Sorokine is efficiently obtaining a trellis-oriented generator matrix, given an
arbitrary generator matrix A.

Let (a1az---ay) be arow of A. Let a; be the first non-zero entry and a; be the last non-zero entry
in this row, i.e., ay = 0 for k < ¢ and for k > j. Then, we will say that this row starts at 7 and ends
at j. Furthermore, a; will be called the starting element of this row and a; will be called its ending
element. The minimal trellis for the code generated by this vector has a simple structure: It has a
single forking state with ¢ out-transitions at time index 7 — 1, and a single collapsing state with ¢
in-transitions at time index j; all other states have one in and one out transition; see Example 1.

Example 1 For the code generated by a single vector over G F(q), the minimal trellis consists of a
forking state at the time index at which this vector starts and a collapsing state at the time index
at which this vector ends. For example, the minimal trellis for the code over GF(5) generated by
(030210) is given in Figure 1.

We will first prove that for establishing minimality of the product of two minimal trellises, it is
sufficient to establish two-way properness of the zero-states at each time index. We will prove
this in the full generality of group codes. The lemmas below consider only forward properness —
analogous statements hold for backward properness. By the set of labels emanating from a state
we mean the union of the sets of labels on all transitions out of this state.

Lemma 4.2 Let T be a minimal trellis for a group code, C, over group G and let so and s be the
zero state and an arbitrary state at time index 1. Let ag and « be the sets of labels emanating from
so and s respectively, and let ;41 be the output group at time index ¢+ 1. Then, o is a normal
subgroup of Giy1, and « is an element of the quotient group Giy1 /.

Proof: State sq is responsible for the set of codewords in C;-C;+. Since C;-C;+ <C (note that as
usual, “4” denotes normal subgroup),

ap = Fi11)(Ci-Cit ) 4 Pi31)(C) = Gy



Since the set of codewords that s is responsible for form a coset of C;-C;+ in C, using a similar
argument, we get that « is an element of the quotient group Gjy1/ap. |

Lemma 4.3 Let C; and Cy be length n group codes over the same underlying group G and let
C = C1Cy (in general, C may not be a group code). Let Ty and Ty be minimal trellises for C1 and
Cy respectively, and let T be the product of these trellises, which will be a trellis for code C. Let ag
and By be the set of labels emanating from the zero states, z; and zs, at time index 1 in Ty and
Ty respectively. Then, T is forward proper at time index 1 iff g and By intersect trivially, i.e.,
ag N Bo = {0}, where 0 is the identity element of G.

Proof: Since ag and g are subgroups of G, by a well-known theorem in group theory,

| o] | B0l
aofo|l = T———-
| | levg M Bo
So, the labels emanating from the zero state at time index ¢ in T, (z1,22), are all distinct iff
| Bo| = ||| o, which happens iff ag N o = {0}.

Consider two arbitrary states s; and sy in 17 and T5 respectively at time index 7. Let us view the
set of labels emanating from s; as a left coset of ag, say aag, and those emanating from s; as a right
coset of g, say fBob (notice that in general ag and o may be normal subgroups of different groups
in ). Then, the of labels emanating from state (s, s2) in T are given by aagfBpb. As before, these
will be all distinet iff |ofFo] = ||| Bo|. The lemma follows. ]

We will say that a generator matrix is two-way proper if every row starts at a distinct point, and
every row ends at a distinct point. Following is a restatement of Theorem 2 of Kschischang and
Sorokine [15]; we give a simpler proof for it using Theorem 4.1 and Lemma 4.3.

Theorem 4.4 (Kschischang and Sorokine [15]) A generator matriz for a linear code over a
field is trellis-oriented iff it is two-way proper.

Proof: Since for a field, multiplication by a non-zero element is a one-to-one onto map, in this
case, the set of symbols emanating from a zero state is either {0} or the entire field. Compute
the product of the trellises for the rows of the generator matrix. At any time index ¢, the zero-
state of the product trellis is forward proper iff the sets of labels emanating from zero-states in
the component trellises at time index ¢ intersect trivially. This happens iff at most one row of the
generator matrix starts at ¢. Similarly for backward properness. [ |

Using two stages of Gaussian elimination, any generator matrix for C can be converted into a two-
way proper generator matrix. The first stage gets the matrix in the usual row echelon form, i.e.,
row 7 + 1 starts at a later point than row ¢, for 1 < i < n — 1. Then, by a process of “cancelling
upwards”, we can ensure that no two rows end at the same point; this process does not affect the
starting points.

Example 2 Consider the following generator matrix over GF(2):

1100
1010



The trellises for the individual rows as well as the product trellis are shown in Figure 2(a). In this
case, the trellis obtained is not two-way proper. However, we may convert the above generator
matrix to a two-way proper matrix to obtain

1100
0110

The trellis obtained from this matrix is shown in Figure 2(b).

5 Extending to rings Z,.: the difficulties encountered

A length n linear code, C, over a ring Z,a is a submodule of the module ZJ.. Such a submodule
can be specified via a generator matrix; linear combinations of the rows of the matrix give vectors
of the submodule. So, the question arises whether the notion of a two-way proper generator matrix
again helps in obtaining minimal trellises. The answer is, “No”. Consider the code generated by
the following matrix over Zy:

11

02

. The two rows start at different indices, but end at the same index. However, it is not possible
to remedy this by upward Gaussian elimination. The reason is that whereas 1 is a unit, 2 is a
zero-divisor in Z4. In fact, as shown in Example 3, no generator matrix for this code is two-way
proper.

Example 3 The following code over Z7 has no two-way proper generator matrix. Moreover, each
generator matrix yields a trellis that is not two-way proper, and hence non-minimal.

C = {00, 11,22,33,02, 13,20, 31}

Since this code has eight codewords, we need at least two rows in the generator matrix. Since the
multiple of a zero-divisor cannot give a unit, one of the rows in the generating matrix must contain
a unit and so must be drawn from {11, 33,13,31}. But then the other row will either have the same
starting point or the same ending point as this row.

Unlike the field case, the trellis for the code generated by a single vector can have several forking

states and several collapsing states. For example, the minimal trellis for the length 6 code generated
by (241014) over Zg is shown in Figure 3.

We will need the following definitions: For a € Za if the additive subgroup generated by a has p*
elements, then say that the order of a is k. For example, the order of 0 is zero, and the order of 1 is
a. For a,b € Z,a, a and b will be said to be associates if there is a unit v € Zpa such that a = ub.
Notice that @ and b are associates iff they have the same order. In the example, notice that as the
orders of elements in the given vector first increase, we get forking states. Finally, as the orders
decrease, we get collapsing states.

Let us point out some more general difficulties in working over modules, arising because of zero-
divisors (and more generally, the fact that elements of the ring have different orders). There are
two natural ways of defining linear dependence of a set of vectors V:



e a non-trivial linear combination of the vectors in V gives the zero vector

e one of the vectors in V' can be expressed as a linear combination of the rest.

In the case of a vector space, these two definitions are equivalent. However, in the case of a module
dependence in the first sense need not imply dependence in the second sense. For example, over
Zy, the vectors (12) and (10) are dependent by the first definition, but not the second.

Another difficulty is that we cannot give a suitable definition of dimension of a submodule. For
example, over Zy, (20) and (02) form a basis for the submodule they generate. On the other hand
(10) and (01) form a basis for a submodule that strictly contains the first submodule. Consequently,
defining the dimension of a submodule as the cardinality of its basis is not very meaningful. Also
notice that the vectors of the first submodule are not uniquely generated by linear combinations of
the basis vectors.

6 p-linear combinations and p-generator sequences

In this section, we will introduce the notions of p-linear combinations and p-generator sequences
which enable us to get around the difficulties mentioned in the previous section in working over
submodules of Z,«. We will show that p-linear combinations of p-generator sequences enjoy prop-
erties similar to those of a basis for a vector subspace: they uniquely generate the elements of the
submodule, a suitable definition of dimension of a submodule can be given, and the two notions of
linear dependence turn out to be equivalent.

Let V = {vi,---,v}} be a set of vectors over Z,o. We will say that Sk @ is a p-linear combina-
tion of these vectors if all coefficients a; € {0,1,---(p—1)}. Notice that the elements 1,---, (p— 1)
are all units in Z,». We will denote by p-span(V') the set of all vectors generated as p-linear
combinations of vectors in V, and by span(V') the set of vectors generated as (ordinary) linear
combinations of vectors in V. We will say that a given linear combination (p-linear combination)
uses vector v; if its coefficient is non-zero in the linear combination (p-linear combination).

An ordered sequence of vectors V' = (v3,---,0}) over Zya is said to be a p-generator sequence if
for 1 < i < k,pv; is a p-linear combination of the vectors ¥41,---,v; (in particular, pvj is the
zero vector). For each vector 0; one such p-linear combination is designated the canonical p-linear
combination for v;. If i < j, for convenience, we will say that v; is earlier than v; and that v; is
later than v;.

For an arbitrary set of vectors V', p-span(V') may not be a submodule, for example, if po; is not a
p-linear combination of the vectors in V, for some ©; € V. However, ensuring this condition is not
sufficient as shown in Example 4. On the other hand, this condition together with the order among
the vectors, as stated in the definition of a p-generator sequence, turns out to be sufficient; this is
established in Theorem 6.2.

Example 4 Consider the following set of vectors over Zg.
7p = (3106), Uy = (2270), U3 = (8510), Uy = (3533)

Here,
30y = Up + 203, 30y = Uy + Uy



303 = Uy + Uy, 304 = U1 + 205 + U3 + U4

The p-span of these vectors is not a submodule, since it does not contain the vector 5, = (6766).
The reason is that we cannot order the vectors so they satisfy the definition of a p-generator
sequence.

Example 5 The following set of vectors over Zg form a p-generator sequence:
7; = (0101), ¥ = (2500), 03 = (5203), ¥4 = (3300)

36, = 20, 4+ U, 30, =20y, 30y =20s, 30u=0

Let us see how to obtain a p-linear combination equivalent to @ = 70, + 49, + 03 + 20, = (1801):

U = Tih + 44Uy + U3 + 20,

U1 + 2(304) + 403 + U3 4 204

Ty + 2(20; + 03) + 40, + U3 + 204
U1 + 8%y + 3U3 + 204

Ty + 205 + 2(204) + 303 4 204

U1 + 20y + 204 + 674

= U + 20 + 204

Remark: Let us give an intuitive justification for the definition of p-generator sequences. The
definition is motivated by computational considerations. If the vectors can be ordered as required
in the definition, computations with them proceed in an orderly fashion along the ordering; this is
proven rigorously in Theorem 6.2. Otherwise, computations get “entangled” in loops. In fact, we
conjecture that if the vectors in V' cannot be ordered, then either p-linear combinations of V' do
not generate a submodule, or the two notions of dependence do not turn out to be equivalent (see
Theorem 6.3); we expect the proof of this to be quite involved. Examples 4 and 5 illustrate this.

Lemma 6.1 Let V be a p-generator sequence, with |V| = k. Let ¥ = Zle a;0; be any linear
combination of vectors in V, and let 0] be the earliest vector used in this linear combination. Then,
U can be expressed as a p-linear combination of 0; and later vectors of V.

Proof: The coeflicients occurring in any linear or p-linear combination can be written as a k
dimensional vector. Let (by,---,b;) and (cq,-- -, ¢;) be two such vectors, and let b; and ¢; be their
first non-zero coefficient. We will say that (b1, ---,bx) is lexicographically larger than (cq,-- -, c)
if either ¢ < j, or 2 = 5 and b; > ¢;.

Now consider the coefficient vector (aq,-- -, ag). If all coefficients are in the range {0,1,---,p— 1},
then we are done. Otherwise, let a; be the first coefficient that is > p. Let a; = ap +b. Write
apv; using the canonical p-linear combination for v;. This uses vectors occurring later than v;.
Substituting, we will get a vector equivalent to (aq,---,a), which is the same in the first j — 1
places, and has b in the j* place. So, this vector is lexicographically smaller than (ay,---,a).
Now, this process can be continued until we get an equivalent p-linear combination. Clearly, the
process terminates, and the final vector will have zero coefficients in the first [ — 1 places. [ |



Theorem 6.2 IfV is a p-generator sequence then p-span(V') = span(V).

Proof: Clearly, p-span(V) C span(V'). Since by Lemma 6.1 every vector in span(V') can also be
expressed as a p-linear combination of vectors in V', the other direction also follows. [ |

Theorem 6.3 Let V' be a p-generator sequence. W.r.t. p-linear combinations over V, the two
notions of linear dependence are equivalent, i.e., there is a non-trivial p-linear combination of
vectors from V' that is 0 iff there is a vector in V that can be expressed as a p-linear combination
of the remaining vectors in V.

Proof: First suppose that there is a non-trivial p-linear combination Zle a;0; = 0. Let 0] be the
earliest vector used by this p-linear combination. Now we have

k k
av;=—( > aiv) = Y. (p” - 1)a;v;
1=[+1 i=l+1
Since a; is a unit in Z,«, we get
k
o = (a) ™" Z (p” — 1)a;v;.
i=l+1

Now, by Lemma 6.1, the linear combination on the r.h.s. can be expressed as a p-linear combination
which does not use 0. So, ¥; has been expressed as a p-linear combination of the remaining vectors.

To prove the other direction, suppose v; = >, a;0;. Let v be the earliest vector used in the r.h.s.
There are two cases:

Case 1: [ < j. By Lemma 6.1, —(E#l a;0;) can be expressed as a p-linear combination using
vectors later than ©; only. Hence,
0= (O )

i#l
can be written as a non-trivial p-linear combination that is 0.

Case 2: [ > j. By Lemma 6.1, —9] can be expressed as a p-linear combination that does not use
Z a;v; — U]
i#l

can be written as a non-trivial p-linear combination that is 0.

v;. Hence,

We will say that a p-generator sequence V' is p-linearly independent if there is no non-trivial p-linear
combination of its vectors that is 0. A p-linearly independent p-generator sequence will be called
a p-basis. Clearly, the p-linear combinations of the elements of a p-basis V' uniquely generate the
elements of the submodule p-span(V). So, if |V| = k, the submodule has p* elements. We will
define the p-dimension of this submodule to be k.

10



Remark: Note that the notions of p-dimension and p-generator sequence of a submodule over 7,a
correspond exactly to the notions of composition length and generating system along a composition
chain of a module in commutative ring theory (see [19]). The reason for our choice of terminology
is that it is more suggestive of properties of vector subspaces that we are attempting to endow
submodules over Z,o with.

Lemma 6.4 Every submodule over Z,« has a p-generator sequence.

Proof: Let U = {v1,---,v} be a usual generating set for the submodule. Let V be the ordered
sequence consisting of multiples of these vectors by p*,0 < ¢ < o — 1, i.e.,

V= (U_i7pv_iv"'7pa_lv_i7 7U_1;7pv_1;7"'7pa_lv_l;)-
Then, clearly V is a p-generator sequence with p-span(V') = span(U). Notice that if any of the
vectors in V is 0, it can be dropped. [ |

Our next goal is to show that every submodule over Z,« has a p-basis; we will accomplish this by
adapting Gaussian elimination to this setting. Let us first recall the process of Gaussian elimination
when performed on vectors from a vector space. Let V = {v1,---, 03} be the generator set for a
subspace of F", the n-dimensional vector space over field F'. The process of Gaussian elimination
is based on the following fact: Let @ = S_%_, a;5} be a linear combination of the vectors in V. Then,
for any vector ¢; that is used by this linear combination, V + @ — ¢; generates the same subspace as
V. Using this principle, Gaussian elimination starts with an arbitrary generator set for a subspace,
and brings it into “row echelon” form, i.e., all non-zero vectors have distinct starting points, and
are sorted by starting point, with the 0 vectors being listed last. Now, the non-zero vectors are
linearly independent, and form a basis for the subspace. Carrying out this process is somewhat
more involved for p-generator sequences.

Lemma 6.5 Let V = (v1,---,0;) be a p-generator sequence, and let ¥ = Zle a;v; be a p-linear
combination of its vectors. Let v} be the earliest vector in this ordering that is used by the p-linear
combination, and U be obtained by replacing 0] by U in the ordered set V. Then, U is also a
p-generator sequence with the same span as 'V .

Proof: Since a; is a unit, we can write
0 = (a) N0 =D i)
i#l
Therefore, corresponding to any linear combination of the vectors of V' there is an equivalent linear
combination of the vectors of U and vice versa. Hence, U has the same span as V.

Next we show that U is a p-generator sequence, i.e., for each vector v; € U, pv; can be expressed
as a p-linear combination of vectors later than v; in U. This is clearly true for j > [. For vector v,

po = pui+ > pavi.
i#l
Using Lemma 6.1, and the fact that there is a p-linear combination for po; using vectors later than
[, the r.h.s. can be expressed as a p-linear combination of vectors later than [. Finally, consider

11



j < . If the canonical p-linear combination for pv; in V does not use v;, we will simply use this
same p-linear combination. Otherwise, we will substitute for ; using the first equation given above,
and use Lemma 6.1 to obtain a p-linear combination that uses vectors of U later than v;. [ |

Corollary 6.6 Let V = (v1,---,0}) be a p-generator sequence. Let T = 0; + av;, where i < j and
a € Zya. Then, replacing v; by v in V' gives an equivalent p-generator sequence.

Proof: The proof follows by observing that av; can be written as a p-linear combination of v; and
later vectors of V. [ |

Say that a p-generator sequence, V', is proper if for each pair of non-zero vectors, @, v € V, if 4 and
U have the same starting point, then their starting elements are not associates.

Lemma 6.7 Fvery submodule of Zja has a proper p-generator sequence.

Proof: Let V be a p-generator sequence that is not proper. Say that vectors ¥ and @ are in
conflict if they have the same starting point, and their starting elements are associates. Among
all conflicting pairs having the earliest starting point, pick a pair whose starting elements have the
highest order. Let ©; and v; be this pair, with 7« > j. Now, we can find a € Z,« such that adding
av; to v; zeros out the starting element of v;, i.e., ¥ = v; + av; has a later starting point than ;.
By Corollary 6.6, replacing ; by @ in V gives an equivalent p-generator sequence. Clearly, this
process must terminate, and yield a proper p-generator sequence. ]

We will say that a proper p-generator sequence V = (vi,---,0;) is in row echelon form if for
1 <v < g <k either:

1. v; has an earlier starting point than v}, or

2. ¥; and v; have the same starting point, and the starting element of v; has higher order than
the starting element of v;.

Lemma 6.8 Let V = {vy,---, 0%} be a p-generator sequence in row echelon form. If 0; is non-zero,
then a p-linear combination for pv; cannot use any vector v; with j < 1.

Proof: Suppose not, and let 07 be the earliest vector used. V has at most one vector with a given
starting point and order of starting element. Therefore, the remaining vectors used in the p-linear
combination cannot zero out the starting element of ©;. So, this p-linear combination will either
start before v;, or will start at the same point as ¥; but with an element of higher order than the
starting element of ¥;. In either case we get a contradiction. [

Corollary 6.9 Let V be a proper p-generator sequence. Then, permuting ils vectors so they are in
row echelon form gives an equivalent p-generator sequence.

Lemma 6.10 The non-zero vectors of a p-generator sequence in row echelon form are p-linearly
independent.

12



Proof: The proof is along the same lines as Lemma 6.8. Consider any non-trivial p-linear com-
bination of the vectors. Then, the starting element of the earliest vector used cannot by cancelled
out by the remaining vectors. Hence, no non-trivial p-linear combination of the vectors can be 0. m

Theorem 6.11 Fvery submodule of Z . has a p-basis.

Finally, we give below the Gaussian elimination procedure that starts with an arbitrary p-generator
sequence for a submodule of ZJ., and finds a p-generator sequence in row echelon form. This
procedure is designed along the lines of the usual Gaussian elimination procedure for obtaining a
basis in row echelon form for the field case; it simultaneously carries out the process in Lemma 6.7,
together with the permutation of vectors given in Corollary 6.9.

ALGORITHM (GAUSSIAN ELIMINATION

—_

S +— V.
While there is a non-zero vector in S do:
Find S’ C S, vectors of S having the earliest starting point.
Find S” C S, vectors of S’ having the highest order starting element.
Pick the last vector ¥ € S”, list it, and set S «— S — {¢}.
For each remaining @ € S”, replace @ in S by (@ + a?),
where a € Z,a such that (% + a¥) starts later than 4.

W N

[

[« o~
NSNS NN NN

7).  end.

Theorem 6.12 The process of Gaussian elimination starts with an arbitrary p-generator sequence
for a submodule, and finds a proper p-generator sequence in row echelon form. Its running time
is bounded by O(k*n) operations over Z,o, where k is the number of vectors in the p-generator
sequence.

Example 6 Consider the code over Zg generated by:

1212
2042
0044

A p-generator sequence for it is is given below. Since there are two rows starting with a 2 in column
one, we add 3 times row 3 to row 2. Next, we add row 6 to row 5. Finally, discarding duplicate
rows we get a p-basis.

1212 1212 1212
2042 0426 0426 (1)121;2
2424 2424 2424
0044 | — | ooaa | 77| 0044 | Eéii
4004 4004 0044 1040
4040 4040 4040
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7 Minimal trellises for codes over rings 7.

In this section we will present a polynomial time algorithm for constructing a minimal trellis for a
linear code over a ring Z,a, given a generator matrix for it. Let us first give a natural generalization
of the notion of a two-way proper matrix as defined for the field case.

A p-generator sequence, V will be said to be two-way proper if:

1. for each pair of vectors 4,7 € V, if @ and ¥ start at the same point, then their starting
elements are not associates, and

2. for each pair of vectors @, ¥ € V, if @ and ¥ end at the same point, then their ending elements
are not associates.

Below we give an algorithm that starts with a proper p-generator sequence in row echelon form, V/,
and finds a two-way proper p-generator sequence having the same span.

ALGORITHM TWO-WAY PROPER P-GENERATING SET

1). S — V.

2). While S is not two-way proper do:

3). Find S" C S, with |S’] > 1, vectors having the latest ending point,
and moreover their ending elements being associates.

4). Let ¥ be the last vector in 5.

5). For each remaining o € S', replace @ in S by (4 + a?),

where a € Z,~ such that (¥ + a¥) ends earlier than 4.

6). end.

Lemma 7.1 ALGORITHM TWO-WAY PROPER P-GENERATING SET starts with a proper p-generator
sequence in row echelon form, and finds a two-way proper p-generator sequence with the same span.
Its running time is bounded by O(k*n) operations over Zya, where k is the number of vectors in
the p-generator sequence.

Example 7 The p-basis obtained in Example 6 is not two-way proper. We add row 2 to row 1
and row 4 to row 3 to obtain the final two-way proper p-basis:

1630
0426
2460
0044
4040

Using two-way proper p-generator sequences, our trellis construction algorithm has the same overall
structure as the field case. The trellis for a single vector ¥ of the two-way proper p-generator
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sequence, V, is required to generate all codewords that can be generated as p-linear combinations
of this vector, i.e., {0,7,27,---,(p — 1)¢}. This trellis is similar to the trellis for a single vector
in the field case: it has a p-way fork at the time index at which @ starts, and a p-way collapse at
the time index at which ¥ ends. The p out-transitions will be labelled with 0 and associates of the
starting element of ¢, and the p in-transitions will be labelled with 0 and associates of the ending
element of ©. We will next show that the product of the trellises for the vectors of V is two-way
proper and hence minimal.

Let ay,---a, € Z,o. For notational convenience, it will be useful to regard these elements as one
dimensional vectors belonging to the module Z;a. We can then talk about all p-linear combinations
of these elements.

Lemma 7.2 Let ay,---ay € Zpa, so that they are pairwise non-associates. Then, their p-linear
combinations give distinct elements of Z,a.

Proof: Notice that if we start with any a elements of Z,« that are pairwise non-associates, they will
form a p-basis for the one dimensional module Z;a. Hence, in particular the p-linear combinations
of ay,---ay will generate distinct elements in Z;a. [ ]

It is easy to see that the converse of the statement in Lemma 7.2 is not true, i.e., one can get an
example in which even though a4, - - - ay are not pairwise non-associates, their p-linear combinations
may still generate distinct elements of Z,a. Yet the following holds:

Theorem 7.3 Let V' be a p-basis for a submodule of ZJ.. Then, the product of trellises for the
vectors of V' is a minimal trellis for the submodule generated by V iff V is two-way proper.

Proof: Suppose V is two-way proper. Let us show that the product trellis will be forward proper;
the proof that it is backward proper is similar. If V' has k; vectors, say V;, that start at time index
i, then any state, s, in the product trellis at time index i — 1 will have p* out-transitions. Since the
starting elements of the vectors in V; are non-associates, by Lemma 7.2, the p-linear combinations
of these vectors will all start with distinct elements. The set of symbols on the out-transitions of s
consist of some element a € Z,» added to these distinct elements, and so s is forward proper.

Next, suppose V is not two-way proper. Suppose there are two vectors 4 and @ starting at index
7, so that their starting elements are associates; the proof in case V has two vectors whose ending
points are the same, but ending elements are associates is similar.

Now, there are units b,c € Z,a such that bw 4 cv' starts at a later index than 7. Let V; be the set
of vectors of V' that start at index ¢. Using the fact that V is a p-generator sequence it can be
argued that b 4+ ¢ can be written as a p-linear combination of vectors in V;; clearly, this p-linear
combination is non-trivial. In addition, the trivial p-linear combination of the vectors in V; also
gives a vector that is 0 at time index 1.

Finally, let s and @ be as defined above. Now, there are two p-linear combinations of vectors in V;
that give out-transitions on symbol a from state s. Therefore, the product trellis is not two-way
proper, and hence it is not minimal.
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Example 8 Consider the code over Z, generated by the following two-way proper p-generator
sequence:

1230

2020

0222

The trellises for the individual rows as well as the product trellis are shown in Figure 4.

8 Minimal trellises for codes over Abelian groups

We will first extend our construction algorithm to codes over elementary Abelian groups; this will
illustrate in a simpler setting the main ideas in the extension to codes over arbitrary finite Abelian
groups. An elementary Abelian group G is isomorphic to a direct product of cyclic p-groups, i.e.,
G =~ ), where p is a prime.

Lemma 8.1 A length n group code C over G =~ C" can be viewed as a linear code, S, of length
mn over GF(p).

Proof: Using the natural isomorphism between C), and the additive group of GF(p), we can
view C as a length mn code over GF(p), say S. Since C is a group code, so is S. Further, since
multiplication in GF(p) is simply repeated addition, S is a linear code over G F(p). [

Biglieri and Elia [1] have shown that C can be specified by a k x n generator matrix ¥ whose entries
are endomorphisms, v; ; : C" — C". Any information vector v' € (C;”)k yields the code word 7V,
and the set of all code words constructed in this manner constitute C.

Lemma 8.2 Given a generator matriz U for C, we can obtain a km X mn generator matriz over

GF(p), A, for S.

Proof: As shown in [1], an endomorphism % : Cpr — C7" can be viewed as an m X m matrix, My,
over Cp. View an element a € ()" as an m-dimensional row vector @ with entries from ). Then,
aMy = ¥(a).

Thus, ¥ can now be viewed as a £ xn matrix whose elements are m xm matrices over C',. Intuitively,
the km x mn matrix A is obtained by simply “removing the demarkations” of the element matrices
of W. Formally, for 1 <7 < km and 1 < j < mn, divide ¢ and j by m to obtain quotients and
remainders ¢;, ¢; and r;, r; respectively. Now, let the (i, )" entry of A be the (r;, r;)™* entry of the
matrix corresponding to ¥y, 4, i.e.,

A[Zm]] = Mlﬁqi,qj [riv T‘]]

Clearly, A is the generator matrix for code S. [ |

The algorithm for obtaining a minimal trellis for C is as follows: First, obtain a minimal trellis T
for the linear code S. This trellis will have length mn. Next, sectionalize this trellis by collapsing m
successive layers into one layer to obtain trellis 77: T’ has length n, and the set of states in layer i
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in 7" is the same as the set of states in layer k¢ in T'. States u and v in successive layers of T’ have
a transition iff there is a path from w to v in T. If so, each such path gives a symbol from group
G (of course, if there are multiple labels on transitions of 7', we will get multiple symbols from the
same path); these symbols constitute the set of labels on this transition. It is easy to see that if T’
is two-way proper, then so is T’ (notice that 7’ may be two-way proper even though T is not).

Lemma 8.3 T’ is a minimal trellis for C.

Example 9 For the elementary Abelian group with four elements, Cy x Cy = {1,2} x {1,y},
consider the following length 4 group code. This is an MDS code, and it cannot be seen as a linear

code over GF'(4).

@11 ) Oz y @y y 2z (1 2y 2z 2y
(z 1 2y ay) (@ = 1 2 (¢ y 2z y) (@ 2y y 1)
y 1Ly vy o 1) (y y 1 2y (y 2y 2y z)
(zy 1 2 2) (ey o y ay) (ay y 2y 1) (2y 2y 1 y)

Under the map
1 — (00),2 — (01),y — (10), 2y — (11)

this code is same as a length 8 linear code over GF'(2). A generator matrix for the original group

(@) () (1) (1)
(n) () (%) ()

and a generator matrix for the corresponding code over G F'(2) is given below from which we derive
the following two-way proper generating matrix:

00011110 11101100
01001111 01111000
01100110 - 00101001
11011011 00011110

Applying the trellis contruction procedures for linear codes we obtain the trellis given in Figure
5(a). Sectionalizing this trellis, and applying the reverse map from GF(2)? to C; x Cy we obtain,
in Figure 5(b), the minimal trellis for the original code.

Finally, let us consider the case when G is an arbitrary finite Abelian group. Then, G is isomorphic
to the direct product of cyclic groups, i.e.,

G (Cppn Q@ Com) B Qe Q-+ QY C )

where pq, - - -, p; are distinct primes.
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Lemma 8.4 Let C be a length n group code over Abelian group G. Let G ~ G Q G4, where the
orders of Gy and G4 are relatively prime. Then, there are length n group codes C; and Cy over G
and G4 respectively such that C ~ C; Q Cs.

As a consequence of Lemma 8.4, we can decompose C into [ codes Cy,---,C;. Obtain minimal
trellises for these [ codes; however, view labels in these trellises as if they were elements of GG, by
using the natural injection maps. Now, using Theorem 4.1, it is easy to see that the product of
these trellises will be a minimal trellis for C. Hence, it is sufficient to consider the case

G~ (Cpen ®"'®0pam)

where ay < --- < @,,. The proofs of the next two lemmas are identical to those of Lemma 8.1 and
8.2.

Lemma 8.5 A length n group code C over (Cper @ -+ @ Cpam ), where ay < -+ < auy, is same as
a linear code, A, of length mn over Z,a, where o = oy, .

Once again, by the result of Biglieri and Elia [1], C can be specified by a k x n generator matrix W
whose entries are endomorphisms, ¥; ; : G = G.

Lemma 8.6 Given a generator matriz U for C, we can obtain a km X mn generator matriz over

Zpa, A, for S.

Now, the structure of the algorithm is similar to the elementary Abelian case. We can obtain a
generator matrix for the code over Z,o from that for C, and construct a minimal trellis for it.
Finally, sectionalizing this trellis will give a minimal trellis for C. Hence, we get:

Theorem 8.7 There is an O(k*n + s) time algorithm that given a generator matriz for a group
code over an Abelian group, constructs a minimal trellis for the code. In addition, this algorithm
computes s in O(k*n) time.

We illustrate the core ideas in the extension to the case of general finite Abelian groups, below:

Example 10 Consider the length 3 group code over C; x C4 given by the following generator

matrix 3 (6 0) (00
() (20) (6)

Observe that here the entries of the first column of every endomorphism matrix are over Zy whereas

the second column is over Z4. Since Z5 can be embedded into 74 by the map ¢ — 24,7 € 75, we
can obtain an equivalent generator matrix over Z4 by using this map on the first column of each
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endomorphism matrix. Now, as in the previous example, we can view this code as as a length 6
code over Z4. Applying our algorithm we obtain the following two-way proper generating matrix:

000101
012100
222000
000022
000220
020200

Applying the trellis contruction procedures for linear codes we obtain the trellis given in Figure
6(a). Sectionalizing this trellis, and applying the reverse map we obtain, in Figure 6(b), the minimal
trellis for the original code.

9 Computing local descriptions of minimal trellises

We will present efficient algorithms for the following two problems:

Problem I: Given states s and t at time indices 7 and ¢+ 1, determine if there is a transition from
s to t, and if so, the set of labels on this transition.

Problem II: Given state s at time index ¢, compute all states at time index ¢ + 1 that s has
transitions to, and the sets of labels on these transitions. The problem of computing all states at
time index ¢ — 1 that have transitions in to s is analogous.

Kschischang and Sorokine [15] have given algorithms for these problems for linear codes over fields.
Using the notion of p-linearity developed in Sections 6 and 7, these algorithms extend to linear
codes over rings Z,~. In turn, using the concepts developed in Section 8, these algorithms extend
to codes over Abelian groups. Rather than directly presenting the algorithms for codes over Abelian
groups, we show below the natural progression of ideas; this will help state the algorithms more
clearly. For the field case, we have modified the algorithms of Kschischang and Sorokine, so they
start with a two-way proper generator matrix, rather than an arbitrary generator matrix.

9.1 The field case

Let A be a k X n two-way proper generator matrix for a linear code, C, over GF(q). For each
1,1 <1 < n, compute a;, b; and ¢; as follows:

e «; is the set of rows of A that are zero in columns ¢+ 1 to n. Linear combinations of these
rows of A generate codewords in C;_.

e b, is the set of rows of A that are zero in columns 1 to ¢. Linear combinations of these rows
of A generate codewords in C,4.

e ¢; is the remaining set of rows of A. Linear combinations of these rows of A generate coset
representatives for C/(C;—C;y), and are therefore in one-to-one correspondence with the set
of states at time index ¢ in the minimal trellis for . We will denote state s at time index
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1 by a k-dimensional information vector v, that is zero in the components specified by a;
and b;. Thus vsA is the coset representative for state s, and v, A + (C/(C;—C;4)) is the set of
codewords that it is responsible for.

A succinct representation of the minimal trellis for C consists of A together with a;, b; and ¢; for
each 7,1 < i < n. This information can be computed in O(k*n) time, and requires O(kn) space.
In the following, we will denote the i** column of A by A;.

The algorithm for Problem I is now straightforward: there is a transition from s to ¢ iff the sets
of codewords they are responsible for have non-empty intersection. This happens iff v, and v; are
identical on the components specified by ¢;N¢;41. If so, the set of codewords that use this transition

| U {uA},

where u ranges over all k-dimensional vectors that agree with v, on positions specified by ¢; and
with v; on positions specified by ¢;41. So, the set of labels on this transition are given by:

U {udisi},

where u is as specified above. This expression can be simplified considerably. There are two cases:
if b; Na;41 = 0, then on the positions specified by (¢; U ¢;q1), Aiy1 is zero. So, the label on the
transition is given by wA;4+1, where from the vectors u given above, we have picked one that is zero
on positions (¢; U ¢;41). Otherwise, b; N a;41 is a single row of A which is zero everywhere except
in column 7+ 1. In this case, the set of labels on the transition is all of GF(q).

The algorithm is summarized below. It is easy to check that it runs in O(k) time.

ALGORITHM LOCAL DESCRIPTION, PROBLEM I

1). If vy and v; are not identical on components specified by ¢; N ¢;y1,
then there is no transition from s to .
2). If biﬂai-l—l 75 @,
then the transition from s to t is labelled with GF(q);
3). else, the transition from s to ¢ is labelled with uA; 1,
where u agrees with v; on positions specified by ¢;, with v; on
positions specified by ¢;+1, and is zero on the remaining positions.

4).  end.

Next, we give an algorithm for Problem II. If ¢;11 — ¢; = (), then there is only one transition out
of state s. It goes to state t which is given by v, where v; agrees with vs on positions specified by
ci+1 and is zero everywhere else. The set of labels on this transition can be computed as above.
Otherwise, ¢;41 — ¢; is a single row of A. In this case, there are ¢ transitions out of s, in to states
defined by the following vectors: for each e € GF'(q), consider the vector that is e in the position
specified by ¢; 41 — ¢;, agrees with v, on positions specified by ¢; N ¢;41, and is zero elsewhere. The
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label is computed as in Step 3 of the algorithm given above. This can be made more efficient by
pre-computing vsA;41, and adding to this ef, where f is the symbol in 4 at row ¢;41 — ¢; and
column ¢+ 1, for each e € GF(q). Clearly, this takes O(k) time.

Example 11 Consider the code over Z3 generated by the following matrix:

100202
011000
001100
000110
Then,
asz = {2}7 by = {4}7 €3 = {17 3}7
and

g = {27 3}7 by = ®7 C4 = {17 4}
Since b3 N ay = (), there is only one label on transitions from time index 3 to time index 4. The
label on the transition from state (1020) at time index 3 to state (1001) at time index 4 is given
by multiplying (1021) with the fourth column of the matrix, giving 2. Since ¢4 — ¢3 # 0, each state
at time index 3 has transitions to 3 states at time index 4.

9.2 Extending to rings 7.

The algorithm and proof are similar to the field case; the main difference being that “linear combi-
nation” is replaced by “p-linear combination”. Let A be a two-way proper p-generator sequencefor
code C. As in the field case, for 1 < ¢ < n, we will compute a;,b; and ¢;, the rows whose p-linear
combinations generate C;_, C;4+ and coset representatives for C/(C;—C;y). Suppose A has k rows.
Then, a state s at time index 7 will be represented by a k-dimensional information vector vy that
is 0 in positions specified by a; and b;. The components of v, specified by ¢; give the p-linear
combinationof these rows of A such that v, A is a coset representative for the codewords that s is
responsible for.

For Problem I, there is a transition from s to t iff v; and v; agree on the positions specified by
¢; N ¢ip1. Again, there are two cases: If b;Na;1; = 0, then on the positions specified by (¢; U ¢;41),
Ay is zero. In this case, there will be one symbol on the transition, given by uA;1q, where u
agrees with vy on positions specified by ¢; and with v, on positions specified by ¢;41, and is zero
in the remaining positions. Otherwise, each row specified by b; N a;41 has a non-zero entry only in
the (i41)* column. Let 3 be the order of the highest order element among these non-zero entries.
Then, using ideas from Section 6, it is easy to show that |b; N a;31| = (3, and these [ non-zero
entries have distinct orders. In this case, the transition from s to ¢ will have p® symbols: add each
p-linear combinationof the 3 non-zero entries to uA;+1, where u is as defined above.

For Problem 11, let |¢;41 —¢;| = 3. Again, it is easy to show that § < a. State s will have transitions
to p” states: construct v, by using an arbitrary p-linear combination on the positions specified by
civ1 — ¢, letting v, agree with v, on positions specified by ¢; N ¢;41, and be zero elsewhere. The
set of labels is computed as for Problem I, and this can be made more efficient by doing certain
precomputations as in the field case. Once the succinct representation is computed, the time for
solving both problems is O(k) (we are assuming that the ring, and hence «; is fixed).

21



9.3 Extending to Abelian groups

Let C be a length n code over a finite Abelian group G. As in Section 8, using the Chinese
Remainder Theorem, one can show that it is sufficient to consider the case

G~ (Cpen ®"'®0pam)

where oy < -+ < ayy,. Also, using Lemmas 8.5 and 8.6, the problem reduces to the case of rings
Zpa. Let A be the km X mn p-generator sequenceover Z,«. The main differences are: w.r.t. A, s
and t correspond to states at time indices ¢m and (i + 1)m. So, for example, s has a transition to
¢ iff vy and v; agree on components specified by ¢, N ¢(iy1),. Let B be the submatrix of A given
by columns ¢m + 1 to (i + 1)m. Then, the set of labels on this transition is given by:

UA{uD},

where u ranges over all k-dimensional p-linear combinations that agree with vs on positions specified
by ¢;n, and with v; on positions specified by ¢(;41)n,. This expression can be simplified as shown in
the ring case. The number of symbols on this transition will be p”, where r = |b;, N a(i_|_1)m|. It is
easy to show that r < ma. Also, if |C(Z'_|_1)m — ¢im| = 1', then there are p"’ transitions out of s, and
again ' < ma.

Theorem 9.1 For any finite Abelian group G, there is an algorithm that pre-computes O(kn)
information, in O(k?n) time, and solves Problem I and Problem Il in O(k) time.

10 Transition Space Theorem

In this section, we will present the Transition Space Theorem. This theorem helps define a succinct
representation for minimal trellises for group codes, using which local descriptions of the trellis can
be efficiently computed. However, unlike the succinct representation given for group codes over
Abelian groups in Section 9, in general this representation will not be of polynomial size, and so
is less useful. Perhaps more importantly, the Transition Space Theorem gives algebraic structural
properties of transitions in a minimal trellis for a group code. This theorem is derived as a corollary
of the State Space Theorem of Forney and Trott, and can be viewed as a complementary theorem:
the State Space Theorem characterizes states in a minimal trellis, and the Transition Space Theorem
characterizes transitions.

Let X1 and o denote the set of states and the state map at time index k, o3 : C — . The set of
transitions from time index k to k + 1, is called the branch space and is denoted by Xy r4q in [9].
Let o1 X 041 be the Cartesian product of homomorphisms o and op41,

Ok X Ok41 C— Ek X Ek-l—l-

Then, ¥j p11 = [0k X 0k41](C). For conciseness, let us denote ¥y p11 by S,

We will view S®) as a length two group code. Then, at time index 1, the codeword pasts,

P_(8W) = 54 = C/(C4-Cpt),
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and the codeword futures,
Py (8M) = Sy = C/(Clasny-Cirpayt)-
Denote the past subcode at time index 1 by S(_k)7 and the future subcode by S_(|_k)7 i.e.,

S¥ = {(a,0) | (a,0) € S?N

k
SH = {(0,0)] (0,b) € S®)}.
Then, by applying the State Space Theorem to this length two code, we get:

Theorem 10.1 (Transition Space Theorem)

SH S Y
sWsh sk T gk

Let A and B be sets of states at time indices k and k& 4+ 1 in the minimal trellis, T, for code C. We

will say that there is a clique of transitionsfrom A to B if every state in A has a transition to every

state in B in 7. The Transition Space Theorem shows that the branch space S is partitioned
(k)

into disjoint cliques of transitions, each corresponding to a coset of S(_k)S_l_ in 8. In particular,

() g9

good illustration of this fact.

the set of transitions in § will be called the zero clique. See Figure 7 from Example 11 for a

The Transition Space Theorem enables us to give a succinct representation of the minimal trellis
for a group code: for each time index, k, store the zero clique of transitions and quotient group

Sk)
k) (k)
St )Si)

Clearly, this information is sufficient to compute the local description of the trellis.

11 Lattice Codes

Our algorithm can be used for constructing minimal trellises for lattices. Lattice codes constitute
an important class of coset codes. An excellent treatment of lattice codes and trellises for lattice
codes can be found in [6].

A real N-dimensional lattice is said to be rectangular if it has a generator matrix which is diagonal
[2]. A lattice has a finite state trellis diagram with respect to a given set of coordinates if and
only if it contains a sublattice that is rectangular with respect to the same set of coordinates. Let
M = diag(ay,as,...,ayn) be a generator matrix of a N-dimensional rectangular lattice, say A, and
Ap the maximal rectangular sublattice in A. Then Ap has “trivial dynamics” and is the “non-
dynamical component” of A [9]. The quotient A/AR is a finite Abelian group and the techniques
presented in our work can be used to study the dynamical structure of this group. We illustrate
this with the following example:
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Example 12 Let the lattice A be generated by

1 2 0 0
1 -2 0 0
M= 0 2 -3 0
0 0 3 -4

The maximal rectangular sublattice Ap is generated by diag(2,4,6,8) and the quotient A/Ap is
isomorphic to a subgroup of Zy X Z4 X Zg X Zg. The generator matrix for this subgroup can be
obtained by taking the i** column modulo a; and discarding redundant rows and is shown below.

O NN
W w o
- o O

1
0
0

The corresponding trellis diagram is shown in figure 8(a). The trellis diagram for A can be obtained
by taking the product of this trellis with the trellis for Ar shown in figure 8(b).

12 Discussion

A natural first step in extending our work to codes over non-Abelian groups is to consider group
codes over semi-direct product groups, for example Dihedral groups. Group codes over such groups,
obtainable using multilevel constructions, have been characterized in [10] and a theorem (Theorem
3) on trellis construction has been proposed. We believe that if we obtain minimal trellises for
the component codes of the group code first using our algorithm and then take the product of the
resulting trellises, we shall get the minimal trellis for the block group codes discussed in [10].

A further extension to group codes over arbitrary finite non-Abelian groups seems difficult at
present since we do not know of a generator matrix description for such codes. In particular, the
set of endomorphisms of a non-Abelian group in general do not form a ring.

Another research direction worth investigating is using the succinct representation of minimal
trellises to obtaining faster decoding algorithms.
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Figure 1: The trellis for a single vector (example 1)
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Figure 2: The trellis from an arbitrary generator matrix (example 2)
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Figure 3: The trellis for the code generated by a single vector over a ring.
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Figure 5: The trellis for Example 9
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Figure 6: The trellis for Example 10
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Figure 7: The trellis for Example 11
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27 47 6Z 82

Figure 8: The trellis for Example 12
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