Text S1: the Wald test
The full logistic model can be written as

logit(z,,) =+ a1 (g =D +a,1 (g =2)+ Bl (h=1)+B,1 (h=2)+

Al (@ =DH(h=1)+ 2,1(g =D)I(h=2) + 1,1 (g =2)I(h =1) + 4,1 (g = 2)I (h = 2),
where 7, is the probability of disease given genotype g at SNP1 and h at SNP2.

The log-likelihood is | = Z::o Zszo [ngh1 log(7y,) + Ngno log(l— ﬂgh)]. It is easy to verify that the
MLEs of 7, are ny, /ny, ,where ny =ng,+n,, . Therefore, the MLEs of parameters

My ay, B /Igh are respectively
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001 000

Ay, = logit(7,,) +10git(%y,) — logit(7 o) — l0git(7y,)
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The observed Fisher Information matrix is



By the asymptotic properties of MLEs, the distribution of the MLE vector 0 is approximately
multivariate normal with variance-covariance matrix (I)™*. Therefore, the joint distribution of the MLEs
for the interaction parameters 94 = (/in,/in,iﬂ, /{22)T is approximately multivariate normal with
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variance-covariance matrix being the elements in the last four rows and columns of (I ) . Using symbolic

matrix inverse in Mathematica, we found that the covariance-covariance matrix is
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Note that the covariance matrix can also be derived using the multivariate normal approximation to the

distribution of the observed counts.
The Wald test for testing H, : 4, =4, =4,, =4,, =1 isgiven by
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Under the null hypothesis of no gene-gene interaction, Wald follows the chi-squared distribution with 4 df

asymptotically.




